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Abstract

The differences between the sets of values for the monolayer capacity and the energy constant obtained by sorption

data regressions using two related multilayer sorption isotherms, the two-parameter BET (Brunauer�/Emmett�/Teller)

and the three-parameter GAB (Guggenheim�/Andersen�/de Boer) isotherms, are analysed. Experimentally, it is found

that the GAB monolayer value is always higher than the BET value and the GAB energy constant results always lower

than the BET constant. Mathematical and physical reasons are given which explain these differences. The third GAB

parameter determines the greater versatility of the GAB equation, which has a quite larger range of applicability than

the BET isotherm. It is shown that in terms of the three GAB constants, the two BET parameters are qualitatively and

quantitatively reproduced as well as their dependence on the regression interval used in the BET regression, justifying in

this way the above-mentioned inequalities. The typical upswing in the BET plots after a (pseudo) linear range at lower

activities of the sorbate is also explained. All these findings are exemplified using experimental sorption data of several

systems of very distinct chemical nature. A complete regression procedure for sorption data in terms of the GAB

isotherm is advanced.

# 2003 Elsevier Science B.V. All rights reserved.

Keywords: Multilayer sorption isotherms; BET equation vs. GAB equation; Inequalities between monolayer and energy constants

values; Mathematical and physical foundations; Experimental examples from gas/solid to water/biopolymer and polyelectrolyte

sorption systems

1. Introduction

In spite of its limitations, the classical BET

(Brunauer, Emmett and Teller) multilayer sorption

equation [1] is still used to calculate monolayer

values in very different physicochemical fields, and

from these data specific area values are obtained.

It is certainly used, on one side, because of the

simplicity of its application and, on the other,

because it has the approval of the International

Union of Pure and Applied Chemistry (IUPAC).

A report of 1985 of the Commission on Colloid

and Surface Chemistry [2] recommends the so-
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called BET plot for a standard evaluation of

monolayer values in the following sorbate activity

(a0)
1 interval: 0.05B/a0B/0.30.

Notwithstanding, another equation, the GAB

(Guggenheim, Andersen and de Boer) sorption

equation [3�/5], also provides monolayer sorption

values. This equation has become very popular in

the field of food technology. The main reason of

its use is that the activity range covered by this

isotherm is much wider (0.05B/a0B/0.8�/0.9) than

that of the BET equation, range which covers

almost completely the water sorption range of

interest in this field. And so it has been recom-

mended by the European Project Group COST 90

on physical properties of food [6] as the funda-

mental equation for the characterisation of water

sorption by food materials. On the other hand, in

other fields the application of the GAB isotherm is

still incipient and not yet well established.2

The BET and the GAB isotherms are closely

related as they follow from the same statistical

model [3,8], as we have discussed elsewhere [9].

The GAB model represents a refinement over the

BET model and shares with it the two original

BET constants (vm, the monolayer capacity and

cB, the energy constant) and owes its major

versatility to the introduction of a third constant

(k ).3 Thus, the regression of an experimental

sorption data set by each of these two isotherms

will give two sets of values of vm and cB, besides a

single value of k by the GAB regression. Differ-

ences between both sets of values of vm and cB
have been observed (for recent literature, see Refs.

[10�/12]), which have been also verified for other

sorption systems [9,13]. Always the same result is

obtained:

vmB(BET)BvmG(GAB);

cB(BET)�cB(GAB):
(1)

The vmB value given by the BET isotherm is always

smaller than the monolayer value vmG correspond-

ing to the GAB isotherm and, reversibly, the BET

value of the energy constant cB is always higher

than the GAB value. Furthermore, both BET

values depend markedly on the sorbate activity

range used for their determination. As both

constants have exactly the same physical meaning

for the two isotherms, the following questions

arise immediately: which are the correct values?

Or, not so absolutely, which of them are physically

more realistic?

In this paper, a systematic approach to this

problem is performed and it is shown that there

exist mathematical and physical reasons for these

inequalities and that the GAB values are the more

general data. In our paper of 1989 [9], we

mentioned the existence of these differences be-

tween BET and GAB values, because of an

observation of a referee, but we did not make

any further consideration because the subject was

beyond the scope of that paper. The topic was

deferred for a subsequent paper, but it was only

partially taken up [13a].

Now, as recent food technology literature [10�/

12] referred to these differences without offering

any plausible explanation, we studied the subject

in a systematic way for food materials elsewhere

[13] and the inequalities (1) were corroborated for

all the analysed systems. But, as objections have

been raised [14] to the use of the BET�/GAB

equations to sorption data of complex materials

like food in the present paper we will only refer to

simpler physicochemical systems. It will be shown

that the problem at hand is intrinsic to the

mathematical nature of the two equations dis-

cussed here and does not depend on the physical or

physicochemical characteristics of the sorption

systems to which they may be applied.

Moreover, it would be fair to point out that the

inequalities (1) have been observed already by

Brunauer himself in a paper of 1969 [15]. Brunauer

et al. discuss Anderson’s [4] and de Boer’s [5] ideas

1 The sorbate activity a0 is taken equal to the (partial)

relative vapour pressure of the sorbate, i.e. a0�/p /p0, where p is

the experimental (partial) vapour pressure of the sorbate and p0
its value at saturation.

2 Well-known textbooks of physical chemistry of surfaces [7]

do not consign this equation, although they state criticisms at

the BET model, a number of which point directly to the GAB

improvement. Among these, de Boer’s general arguments [5] are

mentioned throughout, but Anderson’s modification [4] to the

BET equation is only cited and commented in Ref. [7a] while

Guggenheim’s approach is not quoted [7b].
3 The symbolism in use in food technology is applied, which

is slightly different than that used in Ref. [9].
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about the modifications of the BET equation and

derive on their owns the equation known today as

the GAB equation. They analyse the effect of the

new constant k upon the values of vmB and cB and

conclude that with decreasing values of k (B/1) the

inequalities (1) are observed (see Table 1 of Ref.

[15]). But they only point out these consequences

in a qualitative way and do not fix or evaluate

definitive values of k for the experimental cases

they consider. Certainly these authors do not

recognise the GAB equation as a true alternative

to the BET isotherm and did not perform any

further quantitative analysis. In consequence, this

paper by Brunauer et al. can only be considered as

a valuable qualitative antecedent for the problem

at hand.

2. BET regression vs. GAB regression

2.1. BET regression

Multilayer sorption isotherms show usually a

sigmoid or S-shaped form and the first theoretical

equation to interpret these shapes was the well-

known BET relation [1]:

BET: v(a0)�
vmBcBa0

(1� a0)(1� (cB � 1)a0)
; (2)

where v(a0) is the amount of sorbate sorbed by a

gram of sorbant at sorbate activity a0, vmB the

monolayer value in the same units as v and cB the

energy constant, related to the difference of free

enthalpy (standard chemical potential) of the

sorbate molecules in the pure liquid state and in

the monolayer (first sorbed state [9]).

To obtain the two characteristic constants, the

BET equation is linearised by the following func-

tion [1,7,9]:

F (BET)�
a0

(1� a0)v(a0)
�

1

cBvmB

�
cB � 1

cBvmB

a0; (3)

which should result linear in a0 if the BET

postulates apply. The so-called BET plots, i.e.,

F (BET) vs. a0, give usually a apparently linear part

at low activities (0.05B/a0B/0.3�/0.5) after which

always an upward curvature is observed. This

deviation shows that, at higher activities, less gas

or vapour is sorbed than that indicated by the BET

equation using the values of the constants corre-

sponding to the low activity range.

Fig. 1 shows typical plots of this type. Three

special cases have been chosen to illustrate this

behaviour. The first two cases correspond to the

sorption systems taken by Guggenheim [3a] and by

Anderson [4a], respectively, to exemplify their

proposals to improve the original BET formula-

tion, proposals, which were identical and later

become to be known as the GAB equation [6].

Guggenheim analysed the sorption of nitrogen on

the catalyst Fe/Al2O3 studied by Brunauer et al.

[3b], while Anderson [4a] considered, among

others, the nitrogen sorption on glass spheres.

The third case examines the water sorption by a

biopolymer, namely wheat starch, studied by van

der Berg [16], author who introduced the acronym

GAB. While Guggenheim’s data set does not cover

the whole activity range, the other two examples

present points at much higher activities, points,

which deserve special consideration (see below).

The three BET plots present the typical upswing at

a0:/0.3�/0.4, although they correspond to systems

of very different physicochemical nature.

2.2. GAB regression

On the other hand, the GAB equation is [3�/5]:

GAB: v(a0)�
vmGcGka0

(1� ka0)(1� (cG � 1)ka0)
; (4)

where

cB(G)�cGk: (5)

Here vmG is the GAB monolayer capacity and

cB(G) the analogue of this formulation to the BET

energy constant cB. Moreover, the extra assump-

tion of the GAB model over the BET formulation,

stating that the sorption state of the sorbate

molecules in the layers beyond the first is the

same but different to the pure liquid state,

demands the introduction of the additional con-

stant k . This constant is just the measure of the

difference of free enthalpy (standard chemical

potential) of the sorbate molecules in these two

E.O. Timmermann / Colloids and Surfaces A: Physicochem. Eng. Aspects 220 (2003) 235�/260 237



states, the pure liquid and this second sorption

stage [9], the layers above the monolayer. It is

always found that kB/1 [9] and especially for

water sorption it takes characteristic values for

different types of biopolymers [17]. Likewise the

other GAB energy constant cG measures the

difference of the chemical potentials of the sorbate

molecule in the upper sorption layers and in the

monolayer and the three energy constants are

related by Eq. (5) [9]. Finally, with k�/1 the

GAB isotherm reduces to the original BET equa-

tion (vmB�/vmG; cB�/cB(G)).

