
 Multilayer Perceptron and Neural Networks 
 

MARIUS-CONSTANTIN POPESCU
1
          VALENTINA E. BALAS

2
    

      LILIANA PERESCU-POPESCU
3
          NIKOS MASTORAKIS

4
 

Faculty of Electromechanical and Environmental Engineering, University of Craiova
1
 

Faculty of Engineering, “Aurel Vlaicu” University of Arad
2
 

“Elena Cuza” College of Craiova
3
 

ROMANIA, 

Technical University of Sofia
4
 

BULGARIA. 

popescu.marius.c@gmail.com      balas@inext.ro     mastor@wses.org 
 

 

Abstract: - The attempts for solving linear inseparable problems have led to different variations on the number 

of layers of neurons and activation functions used. The backpropagation algorithm is the most known and used 

supervised learning algorithm. Also called the generalized delta algorithm because it expands the training way 

of the adaline network, it is based on minimizing the difference between the desired output and the actual 

output, through the downward gradient method (the gradient tells us how a function varies in different 

directions). Training a multilayer perceptron is often quite slow, requiring thousands or tens of thousands of 

epochs for complex problems. The best known methods to accelerate learning are: the momentum method and 

applying a variable learning rate. The paper presents the possibility to control the induction driving using neural 

systems. 
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1 Introduction 
The multilayer perceptron is the most known and 

most frequently used type of neural network. On 

most occasions, the signals are transmitted within the 

network in one direction: from input to output. There 

is no loop, the output of each neuron does not affect 

the neuron itself. This architecture is called feed-

forward (Fig.1).  
 

 
Fig. 1: Neural network feed-forward multilayer. 

 

Layers which are not directly connected to the 

environment are called hidden. In the reference 

material, there is a controversy regarding the first 

layer (the input layer) being considered as a stand-

alone (itself a) layer in the network, since its only 

function is to transmit the input signals to the upper 

strata, without any processing on the inputs. In what 

follows, we will count only the layers consisting of 

stand-alone neurons, but we will mention that the 

inputs are grouped in the input layer. There are also 

feed-back networks, which can transmit impulses in 

both directions, due to reaction connections in the 

network. These types of networks are very powerful 

and can be extremely complicated. They are 

dynamic, changing their condition all the time, until 

the network reaches an equilibrium state, and the 

search for a new balance occurs with each input 

change. Introduction of several layers was 

determined by the need to increase the complexity of 

decision regions. As shown in the previous 

paragraph, a perceptron with a single layer and one 

input generates decision regions under the form of 

semi planes. By adding another layer, each neuron 

acts as a standard perceptron for the outputs of the 

neurons in the anterior layer, thus the output of the 

network can estimate convex decision regions, 

resulting from the intersection of the semi planes 

generated by the neurons. In turn, a three-layer 

perceptron can generate arbitrary decision areas 

(Fig.2). Regarding the activation function of 

neurons, it was found that multilayer networks do 

not provide an increase in computing power 

compared to networks with a single layer, if the 
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activation functions are linear, because a linear 

function of linear functions is also a linear function. 
 

 
Fig. 2: Decision regions of multilayer perceptrons. 

 

The power of the multilayer perceptron comes 

precisely from non-linear activation functions. 

Almost any non-linear function can be used for this 

purpose, except for polynomial functions. Currently, 

the functions most commonly used today are the 

single-pole (or logistic) sigmoid, shown in Figure 3: 
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Fig. 3: Sigmoid single-pole activation function. 

 

And the bipolar sigmoid (the hyperbolic tangent) 

function, shown in Figure 4, for a=2: 
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It may be noted that the sigmoid functions act 

approximately linear for small absolute values of the 

argument and are saturated, somewhat taking over 

the role of threshold for high absolute values of the 

argument. It has been shown [4] that a network 

(possibly infinite) with one hidden layer is able to 

approximate any continuous function. 
 

 
Fig. 4: Sigmoid single-pole activation function. 

