
Multilayer perceptron neural network for downscaling
rainfall in arid region: A case study of Baluchistan,

Pakistan

Kamal Ahmed1, Shamsuddin Shahid1,∗, Sobri Bin Haroon1 and Wang Xiao-jun2,3

1Department of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research

Institute, Nanjing, China.
3Research Center for Climate Change, Ministry of Water Resources, Nanjing, China.

∗Corresponding author. e-mail: sshahid@utm.my

Downscaling rainfall in an arid region is much challenging compared to wet region due to erratic and
infrequent behaviour of rainfall in the arid region. The complexity is further aggregated due to scarcity
of data in such regions. A multilayer perceptron (MLP) neural network has been proposed in the present
study for the downscaling of rainfall in the data scarce arid region of Baluchistan province of Pakistan,
which is considered as one of the most vulnerable areas of Pakistan to climate change. The National
Center for Environmental Prediction (NCEP) reanalysis datasets from 20 grid points surrounding the
study area were used to select the predictors using principal component analysis. Monthly rainfall data for
the time periods 1961–1990 and 1991–2001 were used for the calibration and validation of the MLP model,
respectively. The performance of the model was assessed using various statistics including mean, variance,
quartiles, root mean square error (RMSE), mean bias error (MBE), coefficient of determination (R2) and
Nash–Sutcliffe efficiency (NSE). Comparisons of mean monthly time series of observed and downscaled
rainfall showed good agreement during both calibration and validation periods, while the downscaling
model was found to underpredict rainfall variance in both periods. Other statistical parameters also
revealed good agreement between observed and downscaled rainfall during both calibration and validation
periods in most of the stations.

1. Introduction

There is wide agreement in the international sci-
entific society that climate change will cause sharp
increase in temperature, which in turn is likely to
affect evapotranspiration and atmospheric water
storage, thereby potentially changing the magni-
tudes, frequencies and intensities of rainfall as
well as its seasonal and inter-annual variabilities
(Middelkoop et al. 2001; Chen and Xu 2005;
Akhtar et al. 2008; Zhang et al. 2008; Wang et al.
2013; Wang et al. 2014). Small changes in the mean

and standard deviation values can produce rela-
tively large changes in the probability of extreme
events (Groisman et al. 1999; Rodrigo 2002; Chiew
2006; Su et al. 2006; Shahid 2011; Pour et al.
2014). Regions with arid and semi-arid climates are
more sensitive even to insignificant changes in cli-
matic characteristics (Lins et al. 1990; Mehrotra
and Mehrotra 1995; Samadi et al. 2012). There-
fore, such changes in climatic variables will have
a significant impact on local hydrological regimes
in the arid and semi-arid regions (Samadi et al.
2013). Understanding and modelling the potential

Keywords. Multilayer perceptron neural network; rainfall; arid region; downscaling.

J. Earth Syst. Sci. 124, No. 6, August 2015, pp. 1325–1341
c© Indian Academy of Sciences 1325



1326 Kamal Ahmed et al.

impacts of climate in an arid region under the cur-
rent and future climate is therefore very essential
(Huth et al. 2008).

General circulation models (GCMs) and Earth
system models (ESMs) are considered as the
most important and appropriate tools for model-
ling and assessing the impact of climate change
(Chu et al. 2010; Goyal and Ojha 2012). The raw
outputs of climate change simulation from GCMs,
however, fails to provide reliable information on
spatial scales below about 200 km and also to
resolve significant subgrid scale features such as,
topography, clouds, land use, complex and sharp
orography (Maraun et al. 2010; Goyal et al. 2012).
Downscaling of GCM output at the local scale is
therefore used to overcome this problem. The pri-
mary purpose of downscaling is to transfer large-
scale atmospheric variables into regional or local
scale (Wetterhall et al. 2006). A number of down-
scaling methods have been developed in the past
two decades, which can be classified into two cate-
gories, i.e., dynamical and statistical downscaling.
Among these two classes, statistical downscal-
ing methods are widely used for their simplicity,
easiness, flexibility, quickness and ability to pro-
vide local-scale information. Among the statistical
downscaling methods, regression models, which are
used to quantify the direct relationships between
the predictands and predictor variables, are the
most popular methods (Guo et al. 2012).
Several regression-based statistical methods

have been developed and applied, such as, princi-
pal component analysis, artificial neural networks,
multiple linear regression, and canonical correla-
tion analysis (Mahmood and Babel 2013). How-
ever, the relationship between predictor and pre-
dictand is often very complex in nature, and linear
regression based methods cannot work very well
(Goyal and Ojha 2012; Ahmadi et al. 2014). This
is especially true for an arid region, where the rela-
tion between local rainfall and ocean–atmospheric
circulation parameters are not explicitly under-
stood. Rainfall in an arid region is very erratic and
infrequent. Sufficient data and information are also
not often available for analysis. These have made
the downscaling of rainfall in an arid region much
challenging (Maurer and Hidalgo 2008).
To model the complex relationship between pre-

dictor and predictand, a number of non-linear
regression-based downscaling models have been
introduced (Haylock et al. 2006; Harpham and
Dawson 2006; Cannon 2008; Hashmi et al. 2011).
Recent studies showed that statistical downscal-
ing based on artificial neural network (ANN) mod-
els can present good non-linear regression models
(Mendes and Marengo 2010; Hashmi et al. 2011;
Goyal and Ojha 2012; Gaitan et al. 2014). In the
present study, an artificial neural network known as