To determine the three constants of the GAB

equation, several methods are employed. In the

present context, the linearisation method of the

GAB isotherm analogue to that of the BET model

(Eq. (3)) is the most adequate; the other methods

will be examined in Section 4. To linearise the

GAB isotherm, the following function F (GAB)

applies:

F (GAB)�
a0

(1� ka0)v(a0)

�
1

cGkvmG

�
cG � 1

cGvmG

a0; (6)

The so-called GAB plots [9], i.e., F (GAB) vs. a0,

should be linear in a0 if the correct k -value is used

for the experimental F (GAB). In practice, one

looks for the k -value which best linearises F (GAB)

Fig. 1. BET and GAB plots for (a) N2/Fe�/Al2O3 (�/195 8C) (Guggenheim’s system [3a,3b]), (b) N2/glasspheres (�/195 8C) (Anderson’s

system [4]), (c) H2O/wheat starch (25 8C) (data by van der Berg [16]). See text. The BET plots include F (BET)exp (squares), F (BET)lin
by experimental linear regression (full lines) and by calculation (Eqs. (18a) and (18b)) (dashed lines) and F*(BET) (Eqs. (8), (9), (10a),

(10b) and (10c)) (dotted-dashed lines). The GAB plots include F (GAB)exp (triangles) using the indicated k -values and F (GAB)lin (Eq.

(6)) (full lines); for a better view, these plots are displaced downwards by a constant value indicated in each case.
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vs. a0.
4 Then, from the two linear regression

coefficients, the other constants*/vmG and cG*/

are obtained. In general, it is found that the

linearisation by Eq. (6) of experimental data is

possible within the range 0.05B/a0B/0.8.

Fig. 1 shows these plots for the three systems.

The values of the k -constant used are given in

Tables 1 and 2. Again the behaviour of the three

cases is similar. The GAB plot of Guggenheim’s

system is linear over the complete activity range

covered by the data, while for the other two

systems the plots are linear up to a0:/0.8�/0.9.

The much more extended range of application of

the GAB equation over to the BET equation is

evident [6,9].

2.3. Comparison of both types of regressions

As already stated, the results of both regressions

for the same set of experimental data give the

inequalities (1). The dilemma not solved so far of

which values resemble better physical reality may

be envisaged in the following way. F (GAB) is

related to F (BET) by

F (BET)�
a0

(1� a0)v(a0)
�

1� ka0

1� a0
F (GAB): (7)

By introducing here the expression (6) of

F (GAB) and multiplying out the resulting expres-

sion a second relationship for F (BET), named

F*(BET), is obtained, now in terms of the three

constants of the GAB isotherm:

F�(BET)�

�

1

kcGvmG

�
cG � 1

cGvmG

a0

�

1� ka0

1� a0

�
1

cB(G)vmG

�
cB(G) � 1� 2(1� k)

cB(G)vmG

a0

�
(1� k)(cB(G) � 1� k)

cB(G)vmG

a0

1� a0
; (8)

where Eq. (5) has been used to introduce cB(G).

This second expression for F (BET) shows that, if

kB/1, F (BET) will not be linear in a0 but will

present a hyperbolic behaviour:

F�(BET)�A�Ba0�
Ca0

1� a0

�(A�C)�(B�C)a0�
C

1� a0
; (9)

where

A�
1

cB(G)vmG

; (10a)

B�
cB(G) � 1� 2(1� k)

cB(G)vmG

; (10b)

C�
(1� k)(cB(G) � 1� k)

cB(G)vmG

: (10c)

Conversely, if k�/1 Eqs. (3), (8) and (9) become

identical as C (k�/1)�/0.

Eq. (9) readily explains qualitatively and quan-

titatively (Eqs. (10a), (10b) and (10c)) the usually

observed upswing in the BET plots at a0�/0.3�/0.4,

if the constants of the GAB isotherm are known

(kB/1). In the graphs of Fig. 1, F*(BET) has been

represented in terms of the corresponding GAB

constants given in Tables 1 and 2. It can be

observed that this nonlinear function reproduces

F (BET)exp in the three cases over the whole range

of applicability of the GAB equation, i.e., far

beyond the linear range usually used for the BET

evaluation using F(BET).

Furthermore, it is evident that, if F (BET)

responds to Eq. (9) but it is analysed using Eq.

(3), the so obtained vmB and cB values associated to

the BET isotherm will be certainly functions of the

three GAB constants vmG, cG and k through Eqs.

(8), (9), (10a), (10b) and (10c) and of the a0-

interval over which the regression is performed.

And this functional dependence determines the

difference between the BET and the GAB sets for

vm and cB and the inequalities stated by Eq. (1). In

the following sections, the quantitative relations

are derived and evaluated.

4 A too high k -value determines an upward curvature in the

GAB plots as in the BET plots and a too low k -value

determines a downward curvature [4a,18]. Analytically, the

minimum of the sum of the least-squares of the linear regression

of Eq. (6) in terms of the variable k determines the best k -value.

E.O. Timmermann / Colloids and Surfaces A: Physicochem. Eng. Aspects 220 (2003) 235�/260 239



3. Quantitative expressions of inequalities (1)

3.1. Classical least-squares analysis of F(BET) of

Eq. (3)

This method is well known. In synthesis, the

experimental values of F (BET) are adjusted by the

linear polynomial

P(BET)i�a0�a1xi (11)

by minimising the sum over the n experimental

points (index i):

X

n

i�1

[F (BET)i�(a0�a1xi)]
2
�minimum; (12)

where xi stands for a0 at the point i . The

coefficients a0 and a1 are given by the solutions

of the system of normal equations associated to

the extremum condition (13a) and (13b) (see

Appendices A and B). By Eqs. (3) and (11), the

least-squares estimates of a0 and a1, â0 and â1; are
given directly by the BET constants,

BET: â0�
1

cBvmB

; (13a)

BET: â1�
cB � 1

cBvmB

; (13b)

and hereafter

vmB�
1

â0 � â1

; (14a)

cB�
â0 � â1

â0

; (14b)

relations by which the BET constants are usually

calculated.

It must be observed that the energy constant cB
is, by Eq. (14b), inversely proportional to â0; the
intercept of the linear regression polynomial

P (BET) of Eq. (11). Thus the estimate of cB is a

much more sensitive quantity to the value of â0

than the estimate of vmB. Because of the upswing

of the experimental F (BET) (see Fig. 1) at

increasing sorbate activity the linear correlation

P (BET) of F (BET) tends to increase the slope â1

and to decrease the intercept â0 as the regression

range is extended. This causes, on one hand, the

well-known dependency of the experimental values

of the BET constants obtained by Eqs. (14a) and

(14b) on the regression range of a0 used. On the

other hand, this decrease of the intercept â0 may

cause that this quantity passes through the origin

and thereafter becoming negative, and, conse-

quently, cB rapidly acquires very high values,

then diverges and hereafter results negative, a

behaviour which is physically completely unsound.

In the literature, this problem is ‘overcome’ by

simply restricting the BET evaluation to the so-

called ‘linear’ range and paying much more atten-

tion to the estimate of vmB, than to the estimate of

cB, obviously because the former has much more

concrete practical applications than the latter. It is

accepted that, with very large values of cB, the

intercept of the linear BET plot becomes so small

that it cannot be determined very accurately, and

little error is introduced if the best straight line is

drawn through the origin and the slope taken to be

equal to 1/vmB. But the essence of the problem

remained unsolved.

3.2. Least-squares analysis of F*(BET) of Eq. (9)

The second expression F*(BET) may also be

adjusted by the same linear polynomial (11), but

now using an analytical formulation, as F*(BET)

is known as a function of a0 and not by a set of

numerical data. The calculation implies the adjust-

ment of a function of a known functional depen-

dence of a higher degree than one to a straight line.

This regression of F*(BET) can be made either in a

discrete form or in a continuous form. The discrete

form will be discussed below, while the continuous

form is described in Appendices A and B.

In the discrete procedure F*(BET), given by Eq.