 

This justifies the property of the multilayer 

perceptron to act as a universal approximator. Also, 

by applying the Stone-Weierstrass theorem in the 

neural network, it was demonstrated that they can 

calculate certain polynomial expressions: if there are 

two networks that calculate exactly two functions f1, 

namely f2, then there is a larger network that 

calculates exactly a polynomial expression of f1 and 

f2. Multi Perceptron is the best known and most used 

type of neural networks are trained units of the type 

shown in Fig. 5. Each of these units forms a 

weighted sum of its inputs to which are added a 

constant. This amount is then passed through a non-

linear function which is often called the activation 

function. Most units are interconnected in a manner 

"feed forward" ie interconnections which form a 

loop as shown in Fig. 6.  

 

Fig. 5: A multi-unit perceptron. 
 

 

Fig. 6: Example network "feed forward". Each circle 

represents a unit of the type shown in Figure 6.  

Each connection between units is a share. Each  

unit also has an entry in the diagonal are not shown. 
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For some types of applications recurrent networks (ie 

not "feed forward"), in which some interconnections 

forming loop, are also used. I have seen in Figure 6 

an example of feed forward network. As mentioned 

interconnections units of this type of network does a 

not form loop, so the network is called feed forward. 

Networks in which there is one or more loops of 

interconnections as represented in Figure 7.a shall 

appoint recurring between the units has a share. Each 

unit also has an entry in the diagonal are not shown.   
 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 7: Common types of networks: a) a recurrent 

network; b) a stratified network; c) a network with 

links between units of input and output; d) a feed 

forward network fully connected. 
 

In feed forward networks, units are usually arranged 

in levels (layers) as in Figure 7.b but other topologies 

can be used. Figure 7.c shows a type of network that 

is useful in some applications in which direct links 

between units of input and output are used. Figure 

7.d shows a network with 3 units which is fully 

connected i.e. that all interconnections are allowed to 

feed restriction forward. 

2 The backpropagation algorithm 

Learning networks is typically achieved through a 

supervised manner. It can be assumed to be available 

a learning environment that contains both the 

learning models and models of desired output 

corresponding to input (this is known as "target 

models"). As we will see, learning is typically based 

on the minimization of measurement errors between 

network outputs and desired outputs. This implies a 

back propagation through a network similar to that 

which is learned. For this reason algorithm learning 

is called back-propagation.     The method was first 

proposed by [2], but at that time it was virtually 

ignored, because it supposed volume calculations too 

large for that time. It was then rediscovered by [20], 

but only in the mid-'80s was launched by Williams 

[18] as a generally accepted tool for training of the 

multilayer perceptron. The idea is to find the 

minimum error function e(w) in relation to the 

connections weights. The algorithm for a multilayer 

perceptron with a hidden layer is the following [8]: 

     Step 1: Initializing. All network weights and 

thresholds are initialized with random values, 

distributed evenly in a small range, for example 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
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.
,

F

. 4242
, where Fi is the total number of inputs 

of the neuron i [6]. If these values are 0, the 

gradients which will be calculated during the trial 

will be also 0 (if there is no direct link between input 

and output) and the network will not learn. More 

training attempts are indicated, with different initial 

weights, to find the best value for the cost function 

(minimum error). Conversely, if initial values are 

large, they tend to saturate these units. In this case, 

derived sigmoid function is very small. It acts as a 

multiplier factor during the learning process and thus 

the saturated units will be nearly blocked, which 

makes learning very slow. 

     Step 2: A new era of training. An era means 

presenting all the examples in the training set. In 

most cases, training the network involves more 

training epochs. To maintain mathematical rigor, the 

weights will be adjusted only after all the test vectors 

will be applied to the network. Therefore, the 

gradients of the weights must be memorized and 

adjusted after each model in the training set, and the 

end of an epoch of training, the weights will be 

changed only one time (there is an „on-line” variant, 

more simple, in which the weights are updated 

directly, in this case, the order in which the vectors 

of the network are presented might matter. 

All the gradients of the weights and the current error 

are initialized with 0 (Δwij = 0 and E = 0). 

    Step 3:  The forward propagation of the signal 
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3.1 An example from the training set is applied to the 

to the inputs. 

3.2 The outputs of the neurons from the hidden layer 

are calculated: 
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where n is the number of inputs for the neuron j from 

the hidden layer, and f is the sigmoid activation 

function. 

