
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other users, including reprinting/ republishing this material for advertising or promotional

purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any

copyrighted components of this work in other works.

Multi-layered Echo State Machine: A novel

Architecture and Algorithm

Zeeshan Khawar Malik, Member IEEE, Amir Hussain, Senior Member IEEE

and Qingming Jonathan Wu1, Senior Member IEEE
University of Stirling, UK and University of Windsor, Ontario, Canada1

Email: zkm, ahu@cs.stir.ac.uk and jwu@uwindsor.ca1

Abstract—In this paper, we present a novel architecture and
learning algorithm for a multi-layered Echo State Machine (ML-
ESM). Traditional Echo state networks (ESN) refer to a particular
type of Reservoir Computing (RC) architecture. They constitute
an effective approach to recurrent neural network (RNN) train-
ing, with the (RNN-based) reservoir generated randomly, and
only the readout trained using a simple computationally efficient
algorithm. ESNs have greatly facilitated the real-time application
of RNN, and have been shown to outperform classical approaches
in a number of benchmark tasks. In this paper, we introduce
novel criteria for integrating multiple layers of reservoirs within
an echo state machine, with the resulting architecture termed the
ML-ESM. The addition of multiple layers of reservoirs are shown
to provide a more robust alternative to conventional reservoir
computing networks. We demonstrate the comparative merits
of this approach in a number of applications, considering both
benchmark datasets and real world applications.

I. INTRODUCTION

In machine learning and neural networks communities,
several neural network models and kernel-based methods are
applied to time series prediction tasks, such as MLPs (Multi-
Layer Perceptrons) [1], RBF (Radial Basis Function) neural
network [2], Extreme Learning Machine [3][4], deep learning
autoencoders [5], FIR (Finite Impulse Response) neural net-
work [6], SVR (Support Vector Regression) [7], SOM (Self-
Organization Map) [8], GP (Gaussian Process) echo state ma-
chine [9], SVESM (Support Vector Echo State Machine) [10],
RNNs (Recurrent Neural Networks) including NAR (Nonlinear
AutoRegressive network) [11], Elman networks [12], Jordan
networks, RPNN (Recurrent Predictor Neural Networks) [13]
and ESN (Echo State Network) [14]. A number of alternative
approaches are also being reported [15], [16], [17], [18] and
[19].

Over the last decade, the echo state network has been
recognised as the most efficient network structure for training
RNNs. It was invented independently in the seminal works of
Jaeger [20], who termed these RNNs: “echo state networks
(ESNs). Maass et al. [21] developed a similar approach for
spiking neural networks and termed the derived model: “liquid
state machine” (LSM). These two pioneering methodologies
have given rise to the novel paradigm of reservoir computing
(RC) [22].

The standard echo state machines are state-space models
with fixed state transition structures (the reservoir) and an
adaptable readout form for the state space. Adding more
connected layers inside the state space of fixed-state transition
structures are expected to improve the overall performance of

the model. Sequentially connecting each fixed-state transition
structure externally with other transition structures creates
a long-term memory cycle for each. This gives the ML-
ESM proposed in this article, the capability to approximate
with better accuracy, compared to state-of-the-art ESN based
approaches.

Echo State Network [20] is a popular type of reservoir
computing network mainly composed of three layers of ‘neu-
rons’: an input layer, which is connected with random and
fixed weights to the next layer, and forms the reservoir. The
neurons of the reservoir are connected to each other through a
fixed random, sparse matrix of weights. Normally only about
10 % of the weights in the reservoir are non-zero. The weights
from the reservoir to the output neurons are trained using
error descent. Only weights from the reservoir to the output
node are trainable. In this paper we present a novel multiple
layer reservoir network of ESM. To achieve this, we have
introduced a new set of non-trainable weights which leads to
a stronger synaptic connection between neurons of more than
one reservoir, as part of the ESM.

We first define the idea of a reservoir as follows: Win

represents the weight from the Nu inputs u to the Nx reservoir
units x, W indicates the Nx×Nx reservoir weight matrix, and
Wout indicates the (Nx +1)×Ny weight matrix connecting
the reservoir units to the output units, denoted by y. Typically
Nx ≪ Nu. Win is fully connected and the weights are
trainable.

The supervised training and testing of the echo state net-
work is conducted by updating the reservoir state and network
output as follows:

x(t + 1) = (1− γ)h(Wx(t) +Winu(t+ 1))

+Woutỹ(t)) + γx(t) (1)

y(t + 1) = Wreadout[x(t+ 1);u(t+ 1)] (2)

where x(t) is the state of the reservoir at time t, W is the
weight matrix of neurons inside the reservoir i.e. the matrix of
the weights of the synaptic connection between the reservoir
neurons. u(t) is the input signal fed to the network at time t.
ỹ(t) is the target value of the readout (i.e., the desired network
output) at time t. y(t) is the predicted value of the readout at
time t. γ ≥ 0 is the retainment rate of the reservoir network
(with γ > 0 if leaky integrator neurons are considered). Win

and Wout are the randomly initialized weights of u(t) and
y(t), and h(.) is the activation function of the reservoir. In

this paper we will be considering hyperbolic tangent reservoir
neurons, i.e. h(.) = tanh(.).

To achieve an echo state property, the reservoir connection
matrix W is typically scaled as W← αW/λmax, where |λmax|
is the spectral radius of W and 0 < α < 1 is a scaling param-
eter [23]. Echo State network training is essentially based on
teacher-forced calculation of the corresponding reservoir states
{x(t)}Tt=1 using (1), and application of a simple regression
algorithm (e.g. linear regression or ridge regression) to train
the readout weights Wreadout on the resulting dataset {x(t)}Tt=1
[24]. All the weight matrices to the reservoir (W,Win,Wout)
are initialized randomly. The state of the reservoir is initially
set to zero i.e. x(0) = 0.

The rest of this paper is organized as follows:

The second section explains how a multiple layer echo
machine can be trained in a supervised manner. The natural
approach here is to adapt only the weights of the multiple layer
network to output connections. Essentially, this trains readout
functions which transform the multiple layer echo state into
the desired output signal. This section also defines multiple
layer echo states and provides equivalent characterizations.

The third section presents a comparative analysis of the
proposed method with a number of state-of-the-art benchmark
approaches, considering Mackey-Glass Series dataset, Henon
map, NARMA sequence, an artificially generated Figure 8
dataset, 15 classification problems, Reuter-21578 dataset, and
finally by predicting human motion using the Carnegie Melon
University (CMU) MoCap dataset.

Section four concludes with a comparative discussion and
some future work suggestions.

II. MULTI-LAYERED ECHO STATE MACHINE (ML-ESM)

Historically, Minsky and Papert [25] are known to have left
open the possibility that multi-layer networks may be capable
of delivering better performance by overcoming the limitations
of single-layered feedforward neural networks. Recently this
idea has virtually exploded with impressive successes across a
wide variety of applications [26] [27] and [28].