(9), is explicited in condition (12), which become:

X

n

i�1

�

A�C�(B�C)xi�
C

1� xi

�(a0�a1xi)

�2

�minimum; (15)

and this expression can now be solved analytically

for a0 and a1 in the usual way of least-squares. The

details are given in Appendices A and B and the

result is that a0 and a1 become functions of the

constants A , B and C of Eq. (9), on one side, and
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of regression sums over the values of the indepen-

dent variable xi , on the other. These results are

given by Eqs. (B.4a) and (B.4b):

a0��A�CS0�; (16a)

a1��B�CS1�; (16b)

where a+

0 and a+1 are the minimum squares esti-

mates in terms of F*(BET). The functions S+

0 and

S+

1 ; defined by Eqs. (B.6a) and (B.6b), contain only

the regression sums of a0 over the employed

regression interval, with the following signs: S+

0/B/

0, S+

1/�/0 and S+

0/�//S+

1/�/0 for a0B/1. As Eqs. (13a),

(13b), (14a) and (14b) remain valid, the BET

constants are given as

vmB�
1

a+0 � a+

1

�
1

A� B� C(S+

0 � S+

1)
; (17a)

cB�
a+0 � a+

1

a+

0

�
A� B� C(S+

0 � S+

1)

A� CS+

0

: (17b)

By Eqs. (10a), (10b) and (10c), A , B , C�/f(vmG,

cG, k ) and after some algebra explicit expressions

for vmB and cB in terms of the three GAB constants

are obtained:

vmB�
vmG

[1� 2(1� k)=cB(G)]R
+

m

; (18a)

cB�cB(G)

�

1�
2(1� k)

cB(G)

�

R+

c ; (18b)

where R+

m and R+

c are functions containing the a0-

regression sums given by

R+

m�1�(1�k)

�

cB(G) � (1� k)

cB(G) � 2(1� k)

�

� (S+

0�S+

1); (19a)

R+

c�
R+

m

1� (1� k)(cB(G) � 1� k)S+

0

: (19b)

These functions are always greater than unity.

Hence, Eqs. (18a) and (18b) reproduce the inequal-

ities (1) if kB/1.

As already stated above, a continuous regres-

sion procedure is also at hand. Taking F*(BET) as

continuous, i.e., as given by infinite points, a

continuous regression form can be developed in

which the sums of the discrete procedure are

replaced by defined integrals which depend only

on the limits a?0 and aƒ0 of the regression interval.

This procedure is described in Appendix B (see

section B.1 and Eqs. (B.28a) and (B.28b)) and the

corresponding expressions resemble those of the

discrete method being similar functions of the

constants A , B and C of Eq. (9).

Eqs. (18a) and (18b) as well as Eqs. (B.28a) and

(B.28b) of the continuous method explicit and

quantify the differences between vmB�/cB and

vmG�/cB(G). These are directly related to kB/1

through the factor (1�/k ) present in these equa-

tions and hence explain inequalities (1). On the

other hand, if k�/1 [C (k�/1)�/0], all these

expressions coincide with the classical results of

Section B.1.

These differences are analysed graphically in

Fig. 2 where vmB and cB are plotted in terms of

Eqs. (B.28a) and (B.28b) for different values of k

and in function of the upper limit aƒ0 of the

regression interval, with arbitrarily fixed values

of vmG�/1 and cB(G)�/20. The lower limit a?0 is

taken as usually as a?0/�/0.05, a value which has

some theoretical and practical foundations [1,7]. In

these calculations, the continuous equations

(B.28a) and (B.28b) have been used to obviate

any dependence on a specific discrete data dis-

tribution. Henceforth these graphs represent upper

limits of the differences between the BET and

GAB parameters.

Fig. 2 clearly explicit both inequalities (1). vmB

underestimates the monolayer capacity and cB
overestimates the energy constant. The deviations

becomemore important with decreasing values of k

and with an increase of the regression interval

(increasing aƒ0) and the effect is much more

pronounced for cB than for vmB. In particular,

the special behaviour of the energy constant already

mentioned at the end of Section 3.1 is explained, i.e.,

themarked tendencyof cB to increase, todivergeand

then tobecomenegative in termsof theupper limitof

the regression interval, as it is shownbyFig. 2(b). As

stated, these properties are due to the fact that cB is

inversely proportional to a0 (see Eqs. (14a), (14b),

(17a) and (17b)). Now, as F*(BET) explains the

upswing of the experimental F (BET) in the BET

plotsand therebyalso the increaseof the slopea1and

the decrease of the intercept a0 of the linear
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regression polynomial P (BET) (Eq. (11)) as the

regression interval is enlarged it is to be concluded

that this behaviour of cB is certainly inherent to the

original BET description and determines its limited

ability to reproduce the experimental sorption data.

In fact, thedeviationsofbothcBandvmB in termsofk

and of the extent of the regression range go hand in

hand and have to be considered together. Only the

much less marked effect on the monolayer capacity

value may sustain the position usually found in the

literature to consider only the vmB value and to

discard or ignore the cB value.

Finally, it is also to be pointed out that it

becomes evident from the drawings that even at

the limit of aƒ0; a?0 0 0 the BET constants do not

return the correct values of vmG (�/1) and of cB(G)

(�/20). At this limit, the auxiliary functions R+

m

and R+

c (Eqs. (19a) and (19b)) as well as R̃m and R̃c

(Eqs. (B.29a) and (B.29b)) become unitary and the

limiting values are:

lim
aƒ0 ;a?000

vmB�v
0
mB(BET)�

1

A� B

�
vmG

1� 2(1� k)=cB(G)

BvmB; (20a)

lim
aƒ0;a?000

cB�c0B(BET)�
A� B

A

�cB(G)

�

1�
2(1� k)

cB(G)

�

�cB(G): (20b)

4. Experimental examples

4.1. Experimental systems

To show the general applicability of the theore-

tical equations derived in the preceding sections,

experimental cases of diverse physicochemical

nature will be discussed. The experimental cases

are mainly those considered in Ref. [9], i.e.,

systems of sorption of (a) gas on solids, (b) water

by biopolymers and (c) water by electrolytes and

polyelectrolytes. The corresponding sorption data

are represented graphically in Fig. 3.

It is shown that in all cases inequalities (1) are

found and that the relations presented in the

previous section quantitatively reproduce the

BET values. Tables 1�/3 summarise the results.

In the group of gas sorption on solids, the system

Fig. 2. vmB (BET) (a) and cB (BET) (b) calculated by Eqs. (B.28a) and (B.28b), for different values of the third GAB constant k at fixed

values of other two GAB constants, vmG (GAB) (�/1) and cB(G) (GAB) (�/20), in terms of the upper limit aƒ0 of the BET regression

interval (lower limit a?0/�/const.�/0.05).
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analysed by Guggenheim [3a], i.e., N2 on Fe/Al2O3

(data by Brunauer et al. [3b]), the first case of Fig.

1, has been included. In the cases of sorption of

nitrogen gas and of water vapour on crystalline

anastase, several data sets due to Harkins and Jura

[19a] are considered together (N2/TiO2: three data

sets [19a,19b]; H2O/TiO2: two data sets

[19c,19d,19e]). It is observed that these sets corre-

spond statistically to the same universe and can be

combined for the regression calculus, allowing to

consider a much more numerous data collection

than in all other cases. In the same way, in the

group of biopolymers the sorption of water by

wheat starch [16] has been incorporated because of

its more abundant data set than the data collec-

tions for proteins.

Tables 1�/3 give the numerical values for the

three groups. The number of points (nB(BET),

nG(GAB)) used and the regression intervals are

indicated in each case. The first two columns give

Fig. 3. Sorption isotherms of (a) gas/solid systems, (b) water by biopolymers, (c) water by electrolytes and polyelectrolytes. References

and details in Tables 1�/3. Symbols: experimental points. Lines: isotherms calculated by BET equation (experimental linear regression

(long dashes) and by calculated BET constants (short dashes)) and by GAB equation (full lines).
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Table 1

Gas/solids (unit: vm, cm
3 STP g�1)

BETexp BETcalc GABexp

vmB cB vmB cB vmB cB vmG cG k cB(G)

Range; nB Discrete (Eqs. (18a) and (18b)) Continuous (Eqs. (B.28a) and (B.28b)) Range; nG

N2/Fe�/Al2O3 (�/195 8C) ([3b] vmB�/133.0, cB�/156.7; [3] vmG�/144, cG�/130, k�/0.83)

0.030B/a0B/0.339; nB�/7 0.030B/a0B/0.717; nG�/13

134.19/0.4 171.49/15.5 132.29/1.7 285.69/182.5 132.79/3.5 324.39/471.8 143.29/3.7 119.89/56.0 0.859/0.05 101.89/53.5

NEF�/0.68 3.57 3.30

N2/glasspheres (�/195 8C) ([4] vmB�/4.8, cB�/72.2; vmG�/5.1, cG�/55.1, k�/0.715)

0.061B/a0B/0.327; nB�/5 0.061B/a0B/0.750; nG�/10

4.429/0.2 70.29/37.6 4.389/0.11 80.39/26.2 4.409/0.19 96.29/70.5 5.189/0.22 51.29/20.2 0.709/0.08 35.59/18.2

NEF: 5.77 2.48 4.43

N2/TiO2 (�/195 8C) ([19a,19b]: vmB (�/13.8 m2 g�1)�/3.17; [4]: vmG�/3.72, cG�/64.4, k�/0.70)

0.053B/a0B/0.336; nB�/35 0.053B/a0B/0.790; nG�/62

3.149/0.02 139.69/13.9 3.159/0.02 139.19/21.1 3.139/0.13 159.29/192.6 3.639/0.04 64.09/6.8 0.729/0.02 45.99/6.1

NEF: 1.21 2.45 2.46

H2O/TiO2 (25 8C) ([19c,19d,19e]: vmB (�/9.8 m2 g�1)�/3.47)

