
 Multilayer Perceptron and Neural Networks

MARIUS-CONSTANTIN POPESCU
1
 VALENTINA E. BALAS

2

 LILIANA PERESCU-POPESCU
3
 NIKOS MASTORAKIS

4

Faculty of Electromechanical and Environmental Engineering, University of Craiova
1

Faculty of Engineering, “Aurel Vlaicu” University of Arad
2

“Elena Cuza” College of Craiova
3

ROMANIA,

Technical University of Sofia
4

BULGARIA.

popescu.marius.c@gmail.com balas@inext.ro mastor@wses.org

Abstract: - The attempts for solving linear inseparable problems have led to different variations on the number

of layers of neurons and activation functions used. The backpropagation algorithm is the most known and used

supervised learning algorithm. Also called the generalized delta algorithm because it expands the training way

of the adaline network, it is based on minimizing the difference between the desired output and the actual

output, through the downward gradient method (the gradient tells us how a function varies in different

directions). Training a multilayer perceptron is often quite slow, requiring thousands or tens of thousands of

epochs for complex problems. The best known methods to accelerate learning are: the momentum method and

applying a variable learning rate. The paper presents the possibility to control the induction driving using neural

systems.

Key-Words:- Backpropagation algorithm, Gradient method, Multilayer perceptron, Induction driving.

1 Introduction
The multilayer perceptron is the most known and

most frequently used type of neural network. On

most occasions, the signals are transmitted within the

network in one direction: from input to output. There

is no loop, the output of each neuron does not affect

the neuron itself. This architecture is called feed-

forward (Fig.1).

Fig. 1: Neural network feed-forward multilayer.

Layers which are not directly connected to the

environment are called hidden. In the reference

material, there is a controversy regarding the first

layer (the input layer) being considered as a stand-

alone (itself a) layer in the network, since its only

function is to transmit the input signals to the upper

strata, without any processing on the inputs. In what

follows, we will count only the layers consisting of

stand-alone neurons, but we will mention that the

inputs are grouped in the input layer. There are also

feed-back networks, which can transmit impulses in

both directions, due to reaction connections in the

network. These types of networks are very powerful

and can be extremely complicated. They are

dynamic, changing their condition all the time, until

the network reaches an equilibrium state, and the

search for a new balance occurs with each input

change. Introduction of several layers was

determined by the need to increase the complexity of

decision regions. As shown in the previous

paragraph, a perceptron with a single layer and one

input generates decision regions under the form of

semi planes. By adding another layer, each neuron

acts as a standard perceptron for the outputs of the

neurons in the anterior layer, thus the output of the

network can estimate convex decision regions,

resulting from the intersection of the semi planes

generated by the neurons. In turn, a three-layer

perceptron can generate arbitrary decision areas

(Fig.2). Regarding the activation function of

neurons, it was found that multilayer networks do

not provide an increase in computing power

compared to networks with a single layer, if the

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 579 Issue 7, Volume 8, July 2009

mailto:popescu.marius.c@gmail.com
mailto:balas@inext.ro
mailto:mastor@wses.org

activation functions are linear, because a linear

function of linear functions is also a linear function.

Fig. 2: Decision regions of multilayer perceptrons.

The power of the multilayer perceptron comes

precisely from non-linear activation functions.

Almost any non-linear function can be used for this

purpose, except for polynomial functions. Currently,

the functions most commonly used today are the

single-pole (or logistic) sigmoid, shown in Figure 3:

se
sf −+
=

1

1
)(. (1)

Fig. 3: Sigmoid single-pole activation function.

And the bipolar sigmoid (the hyperbolic tangent)

function, shown in Figure 4, for a=2:

sa

sa

e

e
sf ⋅−

⋅−

+
−

=
1

1
)(. (2)

It may be noted that the sigmoid functions act

approximately linear for small absolute values of the

argument and are saturated, somewhat taking over

the role of threshold for high absolute values of the

argument. It has been shown [4] that a network

(possibly infinite) with one hidden layer is able to

approximate any continuous function.

Fig. 4: Sigmoid single-pole activation function.