The idea of our ML-ESM can be explained through the
following mathematical formulation: We consider discrete-
time neural networks with K input units, Ri where i =
1, 2, 3, ..., N internal reservoir units, J number of neurons

inside each reservoir and L output units. Activations from
the input units at time step t are u(n) = (u1(t), , uK(t)).
The internal units are represented as x(n) = (x1(t), ...xN (t))
where x1(n) = (x11(t),, x1J (t)), and the output units are:
y(n) = (y1(t), ..., yL(t)). Real-valued connection weights are
collected in a J × K weight matrix Win = (win

ij) for the input

weights; in a J × J matrix Winternal = (winternal
ij) for the internal

connections; in an J × J matrix Wexternal = (wexternal
ij) for the

external connections; and, in a L × (K +
∑N

i=1Ri + L) matrix
Wout = (wout

ij) for the connections to the output units. Figure
1 shows the basic network architecture of the ML-ESM.

The internal activations for both training and testing of
N reservoir units inside an echo state machine are updated
according to:

x1(n+ 1) = (1− γ)h(Wx1(t) +Winternalu(t+ 1))

+γx1(t)

x2(n+ 1) = γx1(n+ 1) + (1− γ)h(Wx2(t) +

Wexternalx1(t+ 1)) + γx2(t)

x3(n+ 1) = γx2(n+ 1) + (1− γ)h(Wx3(t) +

Wexternalx2(t+ 1)) + γx3(t)

x4(n+ 1) = γx3(n+ 1) + (1 − γ)h(Wx4(t) +

Wexternalx3(t+ 1)) + γx4(t)

.

.

xN (n+ 1) = γxN−1(n+ 1) + (1− γ)h(WxN (t) +

WexternalxN−1(t+ 1)) + γxN (t)

(3)

The output is computed as follows:

y(t + 1) = Wreadout[x(t+ 1);u(t+ 1)] (4)

where γ ≥ 0 is the retainment rate of the reservoir networks
inside the echo state machine which can vary in each layer
(with γ > 0 if leaky integrator neurons are considered).
Initially all the weight matrices for each layer inside the echo
state machine (Winternal, Wexternal) and Wout are initialized
randomly.

To achieve an echo state property with N reservoir con-
nections inside the ML-ESM, the internal reservoir connection
matrix Winternal and the external reservoir connection matrix
Wexternal are typically scaled as Winternal ← αWinternal/λin-max

and Wexternal ← αWexternal/λex-max, where |λin-max| is the
spectral radius of Winternal and |λex-max| is the spectral radius
of Wexternal.

In this paper we consider the input sequences in the first
layer (u(n))nǫJεU

j , where U is required to be compact.
We use shorthand ū−+∞, ū+∞, ū−∞, ū−h to denote input
sequences for all the {1, 2, 3, ..., N} layers, which are, respec-
tively, left-right infinite (J = Z), right-infinite (J = k, k+1, ...
for some k ǫ Z), left-infinite, and finite of length h. The
network state operator T is used to write x(n + h) =
T (x1(n).....xN (n),y(n), ūh) to denote the network states,
that results from an iterated application of equation (3), if the
input sequence is fed into the network at time t, with resulting
output y(n).

Thus our analysis for the ML-ESM will rely specifically
on the following generic setup: (i) input to the first layer is
drawn from a compact input space U; (ii) All network states
of each layer lie in a compact set A. These conditions, as in
[20], can be termed: standard compactness conditions.

Definition1 Assume the network has no output feedback
connections and the network is maintaining the standard com-
pactness condition. Then, the ML-ESM has {1, ..., N} echo
states, if the network states x1(n) to xN (n) are uniquely
determined by any left-infinite input sequence ū−∞.

Fig. 1: Architecture of ML-ESM (ML-ESM)

Equivalently stating the echo state property for ML-ESM,
is to say that there exist input echo functions E = (e1, ..., en)
for each layer of the machine, where ei : U−N → R, such
that for all left-infinite input histories the current network state
for each layer are:

x1(n) = E(...,u(n− 1),u(n))

x2(n) = x2 +E(...,x1(n− 1),x1(n))

x3(n) = x3 +E(...,x2(n− 1),x2(n))

x4(n) = x4 +E(...,x3(n− 1),x3(n))

. =

. =

. =

xN (n) = xN +E(...,xN−1(n− 1),xN−1(n))

(5)

Definition2

(a) A state sequence at each layer of the ML-ESM is
given by:

x̄−∞
1 = ...,x1(n− 1),x1(n)

to

x̄−∞
N = ...,xN (n− 1),xN (n) ǫ A−N (6)

(where A ⊂ RL admissible states inside each layer)
is called compatible with an input sequence from the
first layer

ū−∞ = ...,u(n− 1),u(n)

to the N th layer

x̄−∞
N−1 = ...,xN−1(n− 1),x(n), (7)

if, at the first layer:

∀i < n : T (x1(i),u(i + 1)) = x1(i + 1)

to the N th layer

T (xN (i),x(N−1)(i + 1)) = xN (i+ 1). (8)

A network state at each layer is end-compatible with
the input sequence if there exists a state sequence at
each layer

,,x1(n− 1),x1(n).....xN (n− 1),xN (n)

such that

{T (x1(i),u(i+ 1)) = x1(i+ 1)

......T (xN (i),xN−1(i+ 1)) = xN (i + 1), }

and

{x1 = x1(n)....xN = xN (n)}. (9)

(b) Similarly, a left-right-infinite state sequence x̄∞ is
called compatible with an input sequence u∞ starting
from the first layer, if

∀i : T (x1(i),u(i + 1)) = x1(i+ 1)

to the N th layer if

∀i : T (xN ,xN−1(i+ 1)) = xN (i + 1). (10)

(c) A network state x ǫ A is called end-compatible
with an input sequence ū−∞ if there exists a state
sequence from the first layer

...,xN−1(n− 1),xN (n)

such that

T (x1(i),u(i+ 1)) = x1(i+ 1),

and

x1 = x1(n)

to the N th layer

T (xN(i),u(i + 1)) = xN (i+ 1). (11)

(d) A network state {x1....xN}ǫA is called end-

compatible with a finite input sequence ūh at the first
layer if there exist a state sequence:

{x1(n− h), ...x1(n)}

to

{xN (n− h), ...xN (n)}ǫAh+1 (12)

such that

T (x1(i),u(i+ 1)) = x1(i+ 1)

and

x1 = x1(n)

to the N th layer

T (xN(i),u(i + 1)) = xN (i+ 1). (13)

Metaphorically, the state xi(n) of each layer can be un-
derstood as an echo of the input history. As demonstrated
in [29], smaller reservoir sizes often yield better networks
with higher probability. On the contrary, as noted in [14],
the random connectivity and weight structure of the reservoir
with a smaller size is unlikely to be optimal and does not
give a clear insight into the reservoir dynamics [30]. The
only way, as demonstrated in this paper, to determine the best
approximation with a smaller reservoir size is by initializing
more than one layer of reservoir inside an ESM.

Proposition 1 Assume a sigmoid network at each layer
with unit output function fi =tanh. (a) Let the internal
weight matrix Winternal and external weight matrix Wexternal
satisfy γmax = ∧ < 1, its largest singular value. Then

d(T (x1,u), T (x
′

1,u) + ...d(T (xN ,xN−1), T (x
′

N ,xN−1) <
∧d(x1,x

′

1) +d(xN ,x
′

N−1) for all states (x1,x
′

1) to

(xN ,x
′

N)ǫ [−1, 1]
N

. (b) Let the internal and external weight
matrix at each layer have a spectral radius |λmax| > 1,
where λmax is an eigenvalue of internal and external weight
matrix with the largest absolute value. Then the network has
an asymptotically unstable null state from 1 to N layers of an
ESM.