0.064B/a0B/0.310; nB�/10 0.064B/a0B/0.750; nG�/24

3.399/0.06 48.59/6.9 3.389/0.05 50.09/6.8 3.389/0.14 51.59/19.2 4.029/0.05 38.49/4.3 0.689/0.03 26.09/3.9

NEF: 1.88 2.02 1.41

H2O-quartz (25 8C) ([20])

0.068B/a0B/0.342; nB�/5 0.068B/a0B/0.727; nG�/9

1.049/0.02 41.99/6.6 1.039/0.03 47.69/13.7 1.039/0.05 49.79/21.3 1.249/0.05 33.99/9.8 0.709/0.07 24.89/9.4

NEF: 1.41 2.51 2.21
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Table 2

H2O/biopolymers (25 8C) (unit: vm, g per 100 g dry weight)

BETexp BETcalc GABexp

vmB cB vmB cB vmB cB vmG cG k cB(G)

Range; nB Discrete (Eqs. (18a) and (18b)) Continuous (Eqs. (B.28a) and (B.28b)) Range; nG

0.05B/a0B/0.40; nB�/5 0.05B/a0B/0.8; nG�/9

Collagen ([21]: vmB�/9.52; cB�/17.8)

9.729/0.11 20.39/1.0 9.859/0.28 19.69/2.5 9.909/0.45 20.39/4.2 11.59/0.5 17.39/4.4 0.809/0.09 13.89/5.0

NEF: 0.99 2.13 3.01

b-Lactoglobulin ([21]: vmB�/6.67; cB�/8.6)

0.05B/a0B/0.40; nB�/5 0.05B/a0B/0.8; nG�/9

6.609/0.24 9.79/0.9 6.549/0.17 10.09/0.7 6.579/0.28 10.29/1.1 7.729/0.45 9.59/2.4 0.819/0.11 7.79/2.9

NEF: 1.72 1.45 1.93

Eggalbumin (coag.) ([21]: vmB�/4.97; cB�/13.6)

0.05B/a0B/0.40; nB�/5 0.05B/a0B/0.8; nG�/9

5.149/0.78 13.59/0.7 5.269/0.16 13.79/1.2 5.299/0.25 13.09/2.0 6.299/0.26 11.89/2.3 0.789/0.07 9.29/2.6

NEF: 1.00 1.83 2.70

Rattail-tendon [22]: vmG�/19.6, cG�/11.6, k�/1/1.65)

0.1B/a0B/0.4; nB�/4 0.1B/a0B/0.8; nG�/7

13.39/1.0 15.39/4.2 13.29/0.7 15.89/3.4 13.39/0.9 16.19/4.2 18.09/0.8 13.79/2.6 0.659/0.07 8.29/2.5

NEF: 3.27 2.59 1.06

Native wheat starch [16] (vmG�/9.82, cG�/27.3, k�/0.68; nG�/11)

0.0404B/a0B/0.401; nB�/5 0.0404B/a0B/0.8663; nG�/11

7.939/0.17 32.89/4.7 7.929/0.37 33.89/11.2 7.989/0.55 37.29/20.4 9.899/0.21 26.79/3.8 0.689/0.04 17.69/3.8

NEF: 1.99 4.48 1.65
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Table 3

H2O/polyelectrolytes and electrolytes (25 8C) (unit: vm, mol H2O per mol)

BETexp BETcalc GABexp

vmB cB vmB cB vmB cB vmG cG k cB(G)

Range; nB Discrete (Eqs. (18a) and (18b)) Continuous (Eqs. (B.28a) and (B.28b)) Range; nG

SO4H2 [23]

0.0506B/a0B/0.481; nB�/18 0.0506B/a0B/0.817; nG�/27

3.789/0.03 24.89/0.9 3.769/0.03 24.79/1.00 3.769/0.11 26.09/5.1 4.049/0.06 21.49/2.0 0.929/0.03 19.79/2.5

NEF: 1.84 1.42 2.48

PSSNa [24]

0.085B/a0B/0.443; nB�/7 0.085B/a0B/0.882; nG�/13

1.009/0.04 13.09/1.6 0.999/0.01 13.79/0.3 0.999/0.01 13.89/0.7 1.039/0.05 13.99/2.9 0.959/0.09 13.39/3.9

NEF: 3.46 5.14 4.88

PSSH [24]

0.177B/a0B/0.443; nB�/4 0.117B/a0B/0.921; nG�/10

1.389/0.17 6.69/1.6 1.459/0.01 5.99/0.7 1.469/0.02 5.99/0.2 1.549/0.24 5.79/2.9 0.959/0.25 5.49/4.2

NEF: 4.25 0.20 14.6 (!!)

PSSNa [25]

0.05B/a0B/0.4 0.5296B/a0B/0.902; nG�/7

�/ �/ �/ �/ 1.379/0.03 13.629/0.84 1.059/0.20 13.09/9.5 0.919/0.21 10.99/11.2

�/ �/ NEF: 2.24
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the experimental BET constants and their errors,

then columns 3�/6 give the BET constants and

their errors calculated by the discrete (Eqs. (18a)

and (18b); columns 3 and 4) and continuous

methods (Eqs. (B.29a) and (B.29b); columns 5

and 6) in terms of the experimental GAB constants

stated in columns 7�/10. For the discrete method,

the experimental values of the independent vari-

able (a0) have been used (see Appendices A and B).

The respective errors are calculated by the error

propagation formulae in terms of the standard

deviations of the least-squares parameters. Finally,

complements each set of constants a normalised

error function (NEF), defined as

NEF�100

�

Pn

i�1(vexp � vcalc)
2
i =n

�1=2

vm

: (21)

This function is related to, but simpler than the

relative percentage root mean square value often

used in the literature.

In Fig. 3, the direct and calculated BET curves

as well as the GAB curve are drawn. In each case

both BET curves are practically identical. The

different applicability ranges of the BET and the

GAB isotherms are clearly noticed. In all cases, the

approach given in the present paper is verified,

without exception.

4.2. Determination of the GAB parameters

It is evident that to perform the proposed

analysis reliable values of the constants of the

GAB isotherm are required. In order to obtain

these values, the applicability range of the GAB

equation must be established as one should only

work with experimental points, which lay within

this range of activities. For this, the data set over

the complete range of activities must be examined

and the points corresponding to the third sorption

stage described in Ref. [9] should be separated

from the set of points to work with. These points

can be identified by using the inverse plot, as

indicated in Refs. [9,26], and, in general, one

observes that at a0:/0.80�/0.85 the third sorption

stage becomes evident and, henceforth, points at

these and higher activities should not be used for

the evaluation of the GAB constants. In Fig. 3, it

can be observed that practically in all cases the

points of highest activities (a0�/0.85�/0.9) are

beyond the GAB range, presenting a higher

sorption than that predicted by this equation and

indicating the presence of the third (BET-like)

sorption stage [9].

The GAB constants can be determined using the

F (GAB)-function method discussed in Section 2.2

(Eq. (6)), but two other methods are more

straightforward. Here the so-called method of

the transformed form of the GAB isotherm [6] is

applied. The transformed GAB relation5 is the

following parabolic expression, which is easily

derived from Eq. (3):

a0

v(a0)
�a�ba0�ga0; (22)

where

a�
1

kcGvmG

; (23a)

b�
cG � 2

cGvmG

; (23b)

g��
(cG � 1)k

cGvmG

: (23c)

The constants a , b and g are readily determined

by a least-squares regression of this second-degree

polynomial and from these the GAB constants are

calculated by

k�
b�

ffiffiffi

f
p

2a
; (24a)

cG�2�
b

ak
�1�

g

ak2
�

ffiffiffi

f
p

ak
; (24b)

5 Originally the parabolic regression was used [27a] to

determine the parameters of a three-parameter isotherm due

to Hailwood and Horrobin [27b], based on a solution-hydration

model. The versatile behaviour and good ability to fit

experimental water sorption data for foods led to consider

this isotherm as a sort of ‘‘universal’’ isotherm [27c], but later

on its equivalency with the GAB equation was shown [27d] and

this latter isotherm becomes predominant and popular in food

technology [6,28].
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vmG�
1
ffiffiffi

f
p �

1

2ak� b2
; [f �b

2
�4ag]: (24c)

On the other hand, the other method to obtain

the three GAB constants consists directly in a

nonlinear least-squares regression of Eq. (3), a

calculus procedure which is today usually included

in modern software packages. It has been claimed

[29] that this method and that of the parabolic

transform give different results, but if the points

corresponding to the third sorption stage are not

included both regressions give identical results

[30]. The points of the third stage behave as

outliers for these regressions and affect them,

because of the different mathematical nature of

both methods, with different strength (weights).

Moreover, it is observed that a root mean square

deviation function such as NEF (Eq. (21)) in-

creases sharply if these points at highest activities

are included in the regression. In this paper, we

will use throughout the parabolic regression (the

constants stated in Tables 1�/3 were all obtained

by this method) and the stated differences, the

discussion of which goes beyond the scope of this

paper, will be treated in a separate work [30].

4.3. General modus operandi

The complete calculation procedure is illu-

strated graphically in Fig. 4 at hand of one

experimental data set of N2/TiO2 due to Harkins

and Jura [19a,19b]. Table 1 states the correspond-

ing regression constants.

The calculation process starts with the inverse

plot (Fig. 4(a)) by which the GAB applicability

range is identified, as it is recommended in Ref. [9].