Multilayer Perceptron (MLP) neural network has
been used for downscaling rainfall. Multilayer per-
ceptron is the most popular, flexible and simplest
type of artificial neural network and has been
used successfully for climate downscaling in vari-
ous climatic regions (Harpham and Dawson 2006;
Cannon 2008; Pour et al. 2014).
The literature review revealed that only a few

studies have been conducted for downscaling rain-
fall in the arid regions such as, the studies by Şen
et al. (2012) in the Riyadh City of Saudi Arabia,
Goyal et al. (2011), Anandhi et al. (2008) in the
upstream of Malaprabha reservoir in India, Souvi-
gnet and Heinrich (2011) in Coquimbo Region of
Chile, Samadi et al. (2013) in western Iran, and Liu
et al. (2011) in Tarim River basin in China. How-
ever, there is still a need to model and assess the
impacts of climate change in arid regions located
in other parts of the world.
Baluchistan, an arid province of Pakistan is

selected as the study area in the present study.
Pakistan is one of the most vulnerable countries in
the world to climate change. Climate projections
indicated that average temperate in the country
will rise 1.1 to 6.4◦C by the end of the current
century (Syed et al. 2014). Baluchistan, the arid
province of Pakistan is considered to be a more
vulnerable region of Pakistan. It is anticipated
that droughts and water scarcity will continuously
increase in the region throughout the 21st cen-
tury, which will severely affect the economy and
livelihood of the people, if adaptation measures
are not taken. Despite high vulnerability to cli-
mate change, little attention has been paid so far
to understand the possible future changes in cli-
mate and their impacts in Baluchistan. The review
of the literature revealed that no studies on climate
change projection at the local scale have been con-
ducted in the region. Some studies in the upper
parts of Pakistan have been conducted, such as
Mahmood and Babel (2013) downscale, the pre-
cipitation over Jhelum river basin using SDSM,
Akhtar et al. (2008) studied the impacts of climate
change over three river basins in Pakistan by using
PRECIS, Ashiq et al. (2010) downscaled the pre-
cipitation in the northwestern Himalayan moun-
tains and upper Indus plains of Pakistan by using
PRECIS, Syed et al. (2014) conducted study over
Karakoram and the Hindu-Kush mountain ranges
that stretches between central Afghanistan and
northern Pakistan by using PRECIS. It is expected
that the present study will help in downscaling cli-
mate, which in turn will help in future climate pro-
jections for necessary mitigation and adaptation
planning in arid regions.
The rest of this paper is structured as follows:

Section 2 describes the general features, climate of
the study area, and the dataset used in the study,
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section 3 describes the methodology used for the
study, section 4 discusses the obtained results, and
finally section 5 gives the conclusions based on the
obtained results.

2. Study area

Baluchistan is a mountainous, desert and an arid
province, located between 30.12◦N and 67.01◦E
of Pakistan. The location of Baluchistan province
of Pakistan is shown in figure 1. Physically, it
is an extensive plateau of rough terrain divided
into basins by ranges of sufficient heights and
ruggedness. Geographically, it is divided into four
distinct zones: upper highlands, lower highlands,
plains, and deserts. The topography of the study
area, shown in figure 1, reveals a large varia-
tion over a short distance. The high variability in
topography strongly influences the climate. Moun-
tains primarily dominate the terrain in the region.
The climate of the province lies in the region
of hyper-arid, arid and semi-arid, as shown in
figure 2 (a).
The rainfall is scanty and unevenly distributed.

Spatial distribution of mean annual rainfall in the
study area is shown in figure 2(b). The area is pre-
dominantly arid and receives rainfall which varies
from 30 mm in the northwest desert to 397 mm
in the northeast (Ahmed et al. 2014). The amount
of rainfall varies over time and space in different
seasons.

Monsoon winds and the western depression are
the main sources of rainfall during summer and
winter, respectively in the area. About 58% of total
rainfall in the area occurs during winter caused by
western depression. On the other hand, 31% of the
total rainfall in the area happens during monsoon.
Winter rainfall (December–March) is caused by
western depressions that originate in the Mediter-
ranean Sea. On the other hand, monsoon winds
bring moist air from Bay of Bengal during the
months of June to September. The monsoon wind
enters the area from the southeast corner of the
province and, therefore, southeastern part of the
province receives more rainfall during monsoon. As
the monsoon progresses through the land, air mois-
ture content reduces, and the amount of monsoon
rainfall gradually decreases from the east to the
west.