Proof “(a)”:

d(T ((x1,u) +(xN ,xN−1), T ((x
′

1,u) +

...(x
′

N ,xN−1)) = d(f(Winu+

Wx1) +f(WexxN−1 +WxN),

f(Winu+Wx
′

) +f(WexxN−1 +Wx
′

N))

≤ d(Winu+

Wx1) +WexxN−1 +WxN ,

Winu+Wx
′

+WexxN−1 +Wx
′

N)

= d(Wx1,Wx
′

1 +WxN ,Wx
′

N)

= ||W((x1 + ...xN))− ((x1 + ...xN))||

≤ ∧d(x1 + ...xN ,x
′

1 + ...x
′

N)

i.e., the distance between two states (x1....xN ,x
′

1....x
′

N)
shrinks by a factor ∧ < 1 at every step, regardless of the
input.

“(b)”: The null state input sequence along all the layers
0̄−∞ǫU−N is compatible with the null state sequence 0̄−∞.
But if |λmax > 1| then the null state is not asymptotically
stable. This implies the existence of another state sequence
compatible with the null input sequence, which results in the
violation of echo state property along each layer.

Proposition 2 Assume standard compactness conditions
and a multiple layer network without output feedback. Assume
that T is continuous in state and input from first to last layer.
Then the properties of being state contracting, state forgetting
and input forgetting are all equivalent to the multiple layer
network having echo states along each layer.

Proof:

“state contracting ⇒ echo state”: Assume that the ML-
ESM has no echo states along multiple layers, i.e.

∃(x1,x
′

1) +(xN ,x
′

N))ǫD+,

d((x1,x
′

1) + ...(xN ,x
′

N)) > 2ǫ > 0, (14)

where D+ is the set of all identical pairs

(x1,x
′

1)....(xN ,x
′

N) compatible with some input sequences.
This implies that there exists a strictly growing sequence
(hi)i≥0ǫN

N , finite input sequences along each layer

(uhi

i)i≥0....(x
hi

(N−1)i)i≥0,

state
((x1i,x

′

1i).....(xNi,x
′

Ni)), (15)

such that

d((T (x1i, ū
hi

i)....T (xNi, x̄
hi

N−1)), (x1...xN)) < ǫ

and

d((T (x
′

1i, ū
hi

i)....T (x
′

Ni, x̄
hi

N−1)), (x
′

1...x
′

N)) < ǫ. (16)

“state contracting⇒ state forgetting”: Assume the multiple
layer network is not state forgetting. This implies that there
exists a left-infinite input sequence ū−∞, a strictly growing

index sequence (hi)i≥0, states (x1i,x
′

1i.....xNi,x
′

Ni), and
some ǫ > 0, such that

∀i : d(T (x1i, ū
+∞[−hi],,

xNi, x̄
+∞
Ni−1[−hi]), T (x

′

1i, ū
+∞[−hi]

,,x
′

Ni, x̄
+∞
Ni−1[−hi])) > ǫ, (17)

where +∞[−hi] denotes the suffix of length hi.

”input forgetting ⇒ echo state”: Assume that the mul-
tiple layer network does not have the echo state prop-
erty. Then there exist an input sequence from 1 to N-1

layer ū−∞,, x̄−∞
N−1, states (x1,x

′

1)....(xN−1,x
′

N−1) end-

compatible with (ū−∞....x̄−∞
N−1) > 0; which leads to a

contradiction to input forgetting.

III. EXPERIMENTS

In this section, we provide a thorough experimental evalua-
tion of the ML-ESM Model, considering; 1) Mackey-Glass Se-
ries dataset, which provides the most classical benchmark task
for time series modeling; 2) Henon map, which is a discrete-
time dynamical system exhibiting characteristic chaotic be-
havior; (3) NARMA sequence which generates a sequence
using a non-linear auto-regressive moving average (NARMA)
model; (4) an artificially generated figure 8 dataset with the
points of the figure moving around very quickly, and each
cycle comprising only a few points; (5) robust evaluation
of the proposed method compared with standard benchmark
techniques on 15 classification problems (see Table VI); (6)
Reuter-21578, a popular dataset mostly used for evaluating text
mining algorithms; and (7) Finally predicting human motion
using the Carnegie Melon University (CMU) MoCap dataset
[31]. In all experimental evaluations, we consider reservoirs
comprising analog neurons, with tanh transfer functions. To
demonstrate the advantages of the proposed ML-ESM, we
also evaluate linear-regression based ESNs, ridge regression-
based ESNs, and support vector echo state machine (SVESM)
models with ǫ−insensitive loss functions [10], using the same
reservoirs as the evaluated ML-ESM model.

Our source codes were developed in MATLAB, and made
partial use of the RC Toolbox [22]. The implementation of the
SVESM method was based on the library of SVM of [32],
written in C, hence providing a computationally more efficient
implementation in comparison to the rest of the evaluated
methods. Therefore, the execution times of the evaluated
algorithm are not fully comparable. Our experiments were
executed on a Intel (R) Core (TM) i7 CPU 3770 @ 3.40 GHz
3.40 GHz machine with 16.0 GB of RAM. Table I summarizes
the configuration details of the employed reservoirs in the
considered experiments.

In our experiments, the weights of the input u(t), stored
in the matrix Win, the reservoir weight matrix W and
the external reservoir weight matrix Wex in terms of ML-
ESM, are drawn randomly with a uniform distribution over (-
0.1,0.1). The results provided in the remainder of this section
are averaged over 5 different random reservoir initializations.
Finally, training of all ESN-based methods was conducted
using fivefold cross-validation.

A. Mackey-Glass Series

The Mackey-Glass delay differential equation has pro-
vided classical benchmark tasks for time series modeling. The
Mackey-Glass delay differential equation in a discrete time
setting is approximated as follows:

y(t+ 1) = y(t) + δ

(

0.2
y(t− τ/δ)

1 + y(t− τ/δ

10

− 0.1y(t)

)

(18)

where the stepsize δ typically set to δ = 1/10 [20], [23].
The resulting time-series is later rescaled into the range [−1, 1]
by application of a tangent-hyperbolic transform yESN (t) =
tanh(y(t)−1), so that it can be used to train ESNs with tanh
activation function in the reservoir. The system behave chaotic
for values of the delay time τ < 16.8.

The training sequence for our experiment was generated
from equation (18) with a delay time τ = 17, similar to
[20] and [9]. The single and multiple layer ESN-based models
were trained using a signal comprising 6000 time points, and
the initial transient was washed out by employing a reservoir
warm-up time of 100 steps. Subsequently, evaluation of single
and multiple layer ESN-based models were conducted by
simulating the trained models using a new time series of
250 samples, with a reservoir warm-up time of 100 time
steps. We compare the performance of the considered models
by calculating the obtained normalized absolute error (NAE)
on a specific prediction horizon using the simulated network
outputs. The NAE on a t-step prediction horizon reads as

NAEt =

√

1

s2
(y((warmup + t)− ỹ(warmup + t))2 (19)

where s2 is the empirical variance of the actual target
signal. Prediction on a t-step horizon in all the evaluated
models was conducted by iteratively applying the predictor
t times in a generative mode, where on each step it takes its
own most recent prediction to compute the next prediction.