3.3 The real outputs of the network are calculated: 
 

⎟
⎠

⎞
⎜
⎝

⎛ θ−⋅= ∑
=

m

i
kjkjkk pwpxfpy

1

)()()( ,        (4) 

 

where m is the number of inputs for the neuron k 

from the output layer. 

3.4 The error per epoch is updated: 
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     Step 4: The backward propagation of the errors 

and the adjustments of the weights. 

4.1 The gradients of the errors for the neurons in the 

output layer are calculated: 
 

)(')( pefp kk ⋅=δ ,                       (6) 
 

where f’ is the derived function for the activation, 

and the error )()()( , pypype kkdk −= . 

If we use the single-pole sigmoid (equation 1, its 

derived is: 
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If we use the bipolar sigmoid (equation 2, its derived 

is: 
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Further, let’s suppose that the function utilized is the 

single-pole sigmoid. Then the equation (6) becomes: 
 

( ) )()(1)()( pepypyp kkkk ⋅−⋅=δ .        (9) 
 

4.2 The gradients for the weights between the hidden 

layer and the output layer are updated: 
 

)()()()( ppypwpw kjjkjk δ⋅+Δ=Δ .     (10) 

 

4.3 The gradients of the errors for the neurons in the 

hidden layer are calculated: 
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where l is the number of outputs for the network. 

4.4 The gradients of the weights between the input 

layer and the hidden layer are updated: 
 

)()()()( ppxpwpw jiijij δ⋅+Δ=Δ .         (12) 

 

     Step 5: A new iteration. 

If there are still test vectors in the current training 

epoch, pass to step 3. If not, the weights all the 

connections will be updated based on the gradients 

of the weights: 
 

ijijij www Δ⋅η+= ,                   (13) 

 

where η is the learning rate. 

If an epoch is completed, we test if it fulfils the 

criterion for termination (E<Emax or a maximum 

number of training epochs has been reached).  

If not, we pass to step 2. If yes, the algorithm ends. 

      Example: MATLAB program [11] allows the 

generation of a logical OR functions, which means 

that the perceptron separates the classes of 0 from 

the classes of 1. Obtaining in the Matlab work space: 
 

 epoch:1SSE:3 

 epoch:2SSE:1 

epoch:3SSE:1  epoch:4SSE:0

 Test on the lot [0 1]   s =1 

 

After the fourth iteration, the perceptron separates 

two classes (0 and 1) by a line. After the fourth 

iteration the perceptron separates by a line two 

classes (0 and 1). The percepton was tested in the 

presence of the vector input . ⎥
⎦

⎤
⎢
⎣

⎡
1

0

 

 
Fig. 8: The evolution of the sum of squared errors. 
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The perceptron makes the logic OR function for 

which the classes are linearly separable; that is one 

of the conditions of the perceptron. If the previous 

programs is performed for the exclusive OR 

function, we will observe that, for any of the two 

classes, there is no line to allow the separation into 

two classes (0 and 1).  

 

 

3 Methods to accelerate the learning 
The momentum method [18] proposes adding a term 

to adjust weights. This term is proportional to the last 

amendment of the weight, i.e. the values with which 

the weights are adjusted are stored and they directly 

influence all further adjustments: 

 

)1()()( −Δ⋅α+Δ=Δ pwpwpw ijijij .       (14) 

 

Adding a new term is done after the update of the 

gradients for the weights from equations 10 and 12. 

The method of variable learning rate [19] is to use an 

individual learning rate for each weight and adapt 

these parameters in each iteration, depending on the 

successive signs of the gradients [9]: 
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If during the training the error starts to increase, 

rather than decrease, the learning rates are reset to 

initial values and then the process continues. 

 

 

4 Practical considerations of working 

with multilayer perceptrons 
For relatively simple problems, a learning rate of 

 is acceptable, but in general it is 

recommended the learning rate to be around 0.2. To 

accelerate through the momentum method, a 

satisfactory value for α is 0.9. If the learning rate is 

variable, typical values that work well in most 

situations are u = 1.2 and d = 0.8.  