At high a0, for strongly sorbing substances (cG�/

1), both isotherms become very simple for the

inverse of v(a0):

BET:
1

v

�
1

vmB

(1�a0); (25a)

GAB:
1

v

�
1

vmG

(1�ka0): (25b)

These relations indicate that 1/v is linear at high

enough a0 for both isotherms and that the limits

for 1/v�/0 (v0/�) are at the points (a0�/1, 1/v�/

0; BET) and (a0�/1/k (�/1), 1/v�/0; GAB),

respectively. Thus, if the linear part at higher a0
of the inverse plot 1/v vs. a0 do not extrapolate to

a0�/1 for 1/v�/0 (BET condition) it is indicative

that kB/1 (see Eqs. (25a) and (25b)) and that the

GAB equation applies. The extrapolation to 1/v�/

0 gives 1/k directly as the intercept with the a0-axis

[9]. Hence, these plots readily visualise which

isotherm applies. Furthermore, if after the linear

part the graph become curved downward (usually

at a0:/0.85�/0.9) this is a direct evidence of the

presence of the third sorption stage [9]26. These

points must be discarded for the parabolic GAB

regression (Eq. (22)) and so the upper limit for this

regression can be directly read off from the graph.

In Fig. 4(a), the calculated BET and GAB

isotherms are drawn and the upper limits of both

equations are shown by arrows. On the other

hand, dashed arrows indicate the lower limit of the

regression intervals, limit which is the same for

both isotherms (a0�/0.05). The limiting linear

relation of GAB isotherm at high sorbate activities

(Eqs. (25a) and (25b)) is also drawn, by which two

of the GAB constants, vmG and k , can be obtained

by rapid and direct graphical extrapolations [9]. In

this figure, this limiting line has been drawn using

the correct values of vmG and k of Table 1, and the

plot attests the properness of this extrapolation.

Once the GAB range is known, the GAB

constants are determined by the parabolic regres-

sion indicated by Eqs. (22), (23a), (23b), (24a) and

(24b). Fig. 4(b) gives the parabolic representation

of the sorption data and the regression curve of the

GAB equation as well as parabolic plots of the

BET equation using the experimental and calcu-

lated constants. Again, the different applicability

intervals of the two equations are evident. The

BET range coincides with that recommended by

IUPAC, 0.05B/a0B/0.3.

Complementary is the next step consisting in the

BET and GAB plots, which play a central role in

this paper. They were already analysed in Fig. 1. In

the present case, they are given in Fig. 4(c) and the

same picture is obtained. The observations made

about Fig. 1 in the previous sections also apply

here.

The BET plot in Fig. 4(c) includes F (BET)exp
(open symbols) calculated from the experimental
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data by Eq. (3) (1st expression) as well as the linear

F (BET) (full line) drawn by Eq. (3) (2nd expres-

sion) using the BET constants obtained by the

linear regression of F (BET)exp over the apparent

‘linear’ range 0.05B/a0B/0.3 and the coincident

calculated linear F (BET) (dashed line) based on

the GAB constants (Eqs. (18a) and (18b)). More-

over, the dashed-dotted line represents the alter-

native F*(BET) function (Eqs. (8), (9), (10a), (10b)

and (10c)) calculated with the GAB constants

Fig. 4. Graphical illustration of the calculation procedure. System: N2/TiO2 of Fig. 3(a). Symbols: experimental points; full lines:

functions calculated by the experimental BET and GAB regressions, respectively; dashed line: BET function using the BET constants

calculated in terms of the GAB constants; full arrows: upper limit of application range, dashed arrow: lower limit. (a) Inverse plots;

also shown the asymptotic GAB line for first estimations of vmG (GAB) and of k ; (b) parabolic representation; (c) BET plot (open

symbols) and GAB plot (filled symbols; displaced 0.025 units downwards); point-dash line: F*(BET) (Eqs. (9), (10a), (10b) and (10c));

(d) relative errors; GAB (squares), BET (open triangles), calculated BET (filled triangles). For further details, see text.
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obtained by the parabolic regression, function

which reproduces completely the upswing of

F (BET)exp up to the upper limit of the GAB range.

For the GAB plot in Fig. 4(c), the experimental

F (GAB)exp Eq. (6) (1st expression) (filled points,

displaced 0.25 units downwards) is calculated with

the experimental sorption data using the k -value

obtained by the parabolic regression of Fig. 4(b)).

The full line represents F(GAB)calc Eq. (6) (2nd

expression) calculated using the GAB constants of

the same regression (Table 1), which reproduces

F (GAB)exp within the range of regression.

Furthermore, the drawing is interesting as it

illustrates the fall-off of the points beyond the

upper limit of the GAB range corresponding to the

third sorption stage (see also Fig. 1).

Finally, Fig. 4(d) offers the error plots of [vexp�/

vcalc]�/100/vm for the BET and GAB calculations.

The normalisation of the differences [vexp�/vcalc]

with respect to vm, the only parameter of direct

proportionality of all these isotherm equations,

allows that all these equations can be compared on

the same footing. (The same argument assists the

introduction of the error function NEF defined by

Eq. (21)).

Fig. 4(d) shows that within its regression range

the errors of the GAB regression (squares) are of

the order of 2�/3% of vm and beyond the lower and

upper limits of this range marked positive devia-

tions are observed, pointing out that there the

GAB equation do not apply. On the other hand,

the errors of the BET regressions (open and filled

triangles) present similar order of magnitude

within their validity interval and large positive

deviations below the lower limit, but large negative

deviations beyond the upper limit as this isotherm

predicts here a too large sorption.

This general modus operandi has been applied to

all experimental cases studied in this paper and the

results are condensed in Tables 1�/3 and in Fig. 3.

5. Discussion

5.1. General considerations

We can now go over to review all the data given

in Tables 1�/3. In the cases in which the original

authors of the analysed sorption systems stated

values of the BET and GAB constants these are

reproduced in the corresponding headings.

Inequalities (1) are systematically verified, in-

equalities that are graphically reproduced in Fig.

5(a). This figure presents the experimental values

of the two BET constants (vmB: open symbols, cB:

filled symbols) against the corresponding GAB

constants. It is seen that the GAB monolayer

values (column 7 of Tables 1�/3) are about 10�/20

to 40% higher than the experimental BET values

(column 1), while the GAB energy constant cB(G)

(column 10) is much lower (30�/50% and even

more) than the experimental BET values (column

2). Thus, the difference between the BET and the

GAB values is much more pronounced for the

energy constant than for the monolayer capacity.

In the same way the errors of the energy constant

values are much stronger (15�/25 to 50�/60% and

more, see p.ex. N2 on glasspheres) than that of the

monolayer (2�/8%). Moreover, the error of the

third GAB constant k is always of the order of

10�/15% and, therefore, the value of this constant

should only be given with two significant figures.

On the other hand, the tables show that the BET

constants are well reproduced by both methods of

calculation, being best the results of the discrete

method (columns 3 and 4) using the experimental

activity values. The differences with the results of

the continuous method (columns 5 and 6) are

certainly due to the infinite number of data

implied by the integration and the values calcu-

lated by the latter method represent the ‘theore-

tical’ limiting figures for the BET constants in the

regression interval considered. The larger errors

are also due the same effect and it is readily

verified that they are related to those of the

discrete method by a factor 1/�n (n is the number

of points used in the discrete method; see Appen-

dices A and B).

Good examples are the first two systems of the

gas/solid group, cases which were used as experi-

mental examples as the first versions of the GAB

equations were presented [3,4]. The original values

of the constants stated by Guggenheim ([3a], GAB

values) and Brunauer ([3b], BET values) for N2/

Fe�/Al2O3 and by Anderson ([4], BET and GAB

values) for N2/glasspheres, respectively, are well
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reproduced by direct evaluation as well as by

calculus. It is noteworthy to state that Anderson

[4] also analysed, among others, the data of N2/

TiO2 by Harkins and Jura ([19b], Part XIII, Fig. 2)

and his results (see headings of this system) are

completely coincident with our results, although

this author only used a reduced set of points and

not the complete data collection. Moreover, Har-

kins and Jura [19] stated only BET monolayer

values in their studies of N2/TiO2 and H2O/TiO2.

For proteins the BET values stated originally by

Bull [21] correspond to the mean of the values at

25 8C and at 40 8C and the regression intervals

were not specifically indicated, facts which explain

the differences with our results. On the other hand,

our GAB values for wheat starch are coincident

with those presented originally by van der Berg

[16].

Furthermore, the tables show that the BET

monolayer vm is much better reproduced than

the BET energy constant cB, in terms of the GAB

constants. The constant cB is, as already stated,

much more regression interval-dependent and

therefore physically much more unreliable. Fig.

5(b) illustrates graphically these facts. The experi-

mental values of the two ‘experimental’ BET

constants are plotted against the calculated values

(discrete method) of these constants in terms of the

GAB constants. The calculated ones reproduce

exactly the experimental BET monolayer values

(open symbols), while the BET energy constant

values (filled symbols) are well reproduced within

the error ranges. The different orders of magnitude

of the errors are to be pointed out. The errors of

the vmB values fall within the used sizes of the

symbols, while that of cB are at least one order of

magnitude higher (15�/25%).