We consider a commonplace selection for the Mackey-
Glass system prediction horizon, i.e., prediction 84 and 120
steps after the washout time elapses [20]. The obtained results
are provided in Table II and Figure 2. These results are
produced by calculating the mean and standard deviation of the
obtained performance metrics over 50 test sequences (where
execution of each test sequence includes first training of 6000
time points, with initial transient of 100 steps washed out,
testing of 250 time points with a reservoir warm-up time of
100 time steps followed by a prediction horizon of 84, 120
upto 150 time steps). We observe that ML-ESM with linear
and ridge-regression outperformed the considered alternatives,
by producing much lower NAE84, NAE120 and 〈NAEt〉 (mean
NAEt) values. We also find that the performance of the
SVESM is worse than the performance of the rest of the
considered methods. Another comment we would like to
make is the overwhelming computational cost of the SVESM
method. The SVESM method required more than 2.99993
x 103 seconds to execute only 50 test sequences for each
prediction horizon (84, 120, 150) of the estimation algorithm.

Figure 3 further shows the comparison of single layer ESN
with the proposed ML-ESM over 150 prediction time points
of 50 test sequences. Figure 3 (a) demonstrates the results
by using the linear regression technique whereas Figure 3 (b)
shows results by using the ridge regression technique. It can
be seen clearly in both Figure 3 (a) and (b) that adding layers
in the beginning further lowers the NAE at each time step and
then gradually increases with very little difference. This clearly
shows that the behaviour of ML-ESM with the Mackey dataset
maximally minimizes the error by adding only two layers to
the network, over 150 prediction time points.

Finally, to provide a better insight into how the proposed
ML-ESM method compares with its alternatives in regards to
the imposed computational burden, we would like to highlight
that as part of our optimized MATLAB implementation, the
ridge regression-based ML-ESM required roughly 73 seconds,
which is close to the ridge regression-based ESN which

TABLE I: Configuration of Reservoirs in our Experiments
Parameter Mackey-Glass Henon map Figure 8 NARMA SEQUENCE 15 Benchmark datasets Reuter-21578 MoCap Video Dataset

Reservoir neurons 400 100 1000 100 1000 1000 100

Spectral radius 0.99 0.99 0.998 1.25 1.25 1.25 0.998

Reservoir connectivity 0.1 0.1 0.2 0.1 0.1 0.1 0.1

Warm-up time (model training) 100 100 0 0 0 0 0

Warm-up time (model evaluation) 100 100 0 0 0 0 0

γ 0.5 0.5 0.3 0.3 0.5 0.5 0.5

Number of Multiple Layers (ML-ESM) 2 2 2 2 2 2 2

required 65 seconds to execute only a 50 test sequence for each
prediction horizon (84, 120, 150). This shows that the compu-
tational time required by the ML-ESM is far better than the
SVESM (2.99993 x 103) and when compared with the single
layer ESN, offers a very good trade-off between computational
complexity and sequential data modeling performance.

B. Figure 8 Dataset

In this experiment, we evaluate the effectiveness of our
ML-ESM model in learning complex sequential patterns. For
this purpose, we consider an artificially generated figure 8
dataset with the points of the figure moving around very
quickly, and each cycle comprising only a few points. To
obtain this signal, we use the artificially created function
figure8 dataset which generates figure 8, whose circles are
centered at (384,302) and (384,722), with a radius of 210 and
a channel width of 79 i.e. 1.5 cm.

The evaluated model was trained using a sequence of 600
data points from the figure 8 trajectory, and no reservoir warm
up was employed. On the sequel the trained models were
evaluated over 600 time steps. In Figure 4, we provide the
trajectories produced by the evaluated methods. As can be
observed, the ML-ESM using both linear and ridge regression
technique works considerably better than the SVESM and the
linear regression based ESN, and slightly better than the ridge-
regression-based ESN. Specifically the ridge-regression-based
ESN yields a normalized root mean square error (NRMSE)
equal to 0.0085, whereas the ML-ESM using ridge-regression
technique yields an NRMSE equal to 0.00002588.

C. Henon map

In this subsection, we consider another typical benchmark
in the field of RNNs, the Henon map chaotic process [33]. It
is a discrete-time dynamical system exhibiting a characteristic
chaotic behavior. Henon map receives as input a 2-D point
y(t) = [y1, y2], and maps it to a new point y(t+1) = [y1(t+
1), y2(t+ 1)] on the 2-D plane, given by

y1(t+ 1) = y2(t) + 1− αy21(t) (20)

y2(t+ 1) = βy1(t) (21)

where α = 1.4 and β = 0.3. The starting point of the
Henon map considered in our experiment is y(0) = 0.

In our experiments, the analyzed ESN-based models, were
trained using the first 1000 samples of the Henon map. The ini-
tial transient was washed out by employing a reservoir warm-
up time of 100 steps. Afterwards, evaluation was conducted by
using the trained models to generate the next 2000 samples of

the Henon map, with the employed reservoirs being teacher-
driven for the first 100 time points. The performance of the
analyzed models in terms of the obtained NAE84, NAE120,
NAE400 and 〈NAEt〉 metrics is depicted in Table III.

As can be observed, the ML-ESM model using both ridge
and linear regression techniques, performs better than the
considered alternatives. This is attributed to the externally
connected structures temporally creating a long term memory
cycle. This led to a reduction in the error compared to state-of-
the art time series learning approaches. It is worth noting that
the SVESM is the worst performing method in this experiment.

D. NARMA Sequence

In this subsection, we consider a sequence of a non-
linear autoregressive moving average (NARMA) model. The
sequence at the beginning includes a ramp-up transient. The
output of the NARMA sequence model depends on past and
present values of the input as well as the output.

yi = f(yi−1, ..., yi−My
, xi, ..., xi−Mx

) + ηi (22)

where yi, xi and ηi are the the output, input and noise
respectively. Mx denote the output and input memory orders.

The NARMA sequence non-linear autoregressive moving
average equation is approximated as

xi = a ∗ xi−Mx
+ b+ (1− yi−1) ∗ yi−1 (23)

where input sequence x is an array of size equivalent to
twice the sequence length. Output sequence yi is an array
of size equivalent to the sequence length. The length of the
sequence in our experiment was 1000. The constant variable
a and b were initialized with 0.7 and 0.1 respectively, which
were used to generate a linear sequence. The NRMSE and
MSE of the ESN based models are shown in Table IV. Again
the ML-ESM with linear and ridge-regression techniques out-
performed the standard linear and ridge-regression based ESN
as well as the SVESM model.

Figure 5 further shows the comparison of single layer ESN
with the proposed ML-ESM using the same range of data
samples. The left side of Figure 5 shows the results obtained
by using the linear regression technique whereas the right side
demonstrate the results obtained using ridge regression. It can
be clearly seen in the both the sub figures (on left and right)
in Figure 5 that the error first maximally decreases by using
2-layers with the proposed ML-ESM, in comparison to the
single layer ESN; and then remains steady in the following
layers, from three to five, with a slight and steady increase on
addition of each layer. It can be clearly seen in Table IV and

Time
(a)

0 50 100 150

N
A

E

×10-4

1

2

3

4

5

6

7

8

9

10

Time
(b)

0 50 100 150

N
A

E

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Time
(c)

0 50 100 150

N
A

E

×10-5

0

0.5

1

1.5

2

2.5

3

Time
(d)

0 50 100 150

N
A

E

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time
(e)

0 50 100 150

N
A

E

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Fig. 2: Mackey-Glass series: NAE values over 150 prediction time points of the evaluated model. (a) Linear Regression ESN. (b) Ridge
Regression ESN. (c) Multiple Layer Linear Regression ESN. (d) Multiple Layer Ridge Regression ESN. (e) SVESM (Support Vector Echo
State Machine)

Time
0 50 100 150

N
A

E

×10-4

1

2

3

4

5

6

7

8

9

10

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Time
0 50 100 150

N
A

E

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Fig. 3: Mackey-Glass series: NAE values over 150 prediction time points of the evaluated model. (a) Comparison of Single Layer ESN with
Multiple Layer (2-5) ESN using Linear Regression technique (b) Comparison of Single Layer ESN with Multiple Layer (2-5) ESN using Ridge
Regression technique.