70.=η

     Choosing the activation function for the output 

layer of the network depends on the nature of the 

problem to be solved. For the hidden layers of 

neurons, sigmoid functions are preferred, because 

they have the advantage of both non-linearity and the 

differentially (prerequisite for applying the 

backpropagation algorithm). The biggest influence of 

a sigmoid on the performances of the algorithm 

seems to be the symmetry of origin [1]. The bipolar 

sigmoid is symmetrical to the origin, while the 

unipolar sigmoid is symmetrical to the point (0, 0.5), 

which decreases the speed of convergence. For the 

output neurons, the activation functions adapted to 

the distribution of the output data are recommended. 

Therefore, for problems of the binary classification 

(0/1), the single-pole sigmoid is appropriate. For a 

classification with n classes, each corresponding to a 

binary output of the network (for example, an 

application of optical character recognition), the 

softmax extension of the single-pole sigmoid may be 

used. 
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For continuous values, we can make a pre-processing 

and a post processing of data, so that the network 

will operate with scaled values, for example in the 

range [-0.9, 0.9] for the hyperbolic tangent. Also, for 

continuous values, the activation function of the 

output neurons may be linear, especially if there are 

no known limits for the range in which these can be 

found. In a local minimum, the gradients of the error 

become 0 and the learning no longer continues. A 

solution is multiple independent trials, with weights 

initialized differently at the beginning, which raises 

the probability of finding the global minimum. For 

large problems, this thing can be hard to achieve and 

then local minimums may be accepted, with the 

condition that the errors are small enough. Also, 

different configurations of the network might be 

tried, with a larger number of neurons in the hidden 

layer or with more hidden layers, which in general 

lead to smaller local minimums. Still, although local 

minimums are indeed a problem, practically they are 

not unsolvable. An important issue is the choice of 

the best configuration for the network in terms of 

number of neurons in hidden layers. In most 

situations, a single hidden layer is sufficient. There 

are no precise rules for choosing the number of 

neurons. In general, the network can be seen as a 

system in which the number of test vectors 

multiplied by the number of outputs is the number of 

equations and the number of weights represents the 

number of unknown. The equations are generally 

nonlinear and very complex and so it is very difficult 

to solve them exactly through conventional means. 

Training algorithm aims precisely to find 

approximate solutions to minimize errors. If the 

network approximates the training set well, this is 

not a guarantee that it will find the same good 

solutions for the data in another set, the testing set. 

Generalization implies the existence of regularities in 
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the data, of a model that can be learned. In analogy 

with classical linear systems, this would mean some 

redundant equations. Thus, if the number of weights 

is less than the number of test vectors, for a correct 

approximation, the network must be based on 

intrinsic patterns of data models, models which are 

to be found in the test data as well. A heuristic rule 

states that the number of weights should be around 

or below one tenth of the number of training vectors 

and the number of exits. In some situations however 

(e.g., if training data are relatively few), the number 

of weights can be even half of the product. For a 

multilayer perceptron is considered that the number 

of neurons in a layer must be sufficiently large so 

that this layer to provide three or more edges for 

each convex region identified by the next layer [5]. 

So the number of neurons in a layer must be more 

than three times higher than that of the next layer. As 

mentioned before, a sufficient number of weights 

lead to under-fitting, while too many of the weights 

leads to over-fitting, events presented in Figure 9.  
 

 
Fig. 9: The capacity for the approximation of a neural 

network based on the number of weights.  

 

The same occurs if the number of training epochs is 

too small or too large. A method of solving this 

problem is stopping the training when you reach the 

best generalization. For a network large enough, it 

was verified experimentally that the training error 

decreases continuously, while the number of training 

epochs increases. However, for data different than 

those from the training set, we find that the error 

decreases from the beginning up to a point until it 

starts increasing again. That is why stopping the 

training must occur when the error for the validation 

set is minimum [13]. This is done by dividing the 

training into two: about 90% of data will be used for 

the training itself and the rest, called cross-validation 

set is used for the measurement of the error. Training 

stops when the error starts to increase for the cross-

validation set, moment called the "point of maximum 

generalization”. Depending on the network 

performance at this time, then you can try different 

configurations, lowering or increasing the number of 

neurons in the intermediate layer (or layers). 