For the GAB constant k only less than unity

values are obtained, confirming the findings and

figures observed in previous papers [4a,9]. Values

of k less than unity are typical for the GAB

isotherm; cases of k�/1 are not found. Moreover,

the values of k given in Table 1 of ca. 0.7 can be

considered as characteristic of solid non-porous

Fig. 5. (a) Illustration of inequalities (1): experimental BET values (Tables 1�/3), the monolayer capacity vmB (BET) (open symbols)

and the monolayer energy constant cB (BET) (filled symbols), for the sorption systems of Fig. 3 represented against the corresponding

GAB values (Tables 1�/3), the monolayer capacity vmG (GAB) and the monolayer energy constant cB(G) (GAB) (�/cGk ), respectively.

(b) Illustration of the applicability of Eqs. (18a) and (18b): Calculated values of vmB (BET) (open symbols) and of cB (BET) (filled

symbols) (Eqs. (18a) and (18b) using the GAB constants) represented against the experimental vmB (BET) and of cB (BET) (Tables 1�/3)

for the sorption systems of Fig. 3.
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sorbants [4a,9]. For the other sorption systems,

although always with water as a unique sorbate,

other values of k nearer to unity are observed. For

proteins one finds k:/0.8 (in coincidence with

values found [17] for proteic foods (k:/0.8 (range:

0.78�/0.85))) and for wheat starch k�/0.68 (coin-

cident with starchy foods (k:/0.7 (range: 0.65�/

0.75) [17])), and for electrolytes and polyelectro-

lytes (k:/0.92), values which also can be taken as

characteristic of all these sorbants.

Finally, there are some words about NEF.6 In

the mean good values of NEF are in the order of

2�/5%. In principle this function is a measure of the

experimental dispersion of the sorption data. If

this dispersion is homogeneous over the whole

GAB range, NEF has coincident values for the

BET as well as for the GAB regressions indicating

the much better ability of the GAB equation to

represent the data as it embraces a much broader

range of the sorbate activity. Especially good

examples for this are N2/TiO2, H2O/TiO2 and

H2O/wheat starch sorption data systems, systems

which present a much higher number of experi-

mental points than the usual number of data given

in the literature. But if this dispersion is different

at low sorbate activities (BET region) than at

higher activities (GAB region), then NEF will

oscillate about the same values, being in some

cases the BET values lower than the GAB values

and in others the opposite is observed, but always

within the range 2�/5%. Examples of this are,

among others, eggalbumin and rattail tendon data

systems, respectively. A case markedly beyond this

range is the H2O/PSSH system (NEF(GAB):/15

(!)).

Moreover, the NEF values of the BET para-

meters calculated by Eqs. (18a) and (18b) using the

GAB constants are due to the intrinsic hyperbolic

curvature of F*(BET) (Eqs. (8), (9), (10a), (10b)

and (10c)) over the BET range of activities. The

experimental NEF values of the BET regression

include this effect and the experimental dispersion

of the data determines that these NEF values

oscillate (upwards or downwards) about the ‘the-

oretical’ values indicated by the former.

Concluding this analysis, all results show that it

is straightforward to conclude that the GAB

constants are to be taken as the representative

parameters of the multilayer sorption. It is also

evident that a much more precise description of

the multilayer sorption phenomenon can be

achieved if the analysis is made with a set of

experimental data which spans over the complete

sorbate activity range and the values of all

parameters should be considered and/or analysed.

5.2. Constant k and complementary energy

considerations

Although preferred or exclusive attention is paid

to the monolayer capacity values, because of its

importance for the determination of specific areas

and for food stability, the values of the energy

constants should not be overlooked or ignored.

First simply because they are simultaneous out-

puts of the regression processes and the whole sets

of constants should be considered. Then because

the energy constants determine the details of the

sigmoidal shape of the isotherms, i.e., the form of

the normalised v /vm vs. a0 plots. So cB and cG
determine the more or less pronounced form of the

‘knee’ at the lower activity range. On the other

hand, the constant k determines the profile at the

higher activity range, regulating the upswing after

the plateau following the ‘knee’ at the medium

activity range. Higher values of k establish a more

pronounced upswing. This can be readily observed

in Fig. 3. Electrolytic systems (k:/0.92) as well as

proteins (k:/0.8) present a much more noticeable

upswing than the gas/solid systems as well as

wheat starch (k:/0.7). The isotherms of the latter

are much plainer at the higher activity range.

Finally, these upswings determined by constant k

should not be confused with the upswing due to

the third sorption stage which appears at the

highest sorbate activities (a0�/0.85�/0.9).

As already stated in Ref. [9], each group

presents characteristic values for the energy con-

stants and certain trends in the variations of these

values can be recognised from one group to

another. On one hand, we have the gas/solid

6 NEF, defined by Eq. [21], is directly related to the

correlation coefficient r2 by the following relation: r2�/1�/

(NEF/100)2(vm/Sv)
2, where Sv�/[(a/v

2
exp//n )�/(avexp/n )

2]1/2.
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group, which presents high values of cG (40�/70)

and low values of k (:/0.7). On the other hand,

within the other groups, always for water sorption,

cG has much lower values (15�/25) and k varies

from :/0.7 for wheat starch through :/0.8 for

proteins to :/0.92 for electrolytic systems. The

extent of the second (GAB) sorption stage also

increases in the same sequence [9].

This behaviour of the constant k deserves some

comments, as this constant has never been ana-

lysed in detail in the literature. An interesting

interpretation of kB/1, and indeed a justification

of the introduction of this constant, is forwarded

by de Boer himself [5a]. A molecule of a second

layer situated on top of a (isolated) molecule

sorbed directly on the solid (thus building up the

BET pile) would hardly ‘‘be bounded strongly

enough to show a heat of desorption of the order

of magnitude of the heat of evaporation’’ of a

molecule from the pure liquid sorbate. Thus, it is

quite logical to expect that the sorbate molecules

are easier to desorb from these layers than from

the pure liquid, or, otherwise speaking, free

energy-wise, that the molecules in these upper

(GAB) layers (GL) will have a higher standard

vapour pressure pGL than that of the liquid (p0).

Hence, we have k�/p0/pGL (B/1), relation which

acts as an definition of k , although originally

Guggenheim [3a] as well as de Boer [5] worked

directly with pGL as the third GAB constant [9b].

Thus, lower than unity values of k indicates a less

structured state of the sorbate in the GAB layers

following the monolayer than in the sorbate’s pure

liquid state.

It is evident that the fact that k is different (and

less) than unity cancels Brunauer’s original as-

sumption that the state of all these molecules is

already liquid-like. If the physicochemical nature

of the experimental systems is taken into account,

the trends mentioned above correspond to an

increase of the strength and extent of the interac-

tions between sorbate and sorbant in the sequence

stated and indicates that the sorption potential of

the solid extends beyond the first layer. The

potential certainly diminish progressively with

the increase of the distance from the surface and

dies out at some upper sorbate layer and hence

compensates in part the missing lateral (liquid-

like) interactions, neglected by the model, in the

sorption pile. The GAB equation takes all this into

account in an averaged form through the constant

k , which increases with stronger interactions

between sorbate and sorbant. It also explains

that the applicability of this equation is limited

to h layers, after which the third sorption stage [9]

starts up with now liquid like (BET-like) sorbed

molecules. So in the case of the strong electrostatic

interactions of the electrolytic and polyelectrolytic

systems both, the constant k (:/0.92) and the

extension of the GAB sorption stage (h:/25 [9]),

are highest and are evidently interrelated.

On the other hand, the interpretation of the

other energy constants cB and cG is less straight-

forward and still so controversial in the literature

that these magnitudes are not seriously taken into

consideration. It is habitual to interpret these

constants energy-wise by relating them directly to

the differences of the molar heats (Q ) of deso-

rption of the sorbate molecules from the different

sorption stages (monolayer, ML and GAB layers,

GL) with respect to the molar heat of evaporation

(EV) from the pure sorbate liquid, in both cases

the final state being the pure gas/vapour at

standard pressure. So it is usually written that

RT ln cB:QML�QEV (cB�1); (26a)

RT ln cG:QML�QGL (cG�1); (26b)

RT ln k:QGL�QEV (kB1): (26c)

The second and third expressions have been

written down by analogy with the first one by

taking into account the physical meaning of the

GAB constants cG and k (see also Eq. (5)). By

using these equations to relate these constants,

specifically cB(BET) via Eq. (26a), with experi-

mental values of heat of desorption in general no

agreement is found [7]. The net heat value

calculated from cB(BET) is usually less than the

experimental one. Moreover, the BET model

predicts that this magnitude is constant in the

monolayer region and zero thereafter, while ex-

perimentally a decreasing dependence in terms of

the amount sorbed is observed which levels off

only smoothly in the multilayer region. So it is

accepted that cB(BET) gives only a very rough

measure of the net heat of sorption [7]. If now the
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conclusion of the present paper is introduced, i.e.,

that the values of this energy constant cB(G) (�/

cGk ) reduces drastically (:/35�/40% or more) in

terms of the GAB isotherm with respect to the

values of cB by BET, the situation becomes even

worse and the energy-wise interpretation of these

constants yet more doubtful. Notwithstanding, all

the sorption steps can be considered as endother-

mic (�/0) and consequently QML�/QEV�/QGL�/

0.