This justifies the property of the multilayer

perceptron to act as a universal approximator. Also,

by applying the Stone-Weierstrass theorem in the

neural network, it was demonstrated that they can

calculate certain polynomial expressions: if there are

two networks that calculate exactly two functions f1,

namely f2, then there is a larger network that

calculates exactly a polynomial expression of f1 and

f2. Multi Perceptron is the best known and most used

type of neural networks are trained units of the type

shown in Fig. 5. Each of these units forms a

weighted sum of its inputs to which are added a

constant. This amount is then passed through a non-

linear function which is often called the activation

function. Most units are interconnected in a manner

"feed forward" ie interconnections which form a

loop as shown in Fig. 6.

Fig. 5: A multi-unit perceptron.

Fig. 6: Example network "feed forward". Each circle

represents a unit of the type shown in Figure 6.

Each connection between units is a share. Each

unit also has an entry in the diagonal are not shown.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 580 Issue 7, Volume 8, July 2009

For some types of applications recurrent networks (ie

not "feed forward"), in which some interconnections

forming loop, are also used. I have seen in Figure 6

an example of feed forward network. As mentioned

interconnections units of this type of network does a

not form loop, so the network is called feed forward.

Networks in which there is one or more loops of

interconnections as represented in Figure 7.a shall

appoint recurring between the units has a share. Each

unit also has an entry in the diagonal are not shown.

a)

b)

c)

d)

Fig. 7: Common types of networks: a) a recurrent

network; b) a stratified network; c) a network with

links between units of input and output; d) a feed

forward network fully connected.

In feed forward networks, units are usually arranged

in levels (layers) as in Figure 7.b but other topologies

can be used. Figure 7.c shows a type of network that

is useful in some applications in which direct links

between units of input and output are used. Figure

7.d shows a network with 3 units which is fully

connected i.e. that all interconnections are allowed to

feed restriction forward.

2 The backpropagation algorithm

Learning networks is typically achieved through a

supervised manner. It can be assumed to be available

a learning environment that contains both the

learning models and models of desired output

corresponding to input (this is known as "target

models"). As we will see, learning is typically based

on the minimization of measurement errors between

network outputs and desired outputs. This implies a

back propagation through a network similar to that

which is learned. For this reason algorithm learning

is called back-propagation. The method was first

proposed by [2], but at that time it was virtually

ignored, because it supposed volume calculations too

large for that time. It was then rediscovered by [20],

but only in the mid-'80s was launched by Williams

[18] as a generally accepted tool for training of the

multilayer perceptron. The idea is to find the

minimum error function e(w) in relation to the

connections weights. The algorithm for a multilayer

perceptron with a hidden layer is the following [8]:

 Step 1: Initializing. All network weights and

thresholds are initialized with random values,

distributed evenly in a small range, for example

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ii F

.
,

F

. 4242
, where Fi is the total number of inputs

of the neuron i [6]. If these values are 0, the

gradients which will be calculated during the trial

will be also 0 (if there is no direct link between input

and output) and the network will not learn. More

training attempts are indicated, with different initial

weights, to find the best value for the cost function

(minimum error). Conversely, if initial values are

large, they tend to saturate these units. In this case,

derived sigmoid function is very small. It acts as a

multiplier factor during the learning process and thus

the saturated units will be nearly blocked, which

makes learning very slow.

 Step 2: A new era of training. An era means

presenting all the examples in the training set. In

most cases, training the network involves more

training epochs. To maintain mathematical rigor, the

weights will be adjusted only after all the test vectors

will be applied to the network. Therefore, the

gradients of the weights must be memorized and

adjusted after each model in the training set, and the

end of an epoch of training, the weights will be

changed only one time (there is an „on-line” variant,

more simple, in which the weights are updated

directly, in this case, the order in which the vectors

of the network are presented might matter.

All the gradients of the weights and the current error

are initialized with 0 (Δwij = 0 and E = 0).

 Step 3: The forward propagation of the signal

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 581 Issue 7, Volume 8, July 2009

3.1 An example from the training set is applied to the

to the inputs.

3.2 The outputs of the neurons from the hidden layer

are calculated:

⎟
⎠

⎞
⎜
⎝

⎛ θ−⋅= ∑
=

n

i
jijij wpxfpy

1

)()(, (3)

where n is the number of inputs for the neuron j from

the hidden layer, and f is the sigmoid activation

function.