2.1 Data and sources

Data from 14 meteorological stations (figure 1)
were collected in order to use as the predictor in
the downscaling model. The major challenge of
hydrological study in the province is the missing
rainfall data. The percentage of missing rainfall
data in the study area was found to vary between
0 and 33.13% (table 1). The missing values were
computed using expectation–maximization (EM)
method. The EM algorithm iteratively computes
the maximum likelihood estimates to increase the
relationship between the missing value and the

Figure 1. Geographical location and topography of Baluchistan province of Pakistan.
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Figure 2. (a) Aridity and (b) mean annual rainfall in Baluchistan.

Table 1. Percentage of missing data and result of homogene-
ity test.

Standard normal

Missing homogeneity

Station name data (%) test (SNHT)

Barkhan 1.22 H0

Dalbandin 0.00 H0

Jiwani 0.41 H0

Kalat 8.94 H0

Khuzdar 0.20 H0

Lasbela 0.00 H0

Nokkunddi 0.81 H0

Ormara 33.13 Ha

Panjgur 0.20 H0

Pasni 7.93 H0

Quetta 0.00 H0

Sibbi 2.64 H0

Turbat 2.44 H0

Zhob 0.00 H0

unknown parameters of a data model. It iteratively
computes the maximum likelihood estimates to
increase the relationship between the missing value
and the unknown parameters of a data model. The
EM algorithm mainly consists of two main steps;
conditional expectation E-step and maximization
M-step. The E-step attempts to create a function
for the expectation of the log-likelihood, evalu-
ated using the current estimate for the parameters.
The M-step computes parameters maximizing the
expected log-likelihood found on the E-step. These
parameter-estimates are then used to determine
the distribution of the latent variables in the next
E-step. The parameters are then re-estimated, and

so on, proceeding iteratively until convergence
(Ng and McLachlan 2004). A full descript of EM
algorithm can be found in McLachlan and Krishnan
(1997). EM has been widely used in recent years
for computation of missing rainfall data (Firat et al.
2010; Tsidu 2012; Alamgir et al. 2015).
The accuracy of downscaling model often

requires long-term reliable and continuous precip-
itation data. It is also expected that the data
should be homogeneous (Kajornrit et al. 2012).
The homogeneity of rainfall data in the study area
was assessed using standard normal homogene-
ity test (SNHT) (Alexandersson 1986). SNHT is
widely used for detecting inhomogeneity in rain-
fall data (Santos and Fragoso 2013; Hosseinzadeh
Talaee et al. 2014). SNHT was applied at each sta-
tion separately to detect the inhomogeneity at a
confidence level of 95% with null hypothesis (H0):
data are homogeneous and alternative hypothesis
(Ha): there is a month at which there is a change
in the data. The obtained result is given in table 1.
The results revealed homogeneity in rainfall time

series in all stations except at Ormara, where
the percentage of missing data is also very high.
Therefore, Ormara station was discarded from the
study.
Twenty-six large-scale atmospheric reanalysis

(National Center for Environmental Prediction
(NCEP)) variables listed in table 2, which are used
as the proxy of current observation of GCM vari-
ables were collected from the website of the Cana-
dian Climate Change Scenarios Network (CCCSN)
and used as predictors in downscaling model.
There are no general guidelines for the selec-

tion of predictors. Choice of predictors varies from
one region to another, and mainly depends on the
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Table 2. List of NCEP variables used to select predictors for
downscaling rainfall.

No. Variables Description

1 mslp Mean sea level pressure

2 p f Surface airflow strength

3 p u Surface zonal velocity

4 p v Surface meridional velocity

5 p z Surface vorticity

6 p th Surface wind direction

7 p zh Surface divergence

8 p5 f 500 hPa airflow strength

9 p5 u 500 hPa zonal velocity

10 p5 v 500 hPa meridional velocity

11 p5 z 500 hPa vorticity

12 p500 500 hPa geopotential height

13 p5th 500 hPa wind direction

14 p5zh 500 hPa divergence

15 p8 f 850 hPa airflow strength

16 p8 u 850 hPa zonal velocity

17 p8 v 850 hPa meridional velocity

18 p8 z 850 hPa vorticity

19 p800 850 hPa geopotential height

20 p8th 850 hPa wind direction

21 p8zh 850 hPa divergence

22 rhum Near surface relative humidity

23 r500 Relative humidity at 500 hPa

24 r850 Relative humidity at 850 hPa

25 shum Near surface specific humidity

26 temp Mean temperature

characteristics of large-scale atmospheric circula-
tion, seasonality, regional topography, and the pre-
dictand to be downscaled (Tripathi et al. 2006;
Anandhi et al. 2008). The aerial extent of the
climatic domain for the selection of predictors is
usually selected based on the mechanism of rain-
fall in an area (Kannan and Ghosh 2011). There-
fore, it is very crucial to select an adequate size
of the domain. According to Najafi et al. (2010),
the domain size neither should be too small, that
may not capture atmospheric phenomena nor too
large to increase the computation of cost and time.
Therefore, a domain consisting of 20 grid points
covering the region between latitudes 22.5◦–32.5◦N
and longitudes 60◦–71.25◦E (figure 3) were selec-
ted, considering that the domain is sufficient to
cover the influence of circulation patterns of pre-
cipitation climate of the study area.

