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SUMMARY

A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent

stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the

open-mode delamination nucleates at the midspan of the the curved bar. The classical anisotropic elasticity theory

was used to construct a "multilayer" theory for the calculations of the stress and deformation fields induced in the

multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and

intensity of the open-mode delamination stress were calculated and were compared with the results obtained from

the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate

predictions of the location and the intensity of the open-mode delamination stress than those calculated from the

anisotropic continuum theory.
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radial location of zero cr0

displacement in r direction
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rectangular Cartesian coordinates

anisotropic parameter, 3/1 + EEl(1 - 2 u_0) + _

shear strain in r-O plane

composite ply thickness

strain in r direction

strain in 0 direction

tangential coordinate

Poisson ratio of single-ply composite

Poisson ratios

delamination stress in C-coupon

radial stress

delamination stress for the case of end forces P, ar(r,_, _)

delamination stress for the case of end moments M, cr,(r_)

tangential stress
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quantity associated with ith layer

quantity associated with ith layer

1 INTRODUCTION

One of the major causes of stiffness and strength degradations in laminated composite structures is the delam-

inations between composite layers. In most engineering applications, laminated composite structures have certain

curvatures (for example, curved panels and curved beams). If the curved composite structure is subjected to bending

that tends to flatten the composite structure, tensile stresses can be generated in the thickness direction of the com-

posites. Also, shear stresses could be induced if the bending is not a "pure" bending. Under normal operations, if

the above type of bending occurs cyclically, open-mode delaminations or shear-mode delaminations could nucleate

at the sites of peak interlaminar tensile stresses or at the sites of peak interlaminar shear stresses. Continuation of

these bending cyclings will cause the delamination zones to grow in size and ultimately cause the composite struc-

tures to lose their structural integrity (loss of stiffness and strength) due to excessive delaminations. The type of

delamination failure (open mode or shear mode) depends on which type of interlaminar strength (tensile or shear) is
reached first.

One of the most appealing geometries of a fatigue test coupon for studying the composite delamination phenom-

enon is the semicircular curved bar shape (C-coupon). When such a test specimen is subjected to end forces (that is,

nonpure bending), the peak radial stress (tension, if the bending tends to increase the radius of the curvature of the

curved bar) and the peak shear stress induced in the curved bar will be identical in magnitudes but are out of phase

in the tangential direction by _.1 Namely, the peak radial stress is located at the midspan point of the semicircular

curved bar, but the peak shear stresses occur at both ends of the semicircular curved bar. The radial distance of both
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thepeakradialandthepeakshearstressesareexactlythesame.l Theabovenatureof thesemicircularcurvedbarof-
fersanexcellentsituationforstudyingtheinitiationandsubsequentpropagationof delaminationzones(open-mode
orshear-mode)undercyclicloadingsandfor studyingthefatiguebehavior(degradationof stiffnessandstrength)of
multilayeredcompositematerials.In reference1,Korepresentedthemultilayeredcompositesemicircularbarwith
anequivalentcontinuousanisotropicmaterial,andcalculatedradiallocationsandintensitiesof peakradialstresses
inducedin thecurvedbarsubjectedto endforcesandendmoments.Radiallocationandintensityof peakradial
stresswerecalculatedfordifferentcurvedbargeometries(ratiosof outerandinnerradii)andfordifferentdegrees
of anisotropy.Tolf2 alsoconductedstressanalysisof curvedlaminatedbeamsusingbothcontinuousanddiscrete
theories.Heconsideredonlythe"pure"bendingcase.In thispaperthemultilayertheory(discretetheoryinsteadof
continuoustheory)andthefiniteelementmethodwereusedtoperformsimilardelaminationanalysisof themulti-
layeredsemicircularcompositecurvedbarsubjectedto endforcesandendmoments.Theresultingpredictionsof
locationsandintensitiesof peakradialstressesarecomparedwiththeresultsof theanisotropiccontinuumtheory
presentedin reference1.