The alternative is to interpret these constants

more strictly free energy-wise in terms of the

statistical model [9]. Then these constants measure

(logarithmically) differences of the standard value

(8) of the chemical potential m8 of the sorbate

molecules in the pure liquid state (L) with respect

to its values in the different sorption stages (in the

rational scale):

in the monolayer (ML)(cB�1):

RT ln cB�mL
�
�mML

�

[�(QML�QEV)�T(SL
�
�SML

� )]; (27a)

in the GAB layers (GL)(kB1):

RT ln k�mL
�
�mGL

�

[�(QGL�QEV)�T(SL
�
�SGL

� )]; (27b)

and between sorption stages (cG�1):

RT ln cG�mGL
�

�mML
�

[�(QML�QGL)�T(SGL
�

�SML
� )]: (27c)

The differences of (standard) entropies (S8) of

sorption, neglected in the energy-wise formulation,

cover the discrepancies between both approaches.

This entropic contribution is particularly impor-

tant for k , contribution, which is determined by

the effects, discussed above in the analysis of this

parameter.

As cB�/1, the sorbate in the monolayer is more

stable (lower standard chemical potential, i.e.,

negative thermodynamic deviation from ideality

in the rational scale) than in the pure liquid

sorbate. As it is found that cB�/cB(G) (�/1), the

GAB monolayer is also stable, but not so stable as

the BET monolayer. Further, as kB/1, the sorbate

in the GAB layers is less stable (higher standard

chemical potential, i.e., positive thermodynamic

deviation) than in the pure liquid of the sorbate, as

Guggenheim and de Boer postulated. This less-

favourable situation determines that the amount

sorbed is less than in the ‘idealised’ (BET) case,

situation which finally conduces to a state of

saturation at a0�/1 [9]. Again, if this latter

situation is relaxed at higher layers a subsequent

increment in the amount of sorption is observed

(the third sorption stage [9]), and consequently the

GAB equation becomes not applicable over the

complete range of activities.

As a special example, let us consider in detail the

sorption of nitrogen and of water on rutile

(systems 3 and 4 of Table 1). The numerical energy

values (in cal mol�1) are as follows:

N2/TiO2

(77 K)

de Boer

(90 K)a
H2O/TiO2

(298 K)

RT ln cB 750 2400

RT ln cG 600 820 1950

RT ln k �/50 �/25 �/240

/mL
� (�//

mv
�)/b

�/4330 �/56560

QEV
c 1300 1500 10500

In this table, acG�/100, k�/1/1.15�/0.869 [5b];
bR.C. Weast (Ed.), CRC Handbook of Chemistry

and Physics, CRC Press, 58th Ed., 1977�/1978; and
cCh.E. Hodgman (Ed.), Handbook of Chemistry

and Physics, Chemical Rubber Publ. Co., 30th

Ed., 1946. One observes that, for both systems, the

distinction of the sorbed states with respect to the

liquid reference state are much less pronounced in

terms of free energy (chemical potentials) than in

terms of heat exchange, a fact that indicates that

the entropy differences are not neglectable. How-

ever, the differences between both systems for all

these quantities are notable, although the energy

constants of the sorption isotherms are quite

similar. The differences reflect different physical
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situations (sorption temperature), through the

factor RT , as well as the different chemical nature

of the sorbates.

Finally, column 3 states interesting values,

which are surprisingly close to those of N2/TiO2.

They correspond to a theoretical example given by

de Boer [5b] illustrating the sorption behaviour at

90 K in terms of his (now GAB) isotherm of an

hypothetical nitrogen-like gas (molecular weight of

30, boiling point of 80 K, heat of evaporation of

1500 cal mol�1 [5b]). de Boer chooses intuitively

these values taking as reference BET results for

nitrogen sorption given in Brunauer’s book [1], but

never verified them against experimental data. The

coincidence with the values found in this paper is

certainly remarkable.

6. Final remarks

Inequalities (1), the motives of this paper, have

been explained in terms of the GAB isotherm. The

superiority of this equation has been shown, based

on a quite larger range of applicability and the

ability to reproduce the results of the BET

equation.

The marked differences between the BET and

the GAB constants are noteworthy; the GAB

monolayer capacity vmG is about 15% higher

than the BET value and the energy constant

cB(G) (�/cGk ) reduces drastically (:/35�/40% or

more) in terms of the GAB isotherm respect to the

BET values, differences which have been ex-

plained. Moreover, the GAB isotherm, as an

improved version of the sorption isotherm of the

multilayer sorption model originally formulated

by Brunauer et al. by the introduction of the third

parameter, k , characterising the state of the sorbed

molecules beyond the first layer, allows to explain

the upswing systematically found in the BET plots

after the initial (pseudo) linear range. Unfortu-

nately behind this substantial affirmation there

lays another which is not so pleasant considering

the status of seniority of the BET isotherm and its

undoubtful merits and contributions to the under-

standing of multilayer sorption. This affirmation

indicates that, strictly speaking, the BET isotherm

is really never valid, unless it is verified experi-

mentally that k is certainly equal to unity.

The direct consequence of these conclusions is

that the GAB constants have to be taken as being

the representative parameters of the multilayer

sorption. In particular this means that it is the

GAB monolayer parameter, which has to be used

to estimate surface areas of the sorbant, and

consequently the recommendations of IUPAC

concerning this item are to be revised. On the

other hand, in food technology a detailed knowl-

edge of water sorption isotherms is fundamental in

concentrating, dehydrating and drying of food-

stuffs, as well as in determining the quality,

stability and shelf life of foods. Also the rate of

the food deterioration reactions such as enzymatic

hydrolysis, maillard browning and non-enzymatic

oxidation as well as microbial growth depend

markedly on moisture content and these rates

decrease as the moisture is reduced. A critical

minimum moisture content corresponds to the

monolayer sorption value [31�/33], beyond which

a lost of organoleptic properties on rehydration is

found. Because of all these, the knowledge of this

parameter is so important in this field and its GAB

value seems to be is a much more adequate value

to work with, although, as already stated, some

objections have been raised to the use of the

monolayer concept to complex materials like

food [14]. Finally, there remains as a challenge to

be solved the drawback of all these isotherms

about their inability to explain and represent the

sorption at very low activities (a0B/0.1).
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Appendix A: Classical least-squares regression

The linear regression model function F (x), as

Fi�/a0�/a1xi�/oi , where oi is the error of the

adjustment, and the least-squares method esti-

mates a0 and a1 from n data of F (x ) observed at

values xi of the independent variable x through

the minimum condition

Q(a0; a1)�
X

n

i�1

o2i �
X

n

i�1

(F (xi)�(a0�a1xi))
2

�minimum; (A:1)

where a0 and a1 are the coefficients of the

proposed linear polynomial

P(xi)�a0�a1xi: (A:2)

The normal equations are obtained by deriva-

tion of Eq. (A.1) with respect to the parameters a0
and a1:

�2
X

n

i�1

(Fi�(a0�a1xi))�0; (A:3a)

�2
X

n

i�1

xi(Fi�(a0�a1xi))�0: (A:3b)

Solving these equations for a0 and a1, we obtain

the minimum estimates:

â0�
[x2][F ]� [x][Fx]

D
; (A:4a)

â1�
n[Fx]� [x][F ]

D
; (A:4b)

where [Y ] are the Gaussian brackets

�

[Y ]�
X

n

i�1

Yi

�

and D�n[x2]� [x]2: (A:5)

The errors of variance s2 is given by

ŝ2
�

Q(â0; â1)

n� 2
�

[F 2]� [F ]2=n� â21D=n

n� 2

�
[F 2]� [F ]â0 � [Fx]â1

n� 2
; (A:6)

and the variances of the parameters are

s2(â0)�
[x2]

D
ŝ2; (A:7a)

s2(â1)�
n

D
ŝ2: (A:7b)

Appendix B: Regression with a known analytical

expression F*(x )

B.1. Discrete least-squares regression

If analytical expressions F*(x ) such as Eq. (9)

are known, we can replace them directly in the

minimum condition. Using the second expression

of Eq. (9), i.e.

F +(xi)�(A�C)�(B�C)xi�
C

1� xi

; (B:1)

we have:

Q(a0; a1)�
X

n

i�1

o2i �
X

n

i�1

�

(A�C)�(B�C)xi

�
C

1� xi

�(a0�a1xi)

�2

�minimum: (B:2)

The corresponding least-squares normal equa-

tions, obtained again by derivation with respect

to the parameters a0 and a1, are now more explicit

and read, using Gaussian brackets:

(A�C)n�(B�C)[x]�C

�

1

1� x

�

�a0n�a1[x]; (B:3a)

(A�C)[x]�(B�C)[x2]�C

�

x

1� x

�

�a0[x]�a1[x
2]: (B:3b)

Solving these equations for a0 and a1, we obtain

the minimum estimates:

a+0� (A�C)�
CD0�

D
�A�CS0�; (B:4a)

a+1� (B�C)�
CD1�

D
�B�CS1�: (B:4b)
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The functions D0�; D1�; S0� and S1� contain the

regression sums over the independent variable xi :

D0��

�

1

1� x

�

[x2]�

�

x

1� x

�

[x]; (B:5a)

D1��

�

x

1� x

�

n�

�

1

1� x

�

[x]; (B:5b)

and

S0��
D0�

D
�1; (B:6a)

S1��
D1�

D
�1 (B:6b)

with D given by Eq. (A.5). Eqs. (B.4a), (B.4b),

(B.5a), (B.5b), (B.6a) and (B.6b) are the basis of

Eqs. (16a), (16b), (17a), (17b), (18a), (18b), (19a)

and (19b).