3. Methodology

3.1 Multilayer perceptron neural network

Multilayer perceptron (MLP) is the most popular,
flexible and the simplest type of artificial neural
network. The method is widely used to map the
nonlinear relationship between predictor and pre-
dictands (Dawson and Wilby 2001; Chadwick
et al. 2011). The main task of the neural network
is to improve the performance function between

Figure 3. NCEP grid points used to select NCEP predictors.
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the predicted and observed values. MLP neural
network is composed of an input layer, any num-
ber of hidden layers, and an output layer of neu-
rons. Single hidden layer is often considered enough
to approximate continuous functions, but there is
no widely accepted rule regarding the number of
hidden nodes (Harpham and Dawson 2006; Hsieh
2009; Gaitan et al. 2013).
Usually, statistical techniques assume some

kinds of data distribution, while MLP makes no
assumption. MLP can be trained to approximate
virtually any smooth, measurable function. It can
model highly non-linear functions and can be
trained to accurately generalize when presented
with new and unseen data. These features of MLP
make it an attractive alternative to develop numer-
ical models, and also when choosing between statis-
tical approaches (Gardner and Dorling 1998). MLP
used following equations for modelling precipitation:

yk = F

(

h
∑

j=1

wjG(si) + bk

)

(1)

where F represents the linear activation function
of the output neuron, bk is the threshold; wj repre-
sents the connection, G is the hyperbolic tangent
sigmoid used as activation function for the hidden
nodes, and can be expressed as follows:

G(si) =
esi − e−si

esi + e−si
(2)

where si is the weighted sum of all incoming infor-
mation and is also referred to as the input signal,

si =
n
∑

i=1

wixi (3)

where xi is the inputs to the network, wi is the
connection weights between nodes of the input and
hidden layers.

3.2 Selection of predictors

The selection of appropriate predictors is one of the
most important steps for climate downscaling. Pre-
dictors that directly affect rainfall processes should
be used in statistical downscaling as input vari-
ables (Salvi et al. 2013). The choice of predictors
varies from one station to another as it depends on
the characteristics of the large-scale atmospheric
circulation and the local predictand. In this study,
principal components of all NCEP variables from
all the 20 grids were used for selecting predictors.
Principal component analysis (PCA) is a multi-
variate statistical technique that has been widely
used in climatological studies. It aims to reduce
the dimensionality of a dataset consisting of a large

number of interrelated variables, while retaining as
much as possible of the variation present in the
dataset (Hannachi et al. 2007).
One of the main difficulties in using PCA is

the selection of the number of principal compo-
nents (PCs). The key issue in developing a PCA
model is to choose the adequate number of PCs to
represent the system in an optimal way. If fewer
PCs are selected than required, a poor model will
be obtained, and an incomplete representation of
the process results. On the contrary, if more PCs
than necessary are selected, the model will be over-
parameterized and will include noise (Valle et al.
1999). There exist a plethora of methods to cal-
culate the number of PCs (Akaike 1974; Malinowski
1977; Rissanen 1978). In the present study, Mini-
mum Description Length (MDL) method was used
for the selection of PCs. The MDL method applies
to PCA based on the covariance matrix of the
data. The advantage of the MDL criteria is that
it has a solid statistical basis and is theoreti-
cally shown to have a minimum number of PCs
(Valle et al. 1999).

3.3 Performance evaluation of downscaling model

The performance of the downscaling model was
assessed by comparing the mean, variance, and
quartiles (25th, 50th, and 75th) of observed and
downscaled rainfall during both the model calibra-
tion and validation. Furthermore, different statis-
tics like RMSE, coefficient of determination (R2),
mean bias (MBE) and Nash–Sutcliffe model effi-
ciency (NSE) were also estimated to show the
efficiency of downscaling model. These statistical
parameters were chosen as those are widely used
for assessing downscaling model efficiency (Kannan
and Ghosh 2013; Pervez and Henebry 2014). The
equation used for calculating these parameters are
given below:

RMSE =

[

1

N

N
∑

i=1

(xsim, i − xobs, i)
2

]1/2

(4)

R =

∑N

i=1
(xobs, i − xobs) (xsim, i − xsim)

√

∑N

i=1
(xsim, i − xsim)

2 ∑N

i=1
(xobs,i − xobs)

2

(5)

MBE =

[

1

N

N
∑

i=1

(xsim, i − xobs, i)

]

(6)

NSE = 1−

∑N

i=1
(xsim, i − xobs, i)

∑N

i=1
(xobs, i − xobs)

2

2

(7)
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where xsim and xobs are the ith modeled and obser-
ved data, and N is the number of observations.

4. Results and discussion

4.1 Calibration and validation of model

The MLP model was calibrated with NCEP predic-
tors for the time period 1961–1990 and validated
for the time period 1991–2001 against the observed
precipitation. The period 1961–1990 was used as
a base-line because it is of sufficient duration to
establish a reliable climatology, yet not too long,
nor too contemporary to include a strong global
change signal (Wilby et al. 2004). All the stations
were calibrated and validated separately.