2 COMPOSITE CURVED BAR

Figure 1 shows the geometry of the composite curved bar (C-coupon) for delamination fatigue tests of composite

materials. Because finite areas are needed for the load application points, both ends of the curved bar must be

extended slightly. Thus, the C-coupon consists of a semicircular curved region with straight regions at both ends.

Under the application of end forces P, the loading axis will have certain offset e from the vertical diameter of the

semicircle. Thus, the loading condition on the C-coupon is the summation of the following two loading conditions

(see fig. 2): (1) end forces P at the ends of the semicircle and (2) end moment M = Pe at the ends of the semicircle.

Because the interface between 0 ° and 90 ° composite plies has the highest Poisson's ratio mismatch in laying

up the composite plies for fabricating the C-coupon, it is desirable to place the 90 ° or angle plies at the peak radial

stress point to ensure that the delamination will nucleate at that point. Because of this demand, the precise location

of the peak radial stress point must be known. The following sections will show how to determine the intensities

and radial locations of peak radial stresses in the semicircular composite curved bar.

3 ANISOTROPIC CONTINUUM THEORY

For bending a linearly elastic continuous curved bar with cylindrical anisotropy, the Airy stress function F,

written in cylindrical coordinate system, takes on the following functional forms: 3

(a) for end forces P (fig. 2b)
F = [At 1+_ + Br 1-# + Cr + Drln r] sin 0 (1)

(b) for end moments M (fig. 2c)
F = A' + B'r 2 + C'r 1+_ + Dtr 1-k (2)

where {A,B,C,D} and {A',B',C',D'} are arbitrary constants that must be determined from boundary conditions,

and the two anisotropic parameters/3 and k are respectively defined as

_/ Eo(fl-- 1+ -_ 1- 2 v, o)

EO
+ m (3)

6'r0

(4)

For the isotropic case, fl = 2 and k = 1.



Thefunctionalformgiveninequation(1)isalsoapplicabletotheisotropiccase(/3= 2). However,thefunctional
formatgiveninequation(2)cannotbeapplieddirectlytotheisotropiccasebysimplysettingk = 1. For the isotropic

case, equation (2) must be expanded in the neighborhood of k = 1 using the relationship In r +(k-l) _ r +(_-1) - 1

where k - 1 << 1 to the following familiar form 4

F = A +/)_.2 + _r.2 In 7- + Din r (5)

where (-4,B,C,D} are a different set of arbitrary constants.

Stresses in the cylindrically anisotropic body may be expressed in terms of the stress function F as

1 OF 1 3 2F
cr_ = -_ + ---- (6)

r 3r r 2 002

0 2 F

cro = Or 2 (7)

= OrO0 (8)

and the stress-strain relationships for the plane stress case are given by

1 VOr

er = "-_rrCrr- --_OcrO

UrO 1

eO = E--"_(rr+ -_ooCYO

1

_trO = Gr------_7-rO

(9)*

(10)*

(11)

with the reciprocity relationship of
VrO b'Or

E0

The strains are related to the displacements through the following formulae:

OUr

f.r -- OT

10uo u_
_0- +_

r O0 r

1 {"1 Out

= 7 \ 7-gg +

(12)

3.1 Stresses

(13)

(14)

OUOor 7) (15)

Substitution of equations (1) and (2) into equations (6) through (8) yields the following stress equations in terms

of the unknown arbitrary constants {A,B,D} or {B',Cr,D'}:

Er E 0 , v ( _'_ and*For the plane strain case, E,, Eo. uo,, and uro are simply replaced with 1 - u, ru,,' "1 - t,,eve, _ 1 + v0, ]

(Vre 1 + respectively.
1 - _zrl.Srz lifo ] '
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(a) for end forces P

(b) for end moments M

ar( r, O) = [A_r#-l - B_r-#-l + D] sin O

ao(r,O) = [A3( l + 3)r#-l - B3(1- 3)r-#-l + D] sin O

rre(r,O) = - [A3r_-l - B13r-_-l + D] cosO

cry(r) = 2B'+ C'(1 + k)r k-1 + D'(1 - k)r -k-1

cro(r) = 2 B' + C'k(1 + k)r k-1 - D'k(1 - k)r -k-l

fro =0

(16)

(17)

(18)

(19)

(20)

(21)

Notice that the magnitudes of o-_ (equation (16)) and r_0 (equation (18)) for the case of end forces P are identical,

but are out of phase in the 0 direction by _.