   Example: We associate an input vector X=[1 –0.5] 

and a target vector T=[0.5 1] of size imposed by two 

restrictions that can be reduced to two degrees of 

freedom (the points W and the slopes B) of a single 

Adaline neuron [9]. We suggest solving the linear 

system of 2 equations with 2 unknowns [12]: 

 w+b=0.5,     - 0.5w+b=1,            (17)  
 

obtaining in the end the solutions:  

w= -
3

1
 and   b =

6

5
. 

The Matlab program offers solutions obtained with 

the help of the Adaline neuron either by points or by 

slopes. Matlab program offers solutions obtained 

using Adaline neuron, either by points or by slopes 

[3], [7], [10], [21]. 
 

 
Fig. 10: The points (weight) and slopes (bias) of the 

neuron identified as algebraic solutions. 

 

 

5 Implementation 
In this section we will discuss some issues related to 

practical implementation perceptron and algorithm 

of backpropagation.  

     Sigmoid. As I said above activation functions that 

are most commonly used units are multi perceptrons 

type sigmoid. Other types of non-linearity have been 

tested once but their behaviour appears to be 

generally inferior to those of sigmoid. In class 

sigmoid there are still wide choices. Feature sigmoid 

that seem to have the greatest influence on the 

performance of learning algorithm is symmetry to 

the home, while the logistics of the example is 

symmetric to a point of coordinates (0, 0.5). 

Symmetry to give the home a bipolar sigmoid which 

normally tends to lead to error surfaces better 

conditioned. Sigmoid as logistical curves tend to 

induce the narrowest error function, which weakens 
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the speed of learning procedure.  

      Output units and target values. Most practical 

applications of multi perceptrons can be divided in a 

clear relative in two different classes. In a class of 

target outputs have a continuous range of values, and 

the network is to make an operation of non-linear 

regression. Normal in this case is not convenient to 

put non-linearity in the output network. In fact we 

are normally outputs that are able to cover the entire 

range of possible target values, which is often higher 

than the values sigmoid. I can well understand to 

scale output amplitudes sigmoid how but it is rarely 

any advantage relative to simple use of units with 

non-linearity in output. Output units are said to be 

linear. Simply get them to output the weighted sum 

of the entries plus their term diagonal.  

      In another class, which includes mainly 

applications for classification and pattern recognition 

target outputs are binary, ie, take only 2 values. In 

this case it is usual to use units of output by non-

linearity sigmoid similar to other units in the 

network. Binary target values that are most 

appropriate depend on sigmoid used. Often target 

values are chosen to be equal to the 2 values of 

asymptote sigmoid (0 and 1 for logistics function and 

± 1 for the tanh and arctan scale). In this case gain 

error to 0 units of output will need to obtain 

complete saturation ie the amount of entries should 

become infinite. This would tend to lead weights of 

these units to increase indefinitely in absolute value 

and slow the learning process. To improve the speed 

of learning is therefore usually used for target values 

which are close but not equal to the asymptote of 

sigmoid (eg 0.05 and 0.95 for the logistics and ± 0.9 

for the functions tanh and arctan scale).  

      Initializing share. Before you can start the 

algorithm back-propagation is necessary to set the 

weights of the network with some initial values. A 

natural choice would be to initialize all with a value 

of 0. So do not lean learning outcome in a particular 

direction. However it can be seen easily by applying 

the back propagation rule that if the initial weights 

are all 0 gradient is 0 (except for those relating to 

share or links between units of input and output, if 

such links exist in the network). Furthermore the 

gradient components will always remain 0 during the 

learning even if there are direct links. Therefore, it is 

normally necessary to initialize the weights with 

different values of 0. The most common procedure is 

to initialize with random values drawn from a 

uniform distribution on a symmetric interval [-a, a]. 

As mentioned above some independent learning 

independent random initialization can be used to find 

the best minim cost function. It is understandable 

that the large share (resulting in high values of a) 

will tend to congested facilities. The saturation 

derived nonlinear sigmoid is very small. Since these 

derivatives act as a multiplier in the back 

propagation, the relative weights derived entry unit 

will be very small. The unit will be largely "locked" 

by learning very slow.  