TABLE II: Mackey-Glass Series: Performance of the Evaluated Models
Model Linear-Regression-based ESN Ridge-Regression-based ESN Linear-Regression-based ML-ESM Ridge-Regression-based ML-ESM SVESM

NAE84 1.1031 x 10−05 (7.7998 x 10−05) 0.0107 (0.0755) 5.2633 x 10−06 (3.7217 x 10−05 0.00105 (0.00752) 0.0643 (0.0077)

NAE120 3.0737 x 10−04 (4.7874 x 10−05 0.0063 (0.0444) 2.6713 x 10−06 (1.8889 x 10−05) 0.0021 (0.0323) 0.0746 (0.0197)

NAEt 1.592005 x 10−04 0.0085 3.9673 x 10−06 0.001575 0.06945

(a)
-2 0 2 4 6 8 10 12 14 16 18

-10

-5

0

5

10

15

20

25

(b)
-10 -5 0 5 10 15 20

-10

-5

0

5

10

15

20

25

(c)
-2 0 2 4 6 8 10 12 14 16 18

-10

-5

0

5

10

15

20

25

(d)
-2 0 2 4 6 8 10 12 14 16 18

-10

-5

0

5

10

15

20

25

(e)
-2 0 2 4 6 8 10 12 14 16 18

-10

-5

0

5

10

15

20

25

(e)
-5 0 5 10 15 20

-5

0

5

10

15

20

25

30

Fig. 4: Figure 8 dataset. (a) Original time series. (b) Reconstruction obtained by the ESN using linear regression. (c) Reconstruction obtained
by the ESN using ridge regression. (d) Reconstruction obtained by the multiple layer ESN using linear regression. (e) Reconstruction obtained
by the multiple layer ESN using ridge regression. (f) Reconstruction obtained by the SVESM (Support Vector Echo State Machine.)

TABLE III: Henon Map: Performance of The Evaluated Models
Model Linear-Regression-based ESN Ridge-Regression-based ESN Linear-Regression-based ML-ESM Ridge-Regression-based ML-ESM SVESM

NAE84 0.7536 0.7489 0.7477 0.7661 2.6469

NAE120 0.7552 0.7432 0.7481 0.7655 1.3432

NAE400 0.7813 0.7629 0.7466 0.7465 1.5134

〈NAE〉t 0.7633 0.7516 0.7474 0.7593 1.8345

Figure 5 that the ML-ESM produced best results with two and
three layers where it significantly outperformed the standard
ESN using both linear and ridge regression techniques. The
SVESM model, like with the henon map dataset in section
III-C, did not perform well with this NARMA sequence too.
This is basically due to the poor prediction performance of the
SVESM method at some time points, which adversely affects
the average method performance.

E. 15 benchmark classification problems

In this subsection, the 15 multivariate benchmark datasets
are considered from UCI machine Learning repositories [34]
and the [35]. The performance of all the methods including the
ML-ESM and other state of the art recurrent neural network
based time series learning approaches were encouraging. This
is due to the time series learning nature of the proposed

method and other state-of-the-art approaches which proved
more useful in other time series chaotic predictive tasks, as
demonstrated earlier in this paper. The proposed ML-ESM
using both linear and ridge regression was still found to
outperform other benchmark techniques. This occurred due
to the externally connected transition structures sequentially
creating a long term memory cycle, which further helped in
reducing the error compared to standard state-of-the-art time
series learning approaches.

F. Reuters-21578 Textual Corpus

Reuter-21578 [36] is a popular dataset mostly used for
evaluating text mining algorithms. Due to the consistency of
concepts and the connected component nature of this corpus
[37] we have selected this corpus for evaluating the strength
of the proposed methods in comparison to state- of-the-art.

TABLE IV: NARMA SEQUENCE: NRMSE and MSE of The Evaluated Models
Error Linear-Regression-based ESN Ridge-Regression-based ESN Linear-Regression-based ML-ESM Ridge-Regression-based ML-ESM SVESM

NRMSE 6.6819 x e−10 0.0278 7.2090 x e−13 0.0212 2.6469

MSE 7.4175 x e−23 1.2865 x e−07 8.6339 x e−29 7.4626 x e−08 0.00069423

TABLE V: Human Motion Modeling: Testing Dataset NRMSE
Video Linear-Regression-based ESN Ridge-Regression-based ESN Linear-Regression-based ML-ESM Ridge-Regression-based ML-ESM SVESM

35 02 0.0743 0.0894 0.0739 0.0892 0.0873

02 03 0.0322 0.0322 0.0312 0.0321 0.03432

16 21 0.1538 0.1424 0.1416 0.1536 0.1534

02 06 0.0370 0.0372 0.0370 0.0372 0.0387

02 10 0.0360 0.0362 0.0360 0.0362 0.08345

05 02 0.0521 0.0596 0.0512 0.0595 0.09321

03 01 0.0910 0.0912 0.0400 0.0401 0.05345

06 01 0.1159 0.1289 0.1145 0.1287 0.1843

Layers
1 1.5 2 2.5 3 3.5 4 4.5 5

N
R

M
S

E

×10-10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Multiple Layer ESN using Linear Regression

Layers
1 1.5 2 2.5 3 3.5 4 4.5 5

N
R

M
S

E

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Multiple Layer ESN using Ridge Regression

Fig. 5: NARMA Sequence: NRMSE of the evaluated model. LEFT: Comparison of Single Layer ESN with Multiple Layer (2-5) ESN using
Linear Regression technique. RIGHT: Comparison of Single Layer ESN with Multiple Layer (2-5) ESN using Ridge Regression technique.

TABLE VI: Specification of 15 Benchmark Datasets

Number Datasets # features # Train # Test

1 Connect-4 42 50000 17557

2 banknote authentication 5 1000 372

3 EEG 4 10000 200

4 Breast Cancer 32 300 260

5 Hill-Valley 101 606 606

6 segmentation 19 2000 310

7 Page Blocks 10 3000 2473

8 Ecoli 8 200 136

9 Pima Indian Diabetes 8 500 268

10 MNIST Digit 784 60000 10000

11 Yeast 8 1400 484

Liver Disorders 7 200 145

12 Poker Hand 11 25010 10000

13 Abalone 8 2088 2089

14 SPECT Heart 22 80 187

15 STATLOG (Heart) 13 200 187

The Reuters corpus contains 21578 documents grouped
into 135 clusters. It is very unbalanced, with some large
clusters more than 300 times larger than some of the smaller
ones. We have considered the ModeApte version of this corpus
which discards documents with multiple category labels, and
only selects the categories with more than 10 documents. This
left 8123 documents in a total of 65 categories.