3.2 Displacements

Using equations (9) through (12), (16) through (18), and (19) through (21), the displacements u_ (equation (13))

and uo (equation (14)) may be integrated to give the following forms, neglecting the rigid body motion terms:

(a) for end forces P

( [ 1 3) vo_q+Br__[1 Yogiur(r,O)= Ar _ _-r-(l+ EoJ -_r-(1-3) EoJ

+ D(ln r) (_- u°_)}sinOEo (22)

ue( r, O) = Ar _ -ET - 3( l + 3) Eo Eo l E7 +3(1-3)

(b) for end moments M

{(1 1Ur( r) = B' 2 r _ Eo J J Er

-D'{(1-k)r-k(1-E7 Eo/

{(1uo( r, O) = B' 2 r Eo

Eo) }

(23)

(24)

;_:)}o
3.3 Delamination Stresses and Their Locations

For the continuous (or single layer) curved bar, the two sets of unknown constants {A,B,D} and {B',C' ,D'} can

be determined explicitly from the boundary conditions to give closed-form expressions for the stresses (equations

(16) to (21)) and the displacements (equations (22) to (25)). 1'3 By using the extreme condition o_cr_ = 0, the
functional expressions for the delamination stress (maximum value of cry) and its radial location were derived in

reference 1 for both of the aforementioned loading cases.
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4 MULT_AYER THEORY

Figure 3 shows the multilayer (N-layers), semicircular curved bar subjected to both end forces P and end mo-

ments M. The stress field and displacement field in each layer i(i = 1,2,... N) for each loading case may be

obtained from the results given in section 3.

4.1 Boundary Conditions

At each interface between layers i and i + l(i : 1,2,... N - 1), the following boundary conditions for the

continuities of stresses and displacements must hold (no sliding between layers).

(a) for end forces P

at r = ai:

cr_° (ai, 0) = a__÷1)(a_, 0)

u(O(ai,/9) = u(i+l)(ai, 0)

(26)

(27)

(28)

(29)

The boundary conditions at the traction-free inner surface (i - 1 = 0) and outer surface (i = N) of the curved bar
are

at r = ao = a:

a_i)(a,O)= o (30)

(1),
r;o t a, 0) = 0 (31)

at r = aN = b:

cr(rN)(b ,0) = 0 (32)

,-(oN)
(b, 0) = 0 (33)

(b) for end forces M

at r = ai:

._o(ai) = u_,_+1)(_)

tL_i)(ai) = lJ(oi+l)( ai)

(34)

(35)

(36)

atr= ao = a:

at r = an = b:

_N)(b) = 0

(37)

(38)



As mentioned earlier, ¢r_ and r_o (equations (16) and (18)) for the case of end forces P have identical r depen-

dency. Thus, if _r_ satisfies the boundary conditions, r_o will also satisfy the boundary conditions automatically.

Therefore, the boundary conditions associated with %o (equations (27), (31), and (33)) are not needed.

For each loading case, each set of the previous boundary conditions will give 2 + 3( N - 1) = 3 N - l equations

for determining the 3 N unknowns Ai, Bi, Di(i = 1,2,... N) for the case of end forces P, or 3 N unknowns

B_, C_, D_(i = 1,2,... N) for the case of end moments M.

The last equation needed for each loading case is the condition that the end force P or the end moment M is

balanced by the stresses in the curved bar:

(a) for end forces P

-P= Tro tr, O) dr ; 0=0 (39)
i=1

(b) for end moments M
N

•= i-1

(r - ro ) cro( r) dr (40)

where the negative signs in front of P and M am to increase the radius of curvature of the curved bar, and r0 is the

unknown radial location where ¢ro = 0. For pure bending we have

N ai

)._] cro(r)dr = 0 (41)
i=1 aai_l

Therefore (since r0 term vanishes), equation (40) becomes:

- M = reo(r) dr (42)
i=l i-1

4.2 Boundary Conditions in Final Forms

After substitution of stress and displacement expressions given respectively in sections 3.1 and 3.2 into the

boundary conditions given in section 4.1, the following final forms of the boundary conditions am obtained:

(a) for end forces P

for a_(1) (equation (30)):

Al _1 a _l -- B1/_1 a -_l + D1 = 0

for cr_i) (equation (26)):

Ai/3ia#i ' - Bi_ia_ #' + Di - Ai+lfli÷l a_ i÷1 4- Bi+lt_i+|a? _i÷l -- Di+l = 0

(43)

(44)

for ¢r_N) (equation (32)):

AN_Na_ N -- BN/3Na_ aN + DN = 0 (45)
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for u{_i) (equation (28)):

Aia_i _ _ - ( 1 + Bi) E_ 0 j + Bia-[ #_ _ - ( 1 - _ffi)

_Ai+la#i,+l( 1 u_+l) l ( IF__i+l ) (1 + 1_i+1) -- Bi+lai -_/+l

-D,+,(_o,) _ -E_,+,>) =o

w(i+1) ]
Or

_<i
(46)

for u_i) (equation (29)):

,o,
1 ,(i)_

+ Di--_-_( 1 - "or J
Eo

#_+: fli+l 1,,(i+1)} Bi+laTf,+ 1 /_i+1 - "
_{(I- _i+1)- //_;+1))-A. 1ai _o(. 1)(( 1 + #i+1) - o, +

1 , (i+ 1)x
-Di+l _,.1_(1 -,,Or ) = 0 (47)

Equation (47) was obtained by taking the difference between the boundary conditions (28) and (29). This was done

because the resulting expression (47) is simpler than using equation (29).

for P (equation (39)):

N

E [Ai(a_ii- a//_-') + Ui(c_Ts_ -- a_--_) + Di(ln ai - In _i-1)] = P

i=1

(48)

(b) for end moments M

for o-_1) (equation (37)):

for cry0 (equation (34)):

2B_ + 0_(1 + ki)a k_-I + D_(1 - kl)a -k'-I = 0

2B_+ C_(I +/q)a_-1 + D_(I -kOa_ -_-I

-2 Bi+1' - C_+l(1 + ki+t)a/k.x-I _ Di+l(ll -- k/+l)a_-ki+, -1 = 0

(49)

(50)

for err(N) (equation (38)):

2B_¢ + C_v(1 + kN)b ks-I + D_¢(1 - kN)b -I_N-I = 0 (51)
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for u(ri) (equation (35)):

{(1 ' ki)a_ 1 1
E_o + Ci (1+ k_E_o

--D: ((1- ki)aTk' (1 _ O +-_i-

{(1-B_+ 2 ai
I E(r_+I)

Or

(0 }

•){ (,IE_,.,)} -C_+I (1+

, { (l ,+Di+l (1 -k.1)a7 a+' k.1 E_i+1)

,4_+,>] }_,+,-_=_)

,<,+,,)}Or = 0
+ E_i+ i)

for u_0 (equation (36)):

{(b '{ (1B_ 2ai - - Bi+l 2ai E_i+l_ - =0

for M (equation (42)):

N

E [B_(o,_- 2 , _+,ai_ 1) + C_ki(a i - aik,_+l1) _ D_ki(a_ ta÷l

i=1

(52)

4.3 Delamination Stresses and Their Locations

(53)

- a_+l)] = -M (54)

At exactly which layer the value of ar for each loading case will become maximum cannot be predicted until

after all the unknown arbitrary constants {Ai, Bi, Ci) or {B_, C_, D_} are determined from the appropriate boundary

conditions given in section 4.2. Suppose ( at)max (or (_)max), the maximum value of ar due to end forces P (or

end moments M), occurs in the ith layer;, then by using the extreme condition 0 a = 0, the radial location rm (orb7 r
r_) of (a,)m_x (or (a',)_x) may be calculated from equation (16) (or equation (19)) as:

(a) for end forces P
1

Di- ¢D -4AiBifl2(fl_ - 1) _rm = 2 Aifli(/3i - 1) (55)