4.2 Selection of predictors

The climatic system is influenced by the combined
action of multiple atmospheric variables in a wide
tempo-spatial space. Any single circulation predic-
tor and/or small tempo-spatial space are unlikely
to be sufficient, as they fail to capture key rainfall
mechanisms based on thermodynamics and vapour
content (Wilby 1998). Therefore, the NCEP data
from 20 grid points (26 climate variables in each
grid point; i.e., 26 × 20 = 520 attributes in total)
was extracted to capture key rainfall mechanism.
The model was trained with NCEP variables for 30
years (1961–1990), and, therefore, the sample size
was 30 × 12 = 360. The multi-dimensional grid-
ded NCEP predictors are highly correlated among
each other and formed high-dimensional covariate,
which results in multicollinearity. PCA was per-
formed to reduce the dimensionality of the predic-
tor variables. The number of components selected
and the cumulative percentage of variance repre-
sented by the selected components for different
months are given in table 3. The first 24 princi-
pal components were found to represent more than
98% variability of the original dataset for most of
the months.

4.3 Calibration and validation results
of downscaling model

After the selection of predictors, MLP neural net-
work is applied at every station to downscale
rainfall. Initially, the performance of the cali-
brated and validated model was not very promis-
ing. The comparison of monthly mean observed
and monthly mean downscaled rainfall had large
differences. It was also found that the seasonal dis-
tribution of the downscaled rainfall is not follow-
ing the pattern of observed rainfall. These types
of variations are common in the arid region as the

Table 3. Number of principal components and the
cumulative variance represented by the selected
principle components in each month.

No. of Cumulative

Month components variance (%)

January 24 98.94

February 25 99.17

March 25 98.95

April 25 98.86

May 25 98.87

June 26 98.86

July 24 98.91

August 24 98.70

September 24 98.71

October 24 98.88

November 25 99.03

December 23 98.90

rainfall in such region is a heterogeneous climate
variable and is difficult to simulate accurately
(Wilby et al. 2002). Therefore, the rainfall occur-
rence in the study area was analyzed for better
understanding and more precise simulation.
The analysis of seasonal rainfall pattern revealed

that monsoon and western depressions are not
effective for all stations in the study area. There is a
wide variation in the amount of rainfall from these
two sources. Some stations receive more rainfall
during the monsoon, while some receive more rain-
fall during western depressions. Only the stations
at Barkhan, Sibbi, Lasbela and Khuzdar receive
50% of its total rainfall during the monsoon. It
was also observed that there are large variations
in rainfall from month to month. These variations
in rainfall have a great effect on the results of
downscaling.
In order to deal with such problems, rainfall

in each calendar month were downscaled sepa-
rately, and later combined to produce the rain-
fall time series. For this purpose, macros in MS
Excel were developed, which were used to sepa-
rate rainfall data of each month from the rainfall
time series. The separated data were used to cali-
brate and validate MLP model. Comparisons of the
results showed that this procedure is much effec-
tive for downscaling rainfall in the arid region. It
was observed that the downscaled mean rainfall
and seasonal distribution in rainfall obtained by
such a procedure are very close to the observed
values.
The performance of the downscaling model was

numerically assessed by comparing the mean and
variance of observed and modelled rainfall dur-
ing both model calibration and validation. The
obtained results are presented in table 4. It can
be seen from the table that downscaling model
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has reproduced the observed precipitation with
a good accuracy during model calibration. How-
ever, rainfall was found to be little over- or under-
predicted in some stations during model validation.
For example, at Khuzdar, the observed precipita-
tion was 25.55 mm, while model produces 21.93
mm. Similarly, at Zhob station, observed precip-
itation was 24.79 mm, but the model produced
20.31 mm. However, the model was found to down-
scale mean precipitation more accurately during
validation at Jiwani and Turbat stations. Similar
types of results were obtained by Pervez and
Henebry (2014) during downscaling precipitation
in Ganges–Brahmaputra basin, where the down-
scaling model was found to perform better during
model validation in most of the stations.

In general, the variance in observed precipita-
tion is much greater than the variance in atmo-
spheric variables obtained from reanalysis or GCM.
Therefore, downscaling models fail to capture the
full range of variance in precipitation (Wilby et al.
2004). The result of this study also supports that
the performance of downscaling model in captur-
ing variance was not as good as in capturing mean
precipitation. However, the model was still compat-
ible to capture variance to some extent in most of
the stations. For example, at Barkhan station, the
variance of observed and downscaled precipitation
was 1.22 and 1.03, respectively. Large differences
were also observed in few stations during model
calibration and validation. For example, variance
in precipitation during model validation was 3.25

Table 4. The mean and coefficient of variation for observed and modeled precipitation during model calibration and
validation.