The equations for the error variances resemble

those of the former case, Eqs. (A.6), (A.7a) and

(A.7b). They are:

s+2
�

Q(a+0; a
+

1)

n� 2
�

[F +2]� [F +]a+

0 � [xF +]a+1

n� 2
; (B:7a)

s2(a+

0)�
[x2]

D
s+2; (B:7b)

s2(a+

1)�
n

D
s+2: (B:7c)

Eq. (B.7a) can be written more explicitly taking

Eqs. (B.1), (B.4a) and (B.4b) into account. After

some algebra we find:

s+2
�

Cf[F +=(1� x)]� (D0�=D)[F +]� (D1�=D)[F +x]g

n� 2

(B:8)

with

�

F +

1� x

�

�(A�C)

�

1

1� x

�

�(B�C)

�

x

1� x

�

�C

�

1

(1� x)2

�

; (B:9a)

[F +x]�(A�C)[x]�(B�C)[x2]

�C

�

x

1� x

�

; (B:9b)

[F +]�(A�C)n�(B�C)[x]�C

�

1

1� x

�

: (B:9c)

Eqs. (B.4a), (B.4b), (B.8), (B.9a), (B.9b) and (B.9c)

are particularly expressive. They show the decisive

importance of the term of constant C of F*(BET)

for this adjustment. As it is to be expected, with

C�/0 the regression is exact, i.e., a+0/�/A , a+

1/�/B ,

s*2�/0.

Finally, it is to be stated that the values to be

taken for the independent variable xi are a matter

of convenience or taste. They can be those of the

experimental data set and a direct comparison

with the classical method (Appendix A) can be

made; they can be equal in number (n�/nexp) but

equally spaced, and also their number can be

increased at will. In this latter case, if the number

becomes very large it goes over to the continuous

regression process, which is described in the

following section.

B.2. Continuous least-squares regression

For the regression of a continuous process of

F (x ) (�/P (x)�/e (x )) by a lineal expression P (x )

like Eq. (A.2), the minimum condition is to be

transformed into an integral:

Q�g
xƒ

x?

o(x) dx�g
xƒ

x?

(F (x)�(a0�a1x))
2 dx

�minimum; (B:10)

where xƒ and x? are the limits of the regression

interval. The normal equations are again obtained

by derivation with respect to the parameters a0
and a1 and read now

�2g
xƒ

x?

[F (x)�(a0�a1x)] dx�0; (B:11a)

�2g
xƒ

x?

x[F (x)�(a0�a1x)] dx�0: (B:11b)

Solving the integrals involved and then the equa-

tions themselves for a0 and a1, we obtain the

estimates
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ã0�
(Dx3=3)I0 � (Dx2=2)I1

D
; (B:12a)

ã1�
(Dx)I1 � (Dx2=2)I0

D
; (B:12b)

where

Dxk
�xƒk�x?k; k�1; 2; 3: (B:13)

I0 and I1 are the integrals:

Ik�g
xƒ

x?

F (x)xk dx; k�0; 1; (B:14)

and D stands for

D�Dx(1
3
Dx3)�(1

2
Dx2)2: (B:15)

The error variance s2 is now estimated by

s̃2
�

Q(a+0; a
+

1)

Dx
�

I2 � I0ã0 � I1ã1

Dx
; (B:16)

where

I2�g
xƒ

x?

F (x)2 dx; (B:17)

and the variances of the parameters become

s2(ã0)�
Dx Dx3

3D
s̃2; (B:18a)

s2(ã1)�
(Dx)2

D
s̃2: (B:18b)

All these equations are completely general and

may be specialised for any specific function F (x).

But before doing this for the problem at hand it is

convenient to show that the expressions of both

procedures are directly related. When the observed

values xi are equally spaced, i.e., xi�/xi�1�/Dx /n ,

the averages converge to mean value integrals as n

increases:

[G]

n
[

1

Dx g
xƒ

x?

G(x) dx; (B:19)

where G in the present case stands for 1, x , x2, F*,

xF*, F*2, 1/(1�/x ), x /(1�/x ), 1/(1�/x )2, F*/(1�/x),

etc. Therefore, since a+

0; a1� and s*2 converge to

ã0; ã1 and s̃2; respectively, we have that

ns2(a+

0)[
Dx Dx3

3D
s̃2; (B:20a)

ns2(a+

1)[
(Dx)2

D
s̃2; (B:20b)

which allow us to define the variances in the

continuous case as in Eqs. (B.18a) and (B.18b).

These relations relate the discrete and continuous

cases and correspond to the experimental fact that

when the number of observations increases the

standard deviations of the parameters decrease to

0 at an �n -rate.

Specialising F (x ) by F*(BET) given by Eq. (B.1)

and using directly the variable a0 the integrals

(B.14) and (B.17) take the following expressions,

being now a?0 and aƒ0 the limits of the regression

interval:

I0�(A�C)Da0�(B�C)
Da20

2

�C ln

�

1� aƒ0

1� a?0

�

; (B:21a)

I1�(A�C)
Da20

2
�(B�C)

Da30

3

�C (Da0� ln

�

1� aƒ0

1� a?0

�

); (B:21b)

I2�(A�C)I0�(B�C)I1�CI ?2; (B:21c)

I ?2�g
aƒ0

a?0

�

F (a0)

1� a0

�

da0

��(A�C) ln

�

1� aƒ0

1� a?0

�

�(B�C)

� (Da0� ln

�

1� aƒ0

1� a?0

�

)

�C

�

1

1� aƒ0
�

1

1� a?0

�

: (B:21d)

With Eqs. (B.21a) and (B.21b), Eqs. (B.12a) and

(B.12b) become:

ã0� (A�C)S̃0; (B:22a)

ã1� (B�C)S̃1; (B:22b)

where
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S̃0�
D0

D
�1; (B:23a)

S̃0�
D1

D
�1; (B:23b)

and

D0�

�

Da20

2
�

Da30

3

�

ln

�

1� aƒ0

1� a?0

�

�
Da0 Da

2
0

2
; (B:24a)

D1�

�

Da20

2
�Da0

�

ln

�

1� aƒ0

1� a?0

�

�Da0Da0; (B:24b)

D�
Da0 Da

3
0

3
�

�

Da20

2

�2

; (B:24c)

Dak0�aƒ0
k
�a?0

k; k�1; 2; 3: (B:24d)

The regression interval determines exclusively the

functions D0, D1 and D as f (aƒ0; a?0) and the

attributes of the GAB equation enter only through

the constants A , B and C as f(vm,c ,f). Further-

more, the error variances read now:

s̃2
�C

I ?2 � (D0=D)I0 � (D1=D)I1
Da0

(B:25)

s2(ã0)�
Da0 Da

3
0

3D
s̃2; (B:26a)

s2(ã1)�
(Da0)

2

D
s̃2: (B:26b)

Eqs. (B.22a), (B.22b), (B.23a), (B.23b), (B.24a),

(B.24b), (B.24c), (B.24d), (B.25), (B.26a) and

(B.26b) are the principal results in this case and

are similar to Eqs. (B.4a), (B.4b), (B.5a), (B.5b),

(B.6a), (B.6b), (B.7a), (B.7b) and (B.7c) and the

role of the nonlinear term of constant C is evident.

With C�/0 the exact result comes out:

ã0�A; ã1�B; s̃2�0:/
By substitution of Eqs. (B.22a) and (B.22b) into

Eqs. (14a) and (14b), the following expressions for

the BET constants, vmB and cB, are derived:

vmB�
1

A� B� C(S̃0 � S̃1)
; (B:27a)

cB�
A� B� C(S̃0 � S̃1)

(A� C)S̃0

; (B:27b)

expressions which are analogous to that of Eqs.

(17a) and (17b) and are now only functions of the

limits of the integration interval.

Direct expressions for vmB and cB in terms of the

GAB constants result by substituting A , B and C

(Eqs. (10a), (10b) and (10c)) into Eqs. (B.27a) and

(B.27b). After some algebra we find:

vmB�
vmG

[1� 2(1� k)=cB(G)]R̃m(Da0)
; (B:28a)

cB�cB(G)

�

1�
2(1� k)

cB(G)

�

R̃c(Da0); (B:28b)

where the auxiliary functions R̃m and R̃c are now

R̃m(Da0)�1�(1�k)
cB(G) � (1� k)

cB(G) � 2(1� k)

� (S̃0�S̃1); (B:29a)

R̃c(Da0)�
R̃m(Da0)

1� (1� k)(cB(G) � (1� k)S̃0)
:

(B:29b)

Eqs. (B.28a), (B.28b), (B.29a) and (B.29b)

closely resemble Eqs. (18a), (18b), (19a) and

(19b) of the discrete method, but are independent

of the discrete distribution of experimental points.

They represent upper limits of the differences

between BET and GAB parameters and these

equations have been used to calculate the curves

of Fig. 1.
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