3.3 The real outputs of the network are calculated:

⎟
⎠

⎞
⎜
⎝

⎛ θ−⋅= ∑
=

m

i
kjkjkk pwpxfpy

1

)()()(, (4)

where m is the number of inputs for the neuron k

from the output layer.

3.4 The error per epoch is updated:

()
2

)(
2

pe
 E E k+= . (5)

 Step 4: The backward propagation of the errors

and the adjustments of the weights.

4.1 The gradients of the errors for the neurons in the

output layer are calculated:

)(')(pefp kk ⋅=δ , (6)

where f’ is the derived function for the activation,

and the error)()()(, pypype kkdk −= .

If we use the single-pole sigmoid (equation 1, its

derived is:

()
()(1)(

1

)('
2

xfxf

e

e
xf

x

x

−⋅=
+

=
−

−
) . (7)

If we use the bipolar sigmoid (equation 2, its derived

is:

()
() ()(1)(1

21

2
)('

2
xfxf

a

e

ea
xf

xa

xa

+⋅−⋅=
+

⋅
=

⋅−

⋅−
) . (8)

Further, let’s suppose that the function utilized is the

single-pole sigmoid. Then the equation (6) becomes:

())()(1)()(pepypyp kkkk ⋅−⋅=δ . (9)

4.2 The gradients for the weights between the hidden

layer and the output layer are updated:

)()()()(ppypwpw kjjkjk δ⋅+Δ=Δ . (10)

4.3 The gradients of the errors for the neurons in the

hidden layer are calculated:

() ∑
=

⋅δ⋅−⋅=δ
l

k
jkkjjj pwppypyp

1

)()()(1)()(, (11)

where l is the number of outputs for the network.

4.4 The gradients of the weights between the input

layer and the hidden layer are updated:

)()()()(ppxpwpw jiijij δ⋅+Δ=Δ . (12)

 Step 5: A new iteration.

If there are still test vectors in the current training

epoch, pass to step 3. If not, the weights all the

connections will be updated based on the gradients

of the weights:

ijijij www Δ⋅η+= , (13)

where η is the learning rate.

If an epoch is completed, we test if it fulfils the

criterion for termination (E<Emax or a maximum

number of training epochs has been reached).

If not, we pass to step 2. If yes, the algorithm ends.

 Example: MATLAB program [11] allows the

generation of a logical OR functions, which means

that the perceptron separates the classes of 0 from

the classes of 1. Obtaining in the Matlab work space:

 epoch:1SSE:3

 epoch:2SSE:1

epoch:3SSE:1 epoch:4SSE:0

 Test on the lot [0 1] s =1

After the fourth iteration, the perceptron separates

two classes (0 and 1) by a line. After the fourth

iteration the perceptron separates by a line two

classes (0 and 1). The percepton was tested in the

presence of the vector input . ⎥
⎦

⎤
⎢
⎣

⎡
1

0

Fig. 8: The evolution of the sum of squared errors.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 582 Issue 7, Volume 8, July 2009

The perceptron makes the logic OR function for

which the classes are linearly separable; that is one

of the conditions of the perceptron. If the previous

programs is performed for the exclusive OR

function, we will observe that, for any of the two

classes, there is no line to allow the separation into

two classes (0 and 1).

3 Methods to accelerate the learning
The momentum method [18] proposes adding a term

to adjust weights. This term is proportional to the last

amendment of the weight, i.e. the values with which

the weights are adjusted are stored and they directly

influence all further adjustments:

)1()()(−Δ⋅α+Δ=Δ pwpwpw ijijij . (14)

Adding a new term is done after the update of the

gradients for the weights from equations 10 and 12.

The method of variable learning rate [19] is to use an

individual learning rate for each weight and adapt

these parameters in each iteration, depending on the

successive signs of the gradients [9]:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−Δ−=Δ−η⋅

−Δ=Δ−η⋅
=η

))1(sgn())(sgn(),1(

))1(sgn())(sgn(),1(
)(

pwpwpd

pwpwpu
p

ijijij

ijijij

ij
 (15)

If during the training the error starts to increase,

rather than decrease, the learning rates are reset to

initial values and then the process continues.