(b) for end moments M

r_ LqJ
(56)

And the delamination stresses ( O'r)ma x and '( O'r)ma x for the two loading cases may be written as

(a) for end forces P

((Yr)max =-- (It (rra, 2) = [Ai_ir_-I -Bi_irm_i-I + _m ] (57)



(b) forendmomentsM

(cr_r)m_ -- crTCr_) = 2B_+ C_(1 + ki)(r_m) ta-1 + D_(1 - k0(r_) -_-1 (58)

4.4 Delamination Stress in C-coupon

The delamination stresses ( err)max (due to P) and ( trOt)max(due to M) do not occur at the same radial locations of

the curved bar (see equations (55) and (56)). Thus, the delamination stress crD in the C-coupon cannot be constructed

by simply summing up (cr,)m_ and (cr_)ma_. The value of o'n must be evaluated at r -- rD where the summation of

the radial stress crr( r, ,_) due to P and the radial stress crr(r) due to M become maximum. Namely,

Due to P Due to M

(+)ffD =fir rD, + ffr(rD)

where, the value of rD is calculated from the following extreme condition:

Due to P Due to M

d

which, after substitution of equations (16) and (19) and after performing differentiation, becomes

Ai3i(3i - 1)r_ + Bi3i(3i + 1) rD#' -- Di

+ (k, - + = 0

(59)

(60)

(61)

As will be seen later, the radial location rD of the delamination stress aD in the C-coupon is somewhere between

(that is rm < rD < r_).rm and rra

5 NUMERICAL EXAMPLES

The anisotropic continuum theory and the multilayer theory presented respectively in sections 3 (or ref. 1) and

4 will now be applied to the delamination analysis of the composite C-coupon. One type of composite C-coupon

under development has the following geometry and ply properties:

inner radius

outer radius

loading axis offset

width

ply thickness

mean radius

radii ratio

a = 2.1590 cm (0.85 in.)

b = 2.9724 cm (1.17022 in.)

e = 0.9525 cm (0.375 in.)

h = 2.54 cm (1 in.)

6 = 0.01506 cm (0.00593 in.)

am = _ = 2.5657 cm (1.01011 in.)

_b= 1.3767
O

EL = 17.2369 x 101°N/m2(25 x 1061b/in. 2)

Eft = 0.8274 x 10raN/m2( 1.2 × 1061b/in. 2)

GL_" =0.4137 × 101°N/me(0.6 × 1061b/in. 2)

VLT = 0.33

WrL = 0.01584
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TheaforementionedC-couponhas54compositeplieshavingthestackingsequenceof [0_5/ + 15°/ - 15°/-

15°/+ 15°/0_].

5.1 Equivalent Continuum

In order to apply the anisotropic continuum theory, the laminated composite C-coupon

be represented by an equivalent anisotropic continuum having the following effective material properties:

E0 = 16.3220 x 101°N/m2(23.6731 x 1061b/in. 2)

Er = 0.8274 x 101°N/rn2(1.2 x 1061b/in. 2)

Gro = 0.4137 x 101°N/m2(0.6 x 1061bfm. 2)

vro _ 0.01673

will

Based on these effective material properties, the equivalent continuum representing the C-coupon has the values

of anisotropic parameters as/_ = 7.7151 and k = 4.4416.

5.2 Multilayer System

For the purpose of applying the multilayer theory to the C-coupon, the extended linear regions at both ends will

be neglected, and only the semicircular region subjected to two types of loadings (end forces P and end moments

M, figure 2) will be considered. For simplification, each group of 25 layers of the 0 ° plies will be represented by one

layer of anisotropic continuum, and the center region of 4 layers of 4-15 o angle plies will be represented by another

anisotropic continuum. Thus, the 54-layer composite will be represented by 3 layers of anisotropic continua.

(a) 0 ° plies

The inner ( i = 1) and the outer ( i = 3) layers have the following effective material properties:

/_i) = EL = 17.2369 x 101°N/m2(25 x 1061b/in. 2)

/_(i) = ET" = 0.8274 x 10raN/m2(1.2 x 1061b/in. 2)

G(O = GLT = 0.4137 x 10raN/m2(0.6 x 1061b/in. 2)rO

v(O = 0.01584
rO

which give the values of anisotropic parameters as _l = B3 = 7.9272 and kl = k3 = 4.5644.