     If you put a unit of data and network are all the 

same radicals in the arithmetic average of the squares 

(rms) and are all independent of each other and the 

weights are initialized in a fixed time when the rms 

sum of the entry unit will be proportional to fi 1/2, 

where fi is the number of entries and the unit (often 

called fan-in of the unit). To maintain the rms sum of 

entries similar to each other, and to avoid saturation 

of units with high fan-in, a parameter, controlling the 

size of the range boot, is sometimes varied from one 

unit to another, making you = k/(fi) 1/2. There are 

various options for the choice of k. Some prefer to 

initialize the weights so close to home, making it a 

very small k (e.g. 0.01 to 0.1) and thus retain their 

units in the central line at the beginning of the 

learning process. Others prefer high values of k (eg 1 

or higher), leading their units in the non-linear even 

at the beginning of the learning process. 

       Decorrelation and normalization of entry. To 

consider the simplest network that can design one, 

consists of a single linear unit. Networks with a 

single linear unit (adalines) are used for a long time 

in the area of signal processing in discrete time. 

Filters with finite impulse response to (FIR) can 

now be seen as single units without a diagonal line. 

Entries are consecutive samples input signal and 

filter coefficients are the weights. Therefore, 

adaptive filtering with FIR filters is an essential form 

of learning in real-time networks with linear 

networks. Therefore there is no surprise that the first 

filtered adaptive algorithms were derived from the 

delta rule [14]. It is well known in Adaptive filter 

theory that learning is the fastest, because the error 

is well-conditioned (no tub) if the entries are linear 

units uncorrelated between them, which means that 

<xixj>=0 for  i≠j,  and value equal squares  

<xi
2>=<xj

2> for all i,j. Here <.> is expected value 

(often, when we learn perceptrons, the expected 

value can be estimated by simply learning media 

set). If it is used also in diagonal line units, it act as 

a further input which is equal to 1. Which means 

that the square is 1, and therefore the squares of 

other entries must be all equal to 1? On the other 

hand, cross correlation of other entries with the new 

entry is made simple and expected values of these 

entries. Which should be equal to 0, as with all 

cross-correlation between input:  
 

<xi>=<xj>=0.             (18)           
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In conclusion, for a faster learning of a single unit 

with the diagonal line should be amended so that 

the process averages each component input is 0.  
 

<xi>=0,                            (19) 

 

and components are normalized and decorrelating:  
 

<xixj>=δij,                          (20) 
 

where δij is Kronecker symbol.  

Experience revealed that this type of processing 

also tends to accelerate learning for multilayer 

perceptrons. Setting the components of the input 0 

may be made simply by adding a constant suitable 

for everyone. Decorelating can then be 

accomplished by any of orthogonal, for example, 

the technique describe in [15]. Finally, the 

normalization can be achieved by a suitable scaling 

of each component. The hardest step is orthogonal, 

many people and once you jump, by setting the 

average to 0 and 0 mean squares. This simplified 

process is usually designed as a normal entry; often 

increase the speed of learning networks. A 

technique developed to accelerate in May, 

involving normalization and adaptive deco relation 

input lines of the network is described in [16].  
     Common shares. In some cases one would like to 

constrain some of the network weights to be equal 

with others. This situation may occur, for example, if 

we are to achieve the same kind of processing in 

different parts of the model input. It is a situation 

often encountered in image processing, where some 

would like to detect the same feature in different 

parts of the input image. An example in a binary 

application is described in [17]. Two examples of 

situations with common shares will be described 

below, the presentation of recurrent networks. The 

difficulty in linking manually split shares that is 

payable even if the weights are initialized with the 

same value, derivatives of common functions of the 

cost of each will generally be different between 

them.  

     The solution is quite simple. Assume that we 

collected all the weights in a weighting vector w = 

(W1, W2, ....) T (where T means transposed), and I 

share that first must be kept equal between them. 

These weights are not actually arguments 

independent of the cost function E. To maintain all 

arguments function is independent, should replace all 

of these weights with a single argument, with which 

they are all equal weights. Then, as derived in part of 

E should be calculated relative to, and not relative to 

all the individual weights.  

But 
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             (21) 

 

Derivatives appearing in the last line can be 

calculated by the normal procedure of dissemination 

- back.  