We followed the ModeApte split of training and testing
documents which provides 5946 training documents and 2347

testing documents. Overall after preprocessing, this corpus
contained 18933 distinct terms. The normalized absolute error
obtained on the testing dataset, using the SVESM, the state-
of-the-art ESN based techniques and the proposed ML-ESM
(using both linear and ridge regression) are shown in Table
VIII. Further, since the weight matrices of the ML-ESM are
normally initialized randomly, to test their effect on the output
we initialized the weight matrices including the input weight
matrix, internal weight matrices within each reservoir, and
external weight matrices between the reservoirs of each layer
with different spectral radii. The spectral radius of the weight
matrices codetermines (i) the effective time constant of the
ML-ESM (larger spectral radius implies slower decay of im-
pulse response) and (ii) the amount of nonlinear interaction of
input components through time (larger spectral radius implies
longer range interactions). The gradual effect on NAE due to
the change in spectral radius of the weight matrices and the
number of reservoir layers is demonstrated in Figure 6.

Figure 6 (a) shows the output of ML-ESM using linear
regression and Figure 6 (d) shows the output using the ridge
regression technique. Firstly it is observed that while using the
linear regression technique, the use of a small number of layers
with a gradual increase in spectral radius slightly increases the
error. On the other hand, using the ridge regression technique
decreases the error with a small number of layers and a gradual
increase in the spectral radius. This implies that, particularly

TABLE VII: Performance Comparison of Recurrent Neural Network Based Learning Techniques: Mean: Normalized Absolute Error, STD:
Standard Deviation

Datasets Features
Echo State Network

(Linear Regression)

Echo State Network

(Ridge Regression)
SVESM

Multiple Layer ESN

(Linear Regression)

Multiple Layer ESN

(Ridge Regression)

MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

Connect-4 43 0.7790 0.0019 0.7552 0.0138 0.8412 0.0013 0.5916 0.0063 0.5797 0.0222

banknote authentication 5 0.7293 8.9443 x e−05 0.2664 0.0023 0.7145 0.0054 0.6845 0.0022 0.1706 3.0822 x e
−04

EEG 4 0.7788 0.0063 0.7816 4.4721 x e−05 0.7315 0.0143 0.7383 2.1679 x e
−04 0.7674 1.3416 x e

−04

Breast Cancer 32 0.1732 0.0163 0.1804 1.3416 x e
−04 0.9528 0.00034 0.1805 8.9443 x e−05 0.1805 2.8636 x e−04

Hill Valley 101 0.4141 0.0089 0.1085 0.0045 0.5456 0.0017 0.5554 0.0089 0.0849 0.0044

segmentation 19 0.5689 0.0295 0.2663 0.0363 0.0266 0.0013 0.2197 0.0055 0.1353 0.0045

Page Blocks 10 0.1610 0.0084 0.2887 0.0046 0.2643 0.0021 0.1597 0.0035 0.2064 0.0085

Ecoli 8 0.3284 0.0084 0.1666 0.00075 0.0057 0.0045 0.3124 0.00034 0.0942 1.24 x e−05

Pima Indian Diabetes 8 0.7053 0.0024 0.5802 0.00012 0.4652 0.0012 0.5162 0.0023 0.4850 0.0087

MNIST Digit 784 0.4557 0.0013 0.4554 0.00062 0.4333 0.0026 0.4296 0.0152 0.4132 0.0143

Yeast 8 0.1476 0.0023 0.4942 0.01022 0.4496 0.0014 0.1366 0.0352 0.2232 0.0324

Liver Disorders 7 0.6873 0.00015 0.5774 0.01457 0.5658 0.0116 0.5343 0.0642 0.5254 0.00165

Abalone 8 0.5787 2.34 x e−05 0.9103 0.001254 0.9874 0.0147 0.4659 0.0173 0.9099 0.0123

SPECT Heart 22 0.8015 0.0415 0.7911 0.034221 0.8346 0.0075 0.7808 0.0144 0.7826 0.0453

Statlog (Heart) 13 0.5224 0.09415 0.3072 0.00024221 0.3355 0.0758 0.4836 0.0924 0.2151 0.06433

on this dataset, longer range interactions between the input
components, specifically while using linear regression, do not
prove useful in improving the performance of the ML-ESM.
Further, using both linear and ridge regression techniques, with
an increase in the number of layers and a gradual decrease
in the spectral radius of the weight matrices, significantly
decreases the error in the beginning, whereas the difference
became smaller, eventually reaching a constant.

Secondly, Figures 6 (b) and (e) show the output error of the
ML-ESM using linear and ridge regression techniques. This
time, the effect on error is observed by varying the number
of neurons inside each reservoir and the number of layers of
the proposed method. The spectral radius is held fixed (equal
to 1.25) throughout the experiment for both the techniques.
Firstly, it is observed that for both linear and ridge regression
techniques, fewer number of neurons inside each reservoir
produce a smaller error using multiple layers of the reservoir
inside an ESM. Secondly, the highest variation in error from
low to high, is observed using two layers inside the ML-ESM.
The variation of error is observed to be much greater in linear
regression compared to the ridge regression technique. Lastly,
for both the techniques, the higher the number of neurons
inside each reservoir, the larger the error produced, with a
smaller number of layers leading to a higher error than a larger
number of layers.

Thirdly, Figure 6 (c) and (f) shows the output for both
ML-ESM, using linear and ridge regression techniques. In
these two sub figures, the effect on the error is analyzed
by sequentially changing the number of neurons inside each
reservoir and the spectral radius of the weight matrices. It
can again be clearly seen in these two sub figures, that a

higher number of neurons inside each reservoir increases the
error compared to when fewer number of neurons are used.
The proposed method with ridge regression came out, overall,
slightly better compared to the other. Further this implies
that multiple layers of the proposed method produce the best
approximation with fewer number of neurons inside each
reservoir, compared to the standard state-of-the-art which is
normally observed to work better with a larger number of
neurons.

Finally after comparing both the linear and ridge regression
outputs with the proposed method, in all the sub figures of
Figure 6; in this particular dataset, the additional smoothing
capability and employment of regularization in ridge regression
came out as a comparatively better performer in comparison
to the linear regression technique.

In accordance with the configurations of Table I, for this
dataset, the comparison of the proposed ML-ESM with the
state-of-the-art ESN using both linear and ridge regression
techniques, and the SVESM method is also demonstrated.
Here too, the ML-ESM outperformed the standard ESN by
improving the predicted accuracy and reducing the error.
SVESM’s performance in this particular experiment, as shown
in Table VIII, was not bad but it was computationally very
expensive in comparison to the other ESN based approaches.