(b) 4-15 ° plies

The center layer ( i = 2) has the following effective material properties:

E_ 2) = 4.8873 x 101°N/rn2(7.0884 x 1061b/in. 2)

Er(2) = 0.8274 x 101°N/m2(1.2 x 1061b/in. 2)

G(2) = 0.4137 x 101°N/m2(0.6 x 1061b/in. 2)
rO

l.(2)T0 _' 0.05590

which give the values of the anisotropic parameters as #2 = 4.2498 and k2 = 2.4304.

The 3 N (N = 3 ) boundary conditions for the aforementioned 3-layer laminated system may be written in matrix

forms (see appendix) for solving the 3 N unknown constants Ai, Bi, Di( i = 1,2,3), for the case of end forces P,

or for solving the other set of 3 N unknown constants B[, C_, D_( i = 1,2,3), for the case of end moments M.
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6 FINITE ELEMENT ANALYSIS

To verify the solution accuracies of the analysis for which the actual loading condition of the

C-coupon was represented with the superposition of two loading cases of the semicircular curved bar (see fig. 2),

finite element stress analysis was performed on the semicircular curved bar (under two loading cases) and on the

C-coupon using the structural performance and resizing (SPAR) finite element computer program. 5 Figures 4 and 5

respectively show the SPAR finite element models set up for the semicircular curved bar and the C-coupon. Because

of symmetry with respect to the x axis, only the half span of the semicircular curved bar and the C-coupon were

modeled. Both systems were first reduced to three-layer systems as defmed in section 5.2. Then layers 1, 2, and

3 were respectively modeled in 10, 2, and 10 layers of quadrilateral membrane E41 elements in the r direction.

In the tangential direction, the quarter-circular region (0 < 0 < _)of the two systems was modeled with 90 E41

elements. The extended region (-e < z < 0) of the C-coupon was modeled with 25 layers of E41 elements in the
x direction.

The 0 = 90 ° plane for each model was allowed to move freely in the x direction (shown with rollers in figs. 4

and 5) but not in the 1/direction. At the upper end of each model, only one point lying in the middle surface (or0 = 0

point was found to be very close to the middle surface of the curved bar) was constrained to move freely in the

direction only (no movement in the x direction). Thus, the end of each model could rotate freely (shown with only

one roller, figs. 4 and 5). The applied force P and the applied moment M were represented respectively with the
distributions of %0( r, 0) _ and or0(r) obtained from the multilayer analysis. The sizes of the two SPAR models are
listed below:

Semicircular

curved bar C-coupon
JLOCs 2093 2668

E41 elements 1980 2530

7 RESULTS

7.1 Semicircular Curved Bar

Figure 6 shows the distributions of err in the 0 = _ plane for the case of end forces .P calculated from different

theories. The values of (Or)max and rra calculated from different theories are indicated in the figure. The values of

( O'r)max calculated from different theories are quite close, except its location r,n. The multilayer theory and the finite

element method predicted close values of rm. The ( o's)max site predicted from the anisotropic continuum theory is

located slightly closer to the middle surface than the (err)max sites predicted from the multilayer theory and SPAR.

The ( err)max site for the isotropic material is closest to the middle surface and is always located between the middle

surface and the ( err)max site predicted from the anisotropic continuum theory. This can be seen more clearly from
the plots shown in figure 7.

The distance between the sites of ( Or)max predicted from the multilayer theory and the anisotropic continuum
theory is

(rm)Anisotropic -- (r'ra)Multilayer = (0.4158 - 0.3907)( b - a) = 0.0203cm (0.0080in.)
continuum

which is 1.3554 times the single ply thickness of 0.01506 cm (0.00593 in.).