Calibration period (1961–1990) Validation period (1991–2001)

Mean Coefficient of variation Mean Coefficient of variation

Station Obs Mod Obs Mod Obs Mod Obs Mod

Barkhan 30.48 30.56 1.39 1.14 36.44 34.62 1.22 1.03

Dalbandin 6.71 6.89 1.96 1.48 7.30 6.98 1.97 1.32

Jiwani 9.49 8.12 2.93 1.71 7.63 8.01 2.49 1.61

Kalat 11.21 11.17 2.02 1.59 18.66 17.54 1.50 1.23

Khuzdar 19.39 20.27 1.52 1.22 25.11 21.93 1.75 1.15

Lasbela 11.56 11.41 2.05 1.61 14.93 15.55 2.11 1.37

Nokkundi 2.95 2.79 3.14 2.00 2.19 2.62 3.25 1.71

Panjgur 8.12 8.14 2.93 1.87 9.07 9.19 2.40 1.64

Pasni 9.11 9.04 2.61 1.68 7.93 8.83 1.75 1.18

Quetta 21.73 21.56 1.66 1.31 20.50 21.01 1.66 1.22

Sibbi 11.78 12.29 2.11 1.37 16.29 13.41 1.45 1.26

Turbat 8.36 7.49 2.03 1.30 6.23 6.98 2.33 1.41

Zhob 23.75 23.23 1.30 1.09 24.80 20.31 1.16 0.87

Figure 4. (a) Frequency distribution and (b) normal Q–Q plot of residuals.
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at Nokkunddi station. But it was found 1.71 in
downscaled precipitation.
Sachindra et al. (2014) reported that downscal-

ing model run with reanalysis data tends to explain
the mid-range of variances more accurately com-
pared to extremes. The result of the present study
also supports the statement. Variance inflation
methods can be used to capture full range of vari-
ance (Sohn et al. 2013; Hu et al. 2013; Pervez and
Henebry 2014). Von Storch (1999) suggested that
the application of randomization techniques can
help in capturing the full variance of a predictand.
Tripathi et al. (2006) reported that variations in
downscaled data can be improved by considering
a wider range of predictor variables and a much
longer validation phase.
The residuals of downscaled model for each

month at each station was assessed for normality.
This was done by visual assessment of histograms
and Q–Q plots of the residuals. The histogram and
Q–Q plot of the residuals at Quetta station for
the month of February are shown in figure 4(a and
b), respectively. The histogram closely resembles a
normal distribution and the Q–Q plot supports the
normal distribution of the residuals.
Similar results were observed for most of the

months at all the stations. However, in some months
deviation from normality was also found at few
stations. This may be due to the presence of out-
liers in the series. Slight deviation from normality
of residuals is not a serious issue if the interest is
only in the mean of the conditional distribu-
tion. However, when interest is in the tails of the
conditional distribution, the distribution of residu-
als becomes important (Tareghian and Rasmussen
2013).

4.3.1 Time series analysis

The monthly time series of observed and down-
scaled rainfall was compared to show the efficacy
of the downscaling method during model calibra-
tion and validation. The comparison was carried
out at all stations individually. The results for three
stations located in different climate zones, i.e.,
hyper-arid, arid, and semi-arid regions are pre-
sented as example in figure 5.
It can be seen that monthly rainfall follows

the similar pattern like the observed rainfall. At
few stations, some months have very high rainfall
values, which were underpredicted by the model.
The occurrence of extreme events is a common
phenomenon in precipitation hydrology, which
often cannot be predicted by NCEP predictors.
Tripathi et al. (2006) reported that the down-
scaling model fails to capture the extreme precipi-
tation. However, it can successfully capture the
mean. It was observed that the model used in the

study captured the mean and low precipitation
accurately.

4.3.2 Mean seasonal rainfall

The study area receives most of the annual rainfall
in two major seasons namely, monsoon and winter.
Therefore, the observed and downscaled rainfall at
13 stations scattered over the study area were used
to prepare the contour maps of monsoon and win-
ter rainfall to compare the spatial distribution of
seasonal rainfall constructed by the observed and
downscaling model.
The contour maps are shown in figure 6. The

rainfall during monsoon is divided into four con-
tour lines from <80–80, 81–120, 121–160, and
>160mm, while winter season divided into<70–70,
71–80, 81–90, and >90 mm. The contours were pre-
pared by interpolating observed and downscaled
rainfall in ArcGIS by using the Kriging technique.
It can be seen from the figures that the downscaled
rainfall produced similar pattern of contours like
the observed rainfall.

4.3.3 Quartiles

The 25th, 50th and 75th quantiles of observed and
simulated precipitation were also assessed to eval-
uate the performance of the downscaling model.
The 25th quartile considers the lowest 25%, the
50th quartile considers the 50%, and the 75th quar-
tile considers the highest 25% data. The purpose
of this test was to assess whether the observed
and the simulated data have the same quartiles.
The assessment was done separately in each sta-
tion, and the obtained results are presented in
table 5.
It can be seen from table 5 that model has over-

predicted the 25th quartile rainfall during both
model calibration and validation. For example, at
Barkhan station, the observed 25th quartile was
1.4 and the model quartile was 5.4 during model
calibration. Similarly, the observed 25th quartile
was 4.4, but the model quartile was 8.0 during vali-
dation. However, the model was found satisfactory
in replicating 50th and 75th percentiles during
both model calibration and validation. For exam-
ple, at Barkhan station, the observed and the
modeled 50th quartiles were 14.7 and 15.5, respec-
tively during model calibration, and 20.4 and 21.3,
respectively during model validation.
Box plots of observed and downscaled rainfall

during model calibration and validation are also
prepared to show the efficiency of MLP down-
scaling model in replicating rainfall range. The box
plots for three selected stations located in semi-
arid, arid, and hyper-arid regions are shown in
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Figure 5. Observed and downscaled rainfall time series at (a) Barkhan (semi-arid), (b) Khuzdar (arid), and (c) Nokkundi
(hyper-arid) stations.