G. MoCap Human Motion Modeling

In this experiment, we trained the evaluated method using
four walking sequences, a running sequence, a bending se-
quence, a washing and dancing sequence respectively, from the
Carnegie Melon University (CMU) MoCap dataset [31]. The
considered training sequence, corresponding to five different

TABLE VIII: Reuter-21578: Mean: NAE and Standard Deviation (Std): NAE of The Evaluated Models
Error Linear-Regression-based ESN Ridge-Regression-based ESN Linear-Regression-based ML-ESM Ridge-Regression-based ML-ESM SVESM

Mean 0.5474 0.5384 0.5144 0.5066 0.8653

Standard Deviation 0.7254 0.7159 0.7049 0.6928 0.6234

10
9

8

Multiple Layer Echo State Machine (Linear Regression)

7
6

Layers

5
4

3
20.5

0.6
0.7

0.8

Spectral Radius

0.9
1

1.1
1.2

1.3
1.4

0.55

0.5

0.35

0.45

0.4

1.5

N
o

rm
a

li
z
e

d
 A

b
s

o
lu

te
 E

rr
o

r

(a)

10
9

8
7

Multiple Layer Echo State Machine (Linear Regression)

6

Layers

5
4

3
2

500
600

700

Neurons

800
900

1000
1100

1200
1300

0.5

0.54

0.49

0.48

0.53

0.52

0.51

1400

N
o

rm
a

li
z
e

d
 A

b
s

o
lu

te
 E

rr
o

r
(b)

1.5
1.4

1.3
1.2

1.1

Spectral Radius

Multiple Layer Echo State Machine (Linear Regression)

1
0.9

0.8
0.7

0.6
0.5400

500
600

700

Neurons

800
900

1000
1100

1200
1300

0.55

0.5

0.45

0.4

0.35

0.3
1400

N
o

rm
a

li
z
e

d
 A

b
s

o
lu

te
 E

rr
o

r

(c)

10
9

8

Multiple Layer Echo State Machine (Ridge Regression)

7
6

Layers

5
4

3
20.5

0.6
0.7

0.8

Spectral Radius

0.9
1

1.1
1.2

1.3
1.4

0.4

0.5

1.5

N
o

rm
a

li
z
e

d
 A

b
s

o
lu

te
 E

rr
o

r

(d)

10
9

8
7

Multiple Layer Echo State Machine (Ridge Regression)

6

Layers

5
4

3
2

500
600

700

Neurons

800
900

1000
1100

1200
1300

0.51

0.52

0.53

0.54

0.5

0.47

0.48

0.49

1400

N
o

rm
a

li
z
e

d
 A

b
s

o
lu

te
 E

rr
o

r

(e)

1.5
1.4

1.3
1.2

1.1

Spectral Radius

Multiple Layer Echo State Machine (Ridge Regression)

1
0.9

0.8
0.7

0.6
0.5400

600

Neurons

800

1000

1200

0.3

0.5

0.45

0.4

0.35

1400

N
o

rm
a

li
z
e

d
 A

b
s

o
lu

te
 E

rr
o

r
(f)

Fig. 6: Top:(Left, Middle, Right): Multiple Layer Echo State Network using Linear Regression, Bottom:(Left, Middle, Right): Multiple Layer
Echo State Network using ridge regression

subjects, were obtained from the CMU database files: 35 02,
02 03, 16 21, 02 06, 02 10, 05 02, 03 01 and 06 01. In the
sequel, we used fifty percent of each considered video as a
training set of the evaluated algorithms, and the remaining fifty
percent as the testing set. In Table V, we provide the NRMSEs
obtained for each considered method. Similarly in Figures 11
and 15 we illustrate the selected frame from the testing dataset
of each considered video to show the difference between the
actual testing frame and the predicted frame using linear and
ridge regression with the proposed ML-ESM. It can be clearly
seen from Figures 11 and 15 that the two right columns,
which show the predicted output of ML-ESM using both
linear and ridge regression technique, predict human motion
almost correctly compared with the actual frame with a slight
vibration/noise seen on the moving part, and the remaining part
very clearly visible. The NRMSE shown in Table V clearly
reflect the predicted output of frames visualized in Figure
11 and 15. This enables us to conclude that adding another
layer in ML-ESM leads to comparatively better predictions
compared to those of the SVESM and the single layer ESN,
for the case of both linear and ridge regression techniques.
Further we tested the performance of our proposed ML-ESM
method using 2-5 layers, and compared results with the single
layer ESN, using both linear and ridge regression techniques,
as shown in Figure 7. The left subfigure in Figure 7 shows

the output using linear regression whereas the right-sub-figure
shows the output using the ridge regression technique. As can
be seen, there is always a slight decrease in error by adding
more than one layer, compared with the single layer ESN, in
every video file. The decrease mostly occurs with the addition
of 2 or 3 layers, whereas with additional layers, the error is
seen to be relatively unchanged. It is also useful to note that
that running these experiments took around 45 seconds for
the ML-ESM, and over an hour for the case of the SVESM,
which further demonstrated the superiority of the ML-ESM
for this challenging real-time human motion-based modeling
application.

IV. CONCLUSIONS

In this paper we proposed a novel ML-ESM model for
sequential data. A detailed theoretical analysis has been carried
out, and a number of widely used time series benchmarks
of different characteristics and origins, have been used to
demonstrate:

1) The addition of multiple layers of reservoir provide
a more robust alternative to conventional reservoir
computing networks.

2) A multiple layers connected cyclic topology is often
sufficient for obtaining better performance compara-

Layers
1 2 3 4 5

N
R

M
S

E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

35-02
02-03
16-21
02-06
02-10
05-02
03-01
06-01

Layers
1 2 3 4 5

N
R

M
S

E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

35-02
02-03
16-21
02-06
02-10
05-02
03-01
06-01

Fig. 7: MoCap Video Dataset: NRMSE of the evaluated model. LEFT: Comparison of Single Layer ESN vs Multiple-Layered (2-5) ESN using
Linear Regression technique. RIGHT: Comparison of Single Layer ESN with Multiple-Layered (2-5) ESN using Ridge Regression technique.

ble to those of simple standard cyclic topology.
3) A competitive multiple layer cyclic reservoir network

can be constructed in a fully deterministic manner.
4) The state forgetting, state contracting and input for-

getting properties are all equivalent to the multiple
layer network, having an echo state property in each
layer.

5) The null state input sequence along all the layers
of the ML-ESM is compatible with the null state
sequence.

Additionally, with respect to state-of-the-art single layer
ESN methodologies for sequential data modeling, we found
that our method is overwhelmingly more accurate in terms of
reducing the error and computational competitiveness. Simi-
larly with respect to conventional SVM based ESN method-
ologies, such as SVESM [10], our proposed method was again
found to be computationally more efficient, especially in cases
where large data corpora were required to be processed.

A a number of open issues relating to the ML-ESM that
we aim to address in the near future include; (1) carrying
out a more detailed theoretical and comparative experimental
evaluation of the proposed model against other state-of-the-
art approaches, using different kinds of reservoir kernels and
benchmark datasets; (2) derivation of multi-objective optimiza-
tion criteria that can help select the appropriate number of
layers, number of neurons in each reservoir, learning and
adaptation parameters for a particular task; (3) adaptation of
the multiple layer reservoir network in an unsupervised fashion
for appropriate tasks and evaluating the role of topological
organization of reservoirs within the ML-ESM.

V. ACKNOWLEDGEMENT

This work of A. Hussain was supported by the U.K.
Engineering and Physical Sciences Research Council under
Grant EP/I009310/1 and Grant EP/M026981/1. This paper was
recommended by Associate Editor G.-B. Huang

REFERENCES

[1] A. S. Lapedes and R. M. Farber, “How neural nets work,” in Neural

information processing systems, 1988, pp. 442–456.

[2] M. Casdagli, “Nonlinear prediction of chaotic time series,” Physica D:

Nonlinear Phenomena, vol. 35, no. 3, pp. 335–356, 1989.

[3] G.-B. Huang, “An insight into extreme learning machines: random
neurons, random features and kernels,” Cognitive Computation, vol. 6,
no. 3, pp. 376–390, 2014.