4 Practical considerations of working

with multilayer perceptrons
For relatively simple problems, a learning rate of

 is acceptable, but in general it is

recommended the learning rate to be around 0.2. To

accelerate through the momentum method, a

satisfactory value for α is 0.9. If the learning rate is

variable, typical values that work well in most

situations are u = 1.2 and d = 0.8.

70.=η

 Choosing the activation function for the output

layer of the network depends on the nature of the

problem to be solved. For the hidden layers of

neurons, sigmoid functions are preferred, because

they have the advantage of both non-linearity and the

differentially (prerequisite for applying the

backpropagation algorithm). The biggest influence of

a sigmoid on the performances of the algorithm

seems to be the symmetry of origin [1]. The bipolar

sigmoid is symmetrical to the origin, while the

unipolar sigmoid is symmetrical to the point (0, 0.5),

which decreases the speed of convergence. For the

output neurons, the activation functions adapted to

the distribution of the output data are recommended.

Therefore, for problems of the binary classification

(0/1), the single-pole sigmoid is appropriate. For a

classification with n classes, each corresponding to a

binary output of the network (for example, an

application of optical character recognition), the

softmax extension of the single-pole sigmoid may be

used.

∑
=

=
n

i

iy

ky

k

e

e
y

1

'

. (16)

For continuous values, we can make a pre-processing

and a post processing of data, so that the network

will operate with scaled values, for example in the

range [-0.9, 0.9] for the hyperbolic tangent. Also, for

continuous values, the activation function of the

output neurons may be linear, especially if there are

no known limits for the range in which these can be

found. In a local minimum, the gradients of the error

become 0 and the learning no longer continues. A

solution is multiple independent trials, with weights

initialized differently at the beginning, which raises

the probability of finding the global minimum. For

large problems, this thing can be hard to achieve and

then local minimums may be accepted, with the

condition that the errors are small enough. Also,

different configurations of the network might be

tried, with a larger number of neurons in the hidden

layer or with more hidden layers, which in general

lead to smaller local minimums. Still, although local

minimums are indeed a problem, practically they are

not unsolvable. An important issue is the choice of

the best configuration for the network in terms of

number of neurons in hidden layers. In most

situations, a single hidden layer is sufficient. There

are no precise rules for choosing the number of

neurons. In general, the network can be seen as a

system in which the number of test vectors

multiplied by the number of outputs is the number of

equations and the number of weights represents the

number of unknown. The equations are generally

nonlinear and very complex and so it is very difficult

to solve them exactly through conventional means.

Training algorithm aims precisely to find

approximate solutions to minimize errors. If the

network approximates the training set well, this is

not a guarantee that it will find the same good

solutions for the data in another set, the testing set.

Generalization implies the existence of regularities in

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 583 Issue 7, Volume 8, July 2009

the data, of a model that can be learned. In analogy

with classical linear systems, this would mean some

redundant equations. Thus, if the number of weights

is less than the number of test vectors, for a correct

approximation, the network must be based on

intrinsic patterns of data models, models which are

to be found in the test data as well. A heuristic rule

states that the number of weights should be around

or below one tenth of the number of training vectors

and the number of exits. In some situations however

(e.g., if training data are relatively few), the number

of weights can be even half of the product. For a

multilayer perceptron is considered that the number

of neurons in a layer must be sufficiently large so

that this layer to provide three or more edges for

each convex region identified by the next layer [5].

So the number of neurons in a layer must be more

than three times higher than that of the next layer. As

mentioned before, a sufficient number of weights

lead to under-fitting, while too many of the weights

leads to over-fitting, events presented in Figure 9.

Fig. 9: The capacity for the approximation of a neural

network based on the number of weights.

The same occurs if the number of training epochs is

too small or too large. A method of solving this

problem is stopping the training when you reach the

best generalization. For a network large enough, it

was verified experimentally that the training error

decreases continuously, while the number of training

epochs increases. However, for data different than

those from the training set, we find that the error

decreases from the beginning up to a point until it

starts increasing again. That is why stopping the

training must occur when the error for the validation

set is minimum [13]. This is done by dividing the

training into two: about 90% of data will be used for

the training itself and the rest, called cross-validation

set is used for the measurement of the error. Training

stops when the error starts to increase for the cross-

validation set, moment called the "point of maximum

generalization”. Depending on the network

performance at this time, then you can try different

configurations, lowering or increasing the number of

neurons in the intermediate layer (or layers).