figure 7 as example. The lower and upper lines of
the boxes give the 25th and 75th quartiles rainfall
values, whereas a middle line of the box gives the
median rainfall. It can be seen from the figure that
the model was successfully able to capture median
and quartiles in most of the cases. It should be
noted that outliers are very common in rainfall
data in the study area and, therefore, rainfall distri-
bution is positively skewed in most of the stations.
However, normal distribution and left-skewed is
also found in a few stations. The box plots show
that the downscaled model is successfully able to
capture the skewness in the data.

4.3.4 Root mean squared error (RMSE)

The RMSE explains the difference between obser-
ved and downscaled precipitation, and, therefore,
it provides the spread of error or the performance
of the model. The RMSE in model rainfall at dif-
ferent stations is shown in table 6. It can be seen
from the table that different stations have differ-
ent RMSE during model calibration and valida-
tion, but in most of the stations the estimated
errors during model calibration and validation were
very near. The Barkhan station, which receives the
highest rainfall, produced highest RMSE of 24.43,
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Figure 6. Contour maps of mean monsoon rainfall during model (a) calibration, (b) validation; winter rainfall during model,
(c) calibration and (d) validation.

while Nokkunddi, which receives the lowest rain-
fall, produced lowest error of 7.13 during model
calibration. Khuzdar and Zhob stations which fall
in the arid region produce highest RMSE during
model validation.

4.3.5 Coefficient of determination

The scatter plots of observed and downscaled pre-
cipitation for different stations located in different
climatic zones during model calibration and valida-
tion are shown in figure 8. It can be seen from the
figure that the model has underpredicted extreme
rainfall values in almost all the stations. However,
the model was found to reproduce low precipitation

efficiently. The coefficient of determination values
were found above 0.5 in almost all stations dur-
ing model calibration. However, the performance
of the model during validation was less accurate
compared to model calibration. The coefficient of
determination values were found above 0.4 in most
of the stations during model validation.

4.3.6 Mean bias error

Mean bias error (MBE) measures the average dif-
ference between two datasets and, therefore, pro-
vides a useful measure of the degree of under- or
over-estimates by the model. The MBE in mod-
elled rainfall at different stations during calibration
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Table 5. Comparison of quartiles between observed and modelled data during both model calibration and validation.

Calibration period (1961–1990) Validation period (1991–2001)

25th 50th 75th 25th 50th 75th

Station Obs Mod Obs Mod Obs Mod Obs Mod Obs Mod Obs Mod

Barkhan 1.4 5.4 14.7 15.5 45 49.3 4.4 8.0 20.4 21.3 49.1 53.7

Dalbandin 0.0 0.2 0.3 1.9 6.5 8.7 0.0 0.2 0.0 2.7 7.0 10.1

Jiwani 0.0 0.0 0.0 0.9 5.3 10.1 0.0 0.0 0.0 1.7 2.1 9.1

Kalat 0.0 0.4 0.0 2.9 11.4 13.6 0.0 1.2 5.6 8.7 25.2 26.6

Khuzdar 0.5 1.2 8.3 12.9 25.1 28.5 0.1 2.3 9.2 14 32 33.2

Lasbela 0.0 0.3 0.0 3.3 12.7 14.2 0.0 0.9 0.8 7.6 15.3 21.7

Nokkundi 0.0 0.0 0.0 1.0 1.2 3.2 0.0 0.1 0.0 0.8 0.1 3.2

Panjgur 0.0 0.0 0.0 0.3 3.0 10 0.0 0.0 0.0 1.6 6.3 12.2

Pasni 0.0 0.6 0.0 4.7 10 11.7 0.0 0.9 0.0 5.2 12.4 12.7

Quetta 0.0 0.1 2.8 8.5 30 33.1 0.0 1.0 4.3 8.5 30.1 31.8

Sibbi 0.0 0.2 0.0 5.0 11 17.0 0.0 1.9 5.8 6.6 22.4 20.1

Turbat 0.0 1.0 2.3 3.7 8.8 10.6 0.0 0.7 0.0 2.4 5.0 10.3

Zhob 1.3 5.5 12.9 14.4 30.2 31.3 3.2 6.2 15.1 17.9 36.3 30.7

Table 6. Correlation coefficient, RMSE, MBE, and NSE during model calibration and validation.