Figure 8 shows the distributions of cr_for the case of end moments M calculated from different theories. Unlike

the previous case, the values of r_ and (fir)max calculated from different theories are quite close, showing that the
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' (that is,value of r_ is quite insensitive to the theory used. The multilayer theory predicted the shortest distance of r m

the ( O'lr)max site is closest to the inner boundary of the curved bar). The site of ( cr_)maxpredicted from the anisotropic
(%)max site, based on isotropic theory. This iscontinuum theory always lies between the middle surface and the

shown in figure 9.

The distance between the sites of ( cr_)max predicted from the multilayer theory and the anisotropic continuum

theory is given below

t 7. Irm)Anisotropic -- ( ra)Muhilayer = (0.4346 - 0.4327) ( b - a) = 0.001545 cm ( 0.000608 in.)
continuum

which is only 0.1025 times the single-ply thickness of 0.01506 cm (0.00593 in.), and is therefore, insignificant.

Figures 10 and 11 respectively show the deformed shapes of the semicircular curved bar subjected to end forces

P and end moments M. The dimensionless radial displacements _ at 0 = 0 and 0 = _ are shown in the figures.

Table 1 summarizes all the values of (Or)max, (err)max,' r,_, and r mr calculated from dif-

ferent theories.

Table 1. Intensities and locations of delamination stresses in semicircular curved bar.

End forces P

Theory Item

"_( O'r)max _--_I

Anisotropic continuum 1.4817 0.4158

Multilayer theory 1.4864 0.3907

Isotropic continuum 1.5135 0.4205
SPAR 1.4816 0.3935

End moments M

ha-'_M-a ( O'/r)max _b-a

1.5095 0.4346

1.4988 0.4327

1.5222 0.4338

1.4979 0.4398

7.2 C-Coupon

In order to determine the radial location rD and magnitude of delamination stress crD for the C-coupon, the two

radial stresses calculated from the semicircular curved bar due to P and M were summed up. The results are shown

in figure 12 for multilayer, anisotropic, and isotropic cases. Notice that the radial location rD predicted from all

but closer to rm instead of r_ because the stress contribution due to P is largerthree theories lie between rra and r m

than that due to M ( e < am). The distance between the locations of CrDpredicted from multilayer and anisotropic

continuum theories is about 1.05 times the ply thickness. The finite element solution data points obtained from

the C-coupon model lie in the vicinity of the two curves obtained from the multilayer and anisotropic continuum

theories. The intensity and the radial location of crD predicted from SPAR (C-coupon) are closest to those predicted

from the multilayer theory. Table 2 summarizes the values of o-D and rD predicted from different theories.

Table 2. Intensities and location of

delamination stresses in C-coupon

Theory

Anisotropic continuum

Multilayer theory

Isotropic continuum

SPAR (semicircular curved bar)

SPAR (C-coupon)

C-coupon under end forces P

__ ro--a_D b-a

2.0415 0.4212

2.0399 0.4017

2.0783 0.4241

2.0353 0.3935

2.0405 0.3935

13



Figure13showsthedeformedshapeof the C-coupon subjected to end forces P.

displacement t,, at midspan and at the free end are shown in the figure.
Q

8 CONCLUSIONS

The dimensionless radial

The multilayer theory was developed for delamination analysis of a semicircular composite curved bar subjected

to end forces and end moments. The difference between the radial locations of the delamination stress (maximum

radial stress) predicted from the multilayer theory and from the anisotropic continuum theory was approximately 1.4
times the ply thickness for the case of end forces and about 1/10 of the ply thickness for the case of end moments.

The superposition method (namely, by summing up the two radial stresses induced in the semicircular curved bar

subjected to end forces and end moments), used to construct the delamination stress in the C-coupon, gave reasonably

accurate intensity of the delamination stress for the C-coupon. The finite element analysis of the C-coupon gave the

radial location of the delamination stress in the C-coupon much closer to that predicted from the multilayer theory

than from the anisotropic continuum theory.

Ames Research Center

Dryden Flight Research Facility

National Aeronautics and Space Administration

Edwards, California, December 14, 1988
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Figure 3. Bending of laminated anisotropic semicircular curved beam by end forces and end moments.
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Figure 5. Finite element model for laminated composite delamination test C-coupon.
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Figure 10. Deformed shape of curved bar under end force P.
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