 Example: We associate an input vector X=[1 –0.5]

and a target vector T=[0.5 1] of size imposed by two

restrictions that can be reduced to two degrees of

freedom (the points W and the slopes B) of a single

Adaline neuron [9]. We suggest solving the linear

system of 2 equations with 2 unknowns [12]:

 w+b=0.5, - 0.5w+b=1, (17)

obtaining in the end the solutions:

w= -
3

1
 and b =

6

5
.

The Matlab program offers solutions obtained with

the help of the Adaline neuron either by points or by

slopes. Matlab program offers solutions obtained

using Adaline neuron, either by points or by slopes

[3], [7], [10], [21].

Fig. 10: The points (weight) and slopes (bias) of the

neuron identified as algebraic solutions.

5 Implementation
In this section we will discuss some issues related to

practical implementation perceptron and algorithm

of backpropagation.

 Sigmoid. As I said above activation functions that

are most commonly used units are multi perceptrons

type sigmoid. Other types of non-linearity have been

tested once but their behaviour appears to be

generally inferior to those of sigmoid. In class

sigmoid there are still wide choices. Feature sigmoid

that seem to have the greatest influence on the

performance of learning algorithm is symmetry to

the home, while the logistics of the example is

symmetric to a point of coordinates (0, 0.5).

Symmetry to give the home a bipolar sigmoid which

normally tends to lead to error surfaces better

conditioned. Sigmoid as logistical curves tend to

induce the narrowest error function, which weakens

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 584 Issue 7, Volume 8, July 2009

the speed of learning procedure.

 Output units and target values. Most practical

applications of multi perceptrons can be divided in a

clear relative in two different classes. In a class of

target outputs have a continuous range of values, and

the network is to make an operation of non-linear

regression. Normal in this case is not convenient to

put non-linearity in the output network. In fact we

are normally outputs that are able to cover the entire

range of possible target values, which is often higher

than the values sigmoid. I can well understand to

scale output amplitudes sigmoid how but it is rarely

any advantage relative to simple use of units with

non-linearity in output. Output units are said to be

linear. Simply get them to output the weighted sum

of the entries plus their term diagonal.

 In another class, which includes mainly

applications for classification and pattern recognition

target outputs are binary, ie, take only 2 values. In

this case it is usual to use units of output by non-

linearity sigmoid similar to other units in the

network. Binary target values that are most

appropriate depend on sigmoid used. Often target

values are chosen to be equal to the 2 values of

asymptote sigmoid (0 and 1 for logistics function and

± 1 for the tanh and arctan scale). In this case gain

error to 0 units of output will need to obtain

complete saturation ie the amount of entries should

become infinite. This would tend to lead weights of

these units to increase indefinitely in absolute value

and slow the learning process. To improve the speed

of learning is therefore usually used for target values

which are close but not equal to the asymptote of

sigmoid (eg 0.05 and 0.95 for the logistics and ± 0.9

for the functions tanh and arctan scale).

 Initializing share. Before you can start the

algorithm back-propagation is necessary to set the

weights of the network with some initial values. A

natural choice would be to initialize all with a value

of 0. So do not lean learning outcome in a particular

direction. However it can be seen easily by applying

the back propagation rule that if the initial weights

are all 0 gradient is 0 (except for those relating to

share or links between units of input and output, if

such links exist in the network). Furthermore the

gradient components will always remain 0 during the

learning even if there are direct links. Therefore, it is

normally necessary to initialize the weights with

different values of 0. The most common procedure is

to initialize with random values drawn from a

uniform distribution on a symmetric interval [-a, a].

As mentioned above some independent learning

independent random initialization can be used to find

the best minim cost function. It is understandable

that the large share (resulting in high values of a)

will tend to congested facilities. The saturation

derived nonlinear sigmoid is very small. Since these

derivatives act as a multiplier in the back

propagation, the relative weights derived entry unit

will be very small. The unit will be largely "locked"

by learning very slow.