Calibration period (1961–1990) Validation period (1991–2001)

Mean Mean

Station R
2 RMSE bias NSE R

2 RMSE bias NSE

Barkhan 0.67 24.43 0.08 0.67 0.63 26.90 –1.82 0.63

Dalbandin 0.58 8.56 0.18 0.58 0.55 9.72 –0.32 0.54

Jiwani 0.38 22.13 –1.37 0.36 0.45 14.09 0.38 0.45

Kalat 0.71 12.18 –0.04 0.71 0.54 18.98 –1.12 0.54

Khuzdar 0.72 15.44 0.88 0.72 0.51 31.35 –3.18 0.49

Lasbela 0.64 14.30 –0.15 0.64 0.46 23.01 0.61 0.46

Nokkunddi 0.40 7.13 –0.16 0.40 0.49 5.09 0.44 0.48

Panjgur 0.48 17.24 0.02 0.47 0.56 14.45 0.12 0.55

Pasni 0.61 10.79 –0.06 0.60 0.45 10.35 0.91 0.44

Quetta 0.61 22.41 –0.17 0.61 0.62 21.09 0.51 0.62

Sibbi 0.43 18.73 0.51 0.43 0.61 15.08 –2.88 0.59

Turbat 0.39 13.36 –0.87 0.38 0.50 10.27 0.75 0.49

Zhob 0.74 15.74 –0.52 0.74 0.06 29.90 –4.49 –0.09

and validation are presented in table 6. It can be
seen from the table that MBEs vary widely in the
study area. The precipitation was found slightly
overestimated in most of the stations during model
calibration. However, at Barkhan, Kalat, Panjgur
and Pasni stations, MBE were found very close to
zero. The rainfall was found to be underpredicted
only at Barkhan, Dalbandin, Kalat, Khuzdar, Sibbi
and Zhob during model validation. Highest nega-
tive bias was observed at Zhob station. On the
other hand, positive bias was observed at Pasni sta-
tion. It was observed that there was no consistency
in the biases during model calibration and valida-
tion. The sign of biases varies from positive to

negative during model calibration and validation
at most of the stations. For example, at Barkhan
station, positive bias was observed during cali-
bration, while negative bias was observed during
validation.

4.3.7 Nash–Sutcliffe model efficiency

The model performance was further assessed by
Nash–Sutcliff efficiency (NSE). The obtained re-
sults are presented in table 6. The NSE values
were found above 0.5 in most of the stations. Hig-
hest NSE was observed at Zhob station while the
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Figure 7. Box plots of rainfall data during model calibration at (a) Barkhan (semi-arid), (c) Khuzdar (arid), (e) Nokkundi
(hyper-arid), and during model validation at (b) Barkhan (semi-arid), (d) Khuzdar (arid) and (f) Nokkundi (hyper-arid)
stations.

lowest was observed at Jiwani station during model
calibration. On the other hand, the highest NSE was
obtained at Barkhan station, and the lowest was

observed at Zhob station during model validation.
At Zhob station, NSE was found highest during
calibration, but lowest during validation. This is
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Figure 8. Scatter plot of observed and downscaled rainfall at (a) Barkhan (semi-arid), (b) Khuzdar (arid), and (c) Nokkundi
(hyper-arid) stations during model calibration and validation.

due to the large variation in precipitation between
model calibration and validation periods at this
station. Overall, the performance of the model at

Barkhan, Dalbandin, Kalat and Quetta was found
satisfactory with NSE value more than 0.5 during
both model calibration and validation.
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5. Conclusions

The performance of the multilayer perceptron
neural network in downscaling monthly rainfall in
the arid region has been evaluated in the present
study. The MLP model was calibrated using obser-
ved monthly rainfall at 13 stations located in the
arid Baluchistan province of Pakistan. The model
performance was evaluated by assessing its ability in
reproducing different statistical parameters namely,
mean, standard deviation, quartiles, RMSE, R2,
MBE, and NSE. The results revealed that the
multilayer perceptron neural network model was
capable to downscale precipitation in most of the
stations in the study area satisfactorily. Statis-
tical downscaling of rainfall in the arid region
is often very difficult due to erratic rainfall
pattern, and poor understanding of the relation
between local rainfall and ocean–atmospheric cir-
culation parameters. The results obtained in this
study indicate that an MLP neural network can
be used downscaling monthly rainfall in such
regions.
The following points should be noted for future

studies on climate downscaling in arid region:

(1) The NCEP reanalysis datasets only from 20
grid points around the study area were used in
the present study for the selection of predictors
for downscaling rainfall in the present study.
The spatial domain covered by 20 grid points
may not be enough to capture the regional syn-
optic circulation patterns that contribute to the
anomalous rainfall pattern in arid region. The
NCEP reanalysis dataset from more grid points
can be used in future for the selection of predic-
tors for more accurate replication of observed
rainfall.

(2) The MLP downscaling model was trained using
first 70% and tested with the rest 30% of
the data. This approach of model calibration
and validation is often not enough to capture
large variations in precipitation in arid region.
Random selection of training and testing of
data can be used to improve the efficiency of
downscaling model.

(3) Multilayer perceptron neural network and
principal component analysis were used in
the present study for downscaling of rain-
fall and selection of predictors, respectively.
Other data mining and predictor selection
approaches can be used to assess the perfor-
mance of different methods in downscaling rain-
fall in arid regions. Another scope of present
work is to project the precipitation and the
results can be analyzed for climate change and
variability.
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