[4] M. Van Heeswijk, Y. Miche, T. Lindh-Knuutila, P. A. Hilbers,
T. Honkela, E. Oja, and A. Lendasse, “Adaptive ensemble models
of extreme learning machines for time series prediction,” in Artificial

Neural Networks–ICANN 2009. Springer, 2009, pp. 305–314.

[5] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised
feature learning and deep learning for time-series modeling,” Pattern

Recognition Letters, vol. 42, pp. 11–24, 2014.

[6] E. A. Wan, “Time series prediction by using a connectionist network
with internal delay lines,” in SANTA FE INSTITUTE STUDIES IN THE

SCIENCES OF COMPLEXITY-PROCEEDINGS VOLUME-, vol. 15.
ADDISON-WESLEY PUBLISHING CO, 1993, pp. 195–195.

[7] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[8] J. Vesanto, “Using the som and local models in time-series prediction,”
in Proc. Workshop on Self-Organizing Maps 1997. Citeseer, 1997, pp.
209–214.

[9] S. P. Chatzis and Y. Demiris, “Echo state gaussian process,” Neural

Networks, IEEE Transactions on, vol. 22, no. 9, pp. 1435–1445, 2011.

[10] Z. Shi and M. Han, “Support vector echo-state machine for chaotic time-
series prediction,” Neural Networks, IEEE Transactions on, vol. 18,
no. 2, pp. 359–372, 2007.

[11] J. Prı́ncipe and J.-M. Kuo, “Dynamic modelling of chaotic time series
with neural networks,” Advances in neural information processing

systems, pp. 311–318, 1995.

[12] J. Zhang, K. Tang, and K. Man, “Recurrent nn model for chaotic time
series prediction,” in Industrial Electronics, Control and Instrumenta-

tion, 1997. IECON 97. 23rd International Conference on, vol. 3. IEEE,
1997, pp. 1108–1112.

[13] M. Han, J. Xi, S. Xu, and F.-L. Yin, “Prediction of chaotic time series
based on the recurrent predictor neural network,” Signal Processing,

IEEE Transactions on, vol. 52, no. 12, pp. 3409–3416, 2004.

[14] A. Rodan and P. Tiňo, “Minimum complexity echo state network,”
Neural Networks, IEEE Transactions on, vol. 22, no. 1, pp. 131–144,
2011.

[15] Z. K. Malik, A. Hussain, and J. Wu, “Novel biologically inspired
approaches to extracting online information from temporal data,” Cog-
nitive Computation, vol. 6, no. 3, pp. 595–607, 2014.

[16] Y. Yang, Q. Wu, Y. Wang, Z. K. Malik, X. LIN, and X. Yuan,
“Data partition learning with multiple extreme learning machines,”
Cybernetics, IEEE Transactions on, vol. 45, no. 8, 2014.

[17] Z. K. Malik, A. Hussain, and J. Wu, “An online generalized eigenvalue

version of laplacian eigenmaps for visual big data,” Neurocomputing,

doi:10.1016/j.neucom.2014.12.119, 2015.

[18] Y. Yang, Y. Wang, Q. Wu, X. LIN, and M. Liu, “Progressive learning
machine: A new approach for general hybrid system approximation,”
Neural Networks and Learning System,IEEE Transactions on, vol. 26,
no. 9, pp. 1855–1874, 2014.

[19] Y. Yang and Q.M.J. Wu, “Multilayer Extreme Learning Ma-
chine With Subnetwork Nodes for Representation Learning,” Cy-

bernetics, IEEE Transactions on, vol. PP, no. 99, pp. 1–14,
doi:10.1109/TCYB.2015.2481713, 2015.

[20] H. Jaeger, “The echo state approach to analysing and training recur-
rent neural networks-with an erratum note,” Bonn, Germany: German
National Research Center for Information Technology GMD Technical

Report, vol. 148, p. 34, 2001.

[21] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[22] D. Verstraeten, B. Schrauwen, M. dHaene, and D. Stroobandt, “An
experimental unification of reservoir computing methods,” Neural Net-
works, vol. 20, no. 3, pp. 391–403, 2007.

[23] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.

[24] M. LukošEvičIus and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[25] M. Minsky and S. Papert, “Perceprrons,”Oxford, England, M.I.T Press

1969.

[26] J. Tang, C. Deng, and G.-B. Huang, “Extreme learning machine
for multilayer perceptron,”IEEE transactions on neural networks and
learning systems,vol. 27, no. 4, pp. 809-821, 2016.

[27] S. S. Malalur, M. T. Manry, and P. Jesudhas, “Multiple optimal learning
factors for the multi-layer perceptron,” Neurocomputing, vol. 149, pp.
1490–1501, 2015.

[28] Z. Zhao, S. Xu, B. H. Kang, M. M. J. Kabir, Y. Liu, and R. Wasinger,
“Investigation and improvement of multi-layer perception neural net-
works for credit scoring,” Expert Systems with Applications, vol. 42,
no. 7, pp. 3508–3516, 2015.

[29] D. Koryakin and M. V. Butz, “Reservoir sizes and feedback weights in-
teract non-linearly in echo state networks,” in Artificial Neural Networks

and Machine Learning–ICANN 2012. Springer, 2012, pp. 499–506.

[30] M. C. Ozturk, D. Xu, and J. C. Prı́ncipe, “Analysis and design of echo
state networks,” Neural Computation, vol. 19, no. 1, pp. 111–138, 2007.

[31] M. Muller, T. Roder, M. Clausen, B. Eberhardt, B. Kruger and
A. Weber,“Documentation mocap database hdm05 [online], available:
http://www.ics.uci.edu/ mlearn/mlrepository.html.”, citeseer, 2007

[32] C. Chang and C. Lin, “Libsvm: A library for support vector machines
{Online},” ACM Transactions on Intelligent Systems and Technology

(TIST), vol. 2, no. 3, pp. 27, 2001.

[33] M. Hnon, “A two-dimensional mapping with a strange attractor,”
Comm. Math. Phys., vol. 50, no. 1, pp. 69–77, 1976. [Online].
Available: http://projecteuclid.org/euclid.cmp/1103900150

[34] M. Lichman and K. Bache, “Uci machine learning repository, 2013,”
URL http://archive. ics. uci. edu/ml, University of California, School of

Information and Computer Science, p. 92, 2013.

[35] Y. LeCun and C. Cortes, “Mnist handwritten digit database,” AT&T

Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[36] D. Lewis and others, “Reuters-21578.” URL:davidlewis.com/resources
/testcollection/reuters21578, Test Collections, vol. 1, 1987

[37] D. Cai, X. He, and J. Han, “Locally consistent concept factorization
for document clustering,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 23, no. 6, pp. 902–913, 2011.

Column (a) Column (b) Column (c)

Fig. 11: Column (a) Ground Truth (35 02, 02 03, 16 21, 02 06) Column (b) Predicted Frame (ML-ESM-Linear-Regression). Column (c)
Predicted Frame (ML-ESM-Ridge-Regression)

Column (a) Column (b) Column (c)

Fig. 15: Column (a) Ground Truth (02 10, 05 02, 03 01, 06 01) Column (b) Predicted Frame (ML-ESM-Linear-Regression). Column (c)
Predicted Frame (ML-ESM-Ridge-Regression)