 If you put a unit of data and network are all the

same radicals in the arithmetic average of the squares

(rms) and are all independent of each other and the

weights are initialized in a fixed time when the rms

sum of the entry unit will be proportional to fi 1/2,

where fi is the number of entries and the unit (often

called fan-in of the unit). To maintain the rms sum of

entries similar to each other, and to avoid saturation

of units with high fan-in, a parameter, controlling the

size of the range boot, is sometimes varied from one

unit to another, making you = k/(fi) 1/2. There are

various options for the choice of k. Some prefer to

initialize the weights so close to home, making it a

very small k (e.g. 0.01 to 0.1) and thus retain their

units in the central line at the beginning of the

learning process. Others prefer high values of k (eg 1

or higher), leading their units in the non-linear even

at the beginning of the learning process.

 Decorrelation and normalization of entry. To

consider the simplest network that can design one,

consists of a single linear unit. Networks with a

single linear unit (adalines) are used for a long time

in the area of signal processing in discrete time.

Filters with finite impulse response to (FIR) can

now be seen as single units without a diagonal line.

Entries are consecutive samples input signal and

filter coefficients are the weights. Therefore,

adaptive filtering with FIR filters is an essential form

of learning in real-time networks with linear

networks. Therefore there is no surprise that the first

filtered adaptive algorithms were derived from the

delta rule [14]. It is well known in Adaptive filter

theory that learning is the fastest, because the error

is well-conditioned (no tub) if the entries are linear

units uncorrelated between them, which means that

<xixj>=0 for i≠j, and value equal squares

<xi
2>=<xj

2> for all i,j. Here <.> is expected value

(often, when we learn perceptrons, the expected

value can be estimated by simply learning media

set). If it is used also in diagonal line units, it act as

a further input which is equal to 1. Which means

that the square is 1, and therefore the squares of

other entries must be all equal to 1? On the other

hand, cross correlation of other entries with the new

entry is made simple and expected values of these

entries. Which should be equal to 0, as with all

cross-correlation between input:

<xi>=<xj>=0. (18)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 585 Issue 7, Volume 8, July 2009

In conclusion, for a faster learning of a single unit

with the diagonal line should be amended so that

the process averages each component input is 0.

<xi>=0, (19)

and components are normalized and decorrelating:

<xixj>=δij, (20)

where δij is Kronecker symbol.

Experience revealed that this type of processing

also tends to accelerate learning for multilayer

perceptrons. Setting the components of the input 0

may be made simply by adding a constant suitable

for everyone. Decorelating can then be

accomplished by any of orthogonal, for example,

the technique describe in [15]. Finally, the

normalization can be achieved by a suitable scaling

of each component. The hardest step is orthogonal,

many people and once you jump, by setting the

average to 0 and 0 mean squares. This simplified

process is usually designed as a normal entry; often

increase the speed of learning networks. A

technique developed to accelerate in May,

involving normalization and adaptive deco relation

input lines of the network is described in [16].
 Common shares. In some cases one would like to

constrain some of the network weights to be equal

with others. This situation may occur, for example, if

we are to achieve the same kind of processing in

different parts of the model input. It is a situation

often encountered in image processing, where some

would like to detect the same feature in different

parts of the input image. An example in a binary

application is described in [17]. Two examples of

situations with common shares will be described

below, the presentation of recurrent networks. The

difficulty in linking manually split shares that is

payable even if the weights are initialized with the

same value, derivatives of common functions of the

cost of each will generally be different between

them.

 The solution is quite simple. Assume that we

collected all the weights in a weighting vector w =

(W1, W2,) T (where T means transposed), and I

share that first must be kept equal between them.

These weights are not actually arguments

independent of the cost function E. To maintain all

arguments function is independent, should replace all

of these weights with a single argument, with which

they are all equal weights. Then, as derived in part of

E should be calculated relative to, and not relative to

all the individual weights.

But

∑∑
== ∂
∂

=
∂
∂

∂
∂

=
∂
∂ m

i i

i
m

i i w

E

a

w

w

E

a

E

11

 (21)

Derivatives appearing in the last line can be

calculated by the normal procedure of dissemination

- back.