     In conclusion, we should calculate derivatives 

relative weight to each individual through the normal 

method, and then use the amount to update them and 

thus to adjust all the weights together. Also we must 

remember that the common weights are initialized 

with the same value. 

 

 

6 Experimental results 

Inside the vector control of an induction motor it can 

be implemented a cvasi-PI standard fuzzy controller. 

The optimization criterion (absolute error 

integration) for such of controllers must guarantee 

the robustness of the system. This cvasi-PI fuzzy 

controller replaces the speed classic controller from 

the vector control schema of the driving system 

([11], [12]). A fuzzy control can be implemented 

inside of a numerical control that involves the use of 

a digital signal processor DSP (for example, TMS 

320C31). Taking account of the mathematical model 

developed in [11], [12], can be implemented a cvasi-

PI standard fuzzy controller in the induction driving 

environment (Fig. 11).  

( )2
0 1 2= − + +e

d
J M M k k

dt

ω ω ω
,

2= Ψm
e s

r

L
q sqM p i

L
(22) 

 

where M0 is the constant component part of the static 

torque Ms; K1 and K2 are proportional constants; Me 

is the electromagnetic torque ;ω  is the angular 

speed; isq is the stator currents along the axes q; Lm is 

the periodical mutual inductivity between the stator 

and the rotor; Lm is the inductivity of the stator.  
 

 
Fig. 11: Fuzzy logic controller. 

Instead of the fuzzy controller [11] it is placed a 

neural controller which should have the learning 

possibility of the control surface of the fuzzy 

controller.  
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a) 

                             

              
b) 

                             

Fig. 12:  Control surface approximation of fuzzy 

controller by a network of neurons a) normalized 

coordinates; b) actual values. 
 

 
a) 

 
b) 

Fig. 13:  Driving on-load start-up, using a fuzzy 

controller (f) and a neural controller perceptron type (n) 

with 4 layers: a) speed shape; b) stator current shape. 
 

Using Simulink structured schema [11], [12], the 

vectors e, Δ e and Δ u are extracted in MATLAB 

environment. They are introduced into a neural 

network with four layers by activation functions of 

sigmoid type (MATLAB/Neural Network Toolbox). 

Finally, after the network activation and the vectors 

e, Δ e and Δ u are passed throw the learning process 

(after Marquardt-Levenberg method), will result the 

solution towards the neural network converges 

(learning surface of neural controller - Fig.12, Fig. 

13). It can be observed that plate areas are reduced, 

and the control surface peaks of fuzzy controller, in 

dials 1 and 3, are no more outline by the neural 

network of perceptron type. It would be necessary to 

make an analysis in the e,Δ e phases plane because 

only some points of surface are significant from 

control point of view. It is interesting to know the 

accurate value of the output increment, when are 

analyzed some points of the surface remote from 

reference point (e=0, Δ e=0), which is control main 

objective. 

 

 

7 Conclusion 
Multilayer perceptrons are the most commonly used 

types of neural networks. Using the backpropagation 

algorithm for training, they can be used for a wide 

range of applications, from the functional 

approximation to prediction in various fields, such as 

estimating the load of a calculating system or 

modelling the evolution of chemical reactions of 

polymerization, described by complex systems of 

differential equations. In implementing the 

algorithm, there are a number of practical problems, 

mostly related to the choice of the parameters and 

network configuration. First, a small learning rate 

leads to a slow convergence of the algorithm, while a 

too high rate may cause failure (algorithm will 

"jump" over the solution). Another problem 

characteristic of this method of training is given by 

local minimums. A neural network must be capable 

of generalization. 

    The advantage of fuzzy logic controller will 

disappear when comparing to a wind-up PI 

controller, knowing that this is working in a linear. 

On the other hand, a wind-up PI-controller does not 

make any problems when the output variable reaches 

the saturation value since the signal corresponding to 

the difference between limited output and unlimited 

output is once more fed to the controller for 

desaturation. For a same control surface, the 

advantage of using a neural controller consists in 

calculus time decreasing as against with that lost 

when it is used a fuzzy controller with a bigger 

number of linguistic labels. 
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