 In conclusion, we should calculate derivatives

relative weight to each individual through the normal

method, and then use the amount to update them and

thus to adjust all the weights together. Also we must

remember that the common weights are initialized

with the same value.

6 Experimental results

Inside the vector control of an induction motor it can

be implemented a cvasi-PI standard fuzzy controller.

The optimization criterion (absolute error

integration) for such of controllers must guarantee

the robustness of the system. This cvasi-PI fuzzy

controller replaces the speed classic controller from

the vector control schema of the driving system

([11], [12]). A fuzzy control can be implemented

inside of a numerical control that involves the use of

a digital signal processor DSP (for example, TMS

320C31). Taking account of the mathematical model

developed in [11], [12], can be implemented a cvasi-

PI standard fuzzy controller in the induction driving

environment (Fig. 11).

()2
0 1 2= − + +e

d
J M M k k

dt

ω ω ω
,

2= Ψm
e s

r

L
q sqM p i

L
(22)

where M0 is the constant component part of the static

torque Ms; K1 and K2 are proportional constants; Me

is the electromagnetic torque ;ω is the angular

speed; isq is the stator currents along the axes q; Lm is

the periodical mutual inductivity between the stator

and the rotor; Lm is the inductivity of the stator.

Fig. 11: Fuzzy logic controller.

Instead of the fuzzy controller [11] it is placed a

neural controller which should have the learning

possibility of the control surface of the fuzzy

controller.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 586 Issue 7, Volume 8, July 2009

a)

b)

Fig. 12: Control surface approximation of fuzzy

controller by a network of neurons a) normalized

coordinates; b) actual values.

a)

b)

Fig. 13: Driving on-load start-up, using a fuzzy

controller (f) and a neural controller perceptron type (n)

with 4 layers: a) speed shape; b) stator current shape.

Using Simulink structured schema [11], [12], the

vectors e, Δ e and Δ u are extracted in MATLAB

environment. They are introduced into a neural

network with four layers by activation functions of

sigmoid type (MATLAB/Neural Network Toolbox).

Finally, after the network activation and the vectors

e, Δ e and Δ u are passed throw the learning process

(after Marquardt-Levenberg method), will result the

solution towards the neural network converges

(learning surface of neural controller - Fig.12, Fig.

13). It can be observed that plate areas are reduced,

and the control surface peaks of fuzzy controller, in

dials 1 and 3, are no more outline by the neural

network of perceptron type. It would be necessary to

make an analysis in the e,Δ e phases plane because

only some points of surface are significant from

control point of view. It is interesting to know the

accurate value of the output increment, when are

analyzed some points of the surface remote from

reference point (e=0, Δ e=0), which is control main

objective.

7 Conclusion
Multilayer perceptrons are the most commonly used

types of neural networks. Using the backpropagation

algorithm for training, they can be used for a wide

range of applications, from the functional

approximation to prediction in various fields, such as

estimating the load of a calculating system or

modelling the evolution of chemical reactions of

polymerization, described by complex systems of

differential equations. In implementing the

algorithm, there are a number of practical problems,

mostly related to the choice of the parameters and

network configuration. First, a small learning rate

leads to a slow convergence of the algorithm, while a

too high rate may cause failure (algorithm will

"jump" over the solution). Another problem

characteristic of this method of training is given by

local minimums. A neural network must be capable

of generalization.

 The advantage of fuzzy logic controller will

disappear when comparing to a wind-up PI

controller, knowing that this is working in a linear.

On the other hand, a wind-up PI-controller does not

make any problems when the output variable reaches

the saturation value since the signal corresponding to

the difference between limited output and unlimited

output is once more fed to the controller for

desaturation. For a same control surface, the

advantage of using a neural controller consists in

calculus time decreasing as against with that lost

when it is used a fuzzy controller with a bigger

number of linguistic labels.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 587 Issue 7, Volume 8, July 2009

References

[1] Almeida, L.B. Multilayer perceptrons, in

Handbook of Neural Computation, IOP

Publishing Ltd and Oxford University Press,

1997.

[2] Bryson, A.E., Ho, Y.C. Applied Optimal

Control, Blaisdell, New York, 1969.

[3] Curteanu, S., Petrila, C., Ungureanu, Ş., Leon, F.

Genetic Algorithms and Neural Networks Used

in Optimization of a Radical Polymerization

Process, Buletinul Universităţii Petrol-Gaze din

Ploieşti, vol. LV, seria tehnică, nr.2, pp. 85-93,

2003.

[4] Cybenko, G. Approximation by superpositions of

a sigmoidal function, Math. Control, Signal

Syst. 2, pp.303-314, 1989.

[5] Dumitrescu, D., Costin, H. Reţele neuronale,

Teorie şi aplicaţii, Ed. Teora, Bucureşti, 1996.

[6] Haykin, S. Neural Networks: A Comprehensive

Foundation, Maxmillan, IEEE Press, 1994.

[7] Leon, F., Gâlea, D., Zaharia, M. H. Load

Balancing In Distributed Systems Using

Cognitive Behavioural Models, Bulletin of

 Technical University of Iaşi, Tome XLVIII (LII),

fasc.1-4, 2002.

[8] Negnevitsky, M. Artificial Intelligence: A Guide

to Intelligent Systems, Addison Wiesley,

England, 2002.

[9] Popescu M.C., Hybrid neural network for

prediction of process parameters in injection

moulding, Annals of University of Petroşani,

Electrical Engineering, Universities Publishing

House, Petroşani, Vol. 9, pp.312-319, 2007.

[10] Popescu M.C., Olaru O, Mastorakis N.

Equilibrium Dynamic Systems Integration

Proceedings of the 10th WSEAS Int. Conf. on

Automation & Information, Prague, pp.424-

430, March 23-25, 2009.

[11] Popescu M.C., Modelarea şi simularea

proceselor, Editura Universitaria Craiova, pp.

261-273, 2008.

[12] Popescu M.C., Petrişor A. Neuro-fuzzy control

of induction driving, 6th International

Carpathian Control Congress, pp.209-214,

Miskolc-Lillafured, Budapesta, 2005.

[13] Popescu M.C., Reţele neuronale şi algoritmi

genetici utilizaţi în optimizarea proceselor.

Sesiunea Natională de Comunicări Stiinţifice.

Ediţia a IX-a. Secţiunea Matematică, Târgu-Jiu,

noiembrie 24-25, 2001.

[14] Popescu M.C., Balas V., Olaru O., Mastorakis

N., The Backpropagation Algorithm Functions

for the Multilayer Perceptron, Proceedings of

the 11th WSEAS International Conference on

Sustainability in Science Engineering, pp.28-

31, Timisoara, Romania, may 27-29, 2009.

[15] Popescu M.C,, Olaru O., Mastorakis N.,

Equilibrium Dynamic Systems Intelligence,

WSEAS Transactions on Information Science

and Applications, Issue 5, Volume 6, pp.725-

735, May 2009.

[16] Popescu M.C., Olaru O, Mastorakis N.

Equilibrium Dynamic Systems Integration,

Proceedings of the 10th WSEAS Int. Conf. on

Automation & Information (ICAI '09), March

23-25, 2009.

[17] Popescu M.C., Petrişor A., Drighiciu A., Fuzzy

Control Algorithm Implementation using

LabWindows – Robot, WSEAS Transactions on

Systems Journal, Issue 1, Volume 8, pp.117-

126, January 2009,

[18] Principe, J.C., Euliano, N.R., Lefebvre, W.C.

Neural and Adaptive Systems. Fundamentals

Through Simulations, John Wiley & Sons, Inc,

2000.

[19] Rumelhart, D.E., Hinton, G.E., Williams, R.J.

Learning representations by backpropagating

errors, Nature 323, pp.533-536, 1986.

[20] Silva, F.M., Almeida, L.B. Acceleration

techniques for the backpropagation algorithm

in L.B. Almeida, C.J. Wellekens (eds.), Neural

Networks, Springer, Berlin, pp.110–19, 1990.

[21] Werbos, P.J. The Roots of Backpropagation,

John Wiley & Sons, New York, 1974.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Marius-Constantin Popescu, Valentina E. Balas,

Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 588 Issue 7, Volume 8, July 2009

