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Abstract—A compact representation is given of the electric- and Sommerfeld-type integrals (or series, in the case of laterally
magnetic-type dyadic Green’s functions for plane-stratified, mul- - shielded environments) appearing in the potential kernels
tilayered, uniaxial media based on the transmission-line network .\ arge more rapidly and are easier to accelerate than those
analog along the axis normal to the stratification. Furthermore, . . . . .
mixed-potential integral equations are derived within the frame- associated with the field forms that are, in effect, obtained by
work of this transmission-line formalism for arbitrarily shaped,  differentiation of the potentials. This was recognized early on
conducting or penetrable objects embedded in the multilayered by Mosig and Gardiol [38]-[40], who derived and successfully
medium. The development emphasizes laterally unbounded envi- applied an MPIE for planar microstrip structures on a grounded
;O?Q:?;;Sg’u?;t :rﬂe?gt?snzgg ticr)]ctltzzgg.se of a medium enclosed byg\ptrate. This MPIE could not easily be extended tp gen-

eral nonplanar conductors, because—as was later realized—in

Index Terms—Green’s functions, integral equations, layered |ayered media the scalar potential kernels associated with
media. horizontal and vertical current components were different

[41], [42]. However, ways to handle vertical probe feeds
|. INTRODUCTION were soon devised, incorporating both the “horizontal” and
N a variety of applications, such as geophysical prospectiﬁ‘éert'calﬂ scalar potential kerne!s [43]-[46]. Sm_ce different

[1]-[3], remote sensing [4], wave propagation [5], [6],ker_nell§ were .used for the horlzonta_l and vertical currents,
and microstrip circuits and antennas [7]-[9], it is necessafy fictitious point charge had to be introduced at the feed
to compute the electromagnetic field in a layered mediuint. Other “two-potential” MPIE formulations were also
For a given set of sources, the field may easily be fourmopc')s'ed to tackle vertical probes [47], [48]. The development
if the dyadic Green’s functions (DGF’s) of the environmer®f efficient procedures for the computation of the Sommerfeld
are available. Numerous authors have derived DGF's fttégrals [38] and an extension to multilayered media [44]
layered media, both isotropic and anisotropic [10]-[31]. Mod&pade the MPIE an attractive approach for planar microstrip
of the recent developments in this area have been driv@ifeuit and antenna problems [49]-[59].
by applications to microstrip patch antennas, printed circuit TO tackle arbitrarily shaped, three-dimensional (3-D) con-
boards, and monolithic microwave/millimeter-wave integrate@tcting objects, Michalski [41] proposed to use the “horizon-
circuits. tal” scalar potential kernel throughout, which necessitated a

When the currents are not knovarpriori, which is usually Proper “correction” of those elements of the dyadic vector
the case in scattering and antenna problems, the DGF’s mayPgéential kernel associated with the vertical current component.
used to formulate integral equations for the true or equivalehiis approach was later put on firmer theoretical basis by
currents, which are then solved numerically by the methddichalski and Zheng [60], who described three distinct MPIE
of moments (MOM) [32]. The hypersingular behavior oformulations (referred to as A, B, and C) for multilayered
some of the integral equation kernels causes difficulties edia and discussed their relative merits. One of these MPIE’s
the solution procedure [33], which may be avoided if thormulation C), which was deemed preferable for objects
fields are expressed in terms of vector and scalar potentipinetrating an interface, was implemented and validated for
with weakly singular kernels. This led to the developmeribe case of a two-layer medium [61]. Furthermore, the MPIE
of mixed-potential integral equations (MPIE’s) for arbitrarilyof Mosig and Gardiol and other previously used MPIE’s
shaped scatterers in free space [34]-[37]. In layered medi@?]-[64] were classified as special cases of the newly devel-
an important advantage of the MPIE'’s is that the spectraped formulations. The formulation C MPIE was later applied

to microstrip transmission lines of arbitrary cross section [65],
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uniaxial media were also presented [72], [73]. More recently, (z)

the formulation C MPIE was adopted to analyze electro-

magnetic scattering by wires [74] and conducting bodies of f gt

revolution [75], [76] buried in earth. B M’
In this paper, we present a compact formulation of the / /

electric- and magnetic-type DGF’s for plane-stratified, multi-
layered uniaxial media, based on the transmission-line network
analog along the axis normal to the stratification [77]. Further-
more, we derive within the framework of this transmission-
line formalism MPIE’s for arbitrarily shaped, penetrable or
conducting objects embedded in the multilayered medium
Attention is limited to media with at most uniaxial anisotropy,
which while being important in practice [78]-[80], still allow
the simple transmission-line representation of the electro-
magnetic fields. The emphasis is on laterally unbounded
environments, but an extension to the case of a layered medium
enclosed by a rectangular shield is also included.
The remainder of this paper is organized as follows. In
Section Il, we outline the formulation of the integral equations @)
for penetrable or perfectly conducting objects embedded in (z)
a layered medium. In Section Ill, we introduce the Fourier
transform formalism and express the spectral fields in terms * JU
of the voltages and currents on the transmission-line analog - Mt
of the medium. In Section IV, we formulate the DGF'’s for a : /‘ /
medium with an as yet unspecified stratification in terms of the.
transmission-line Green’s functions (TLGF's). In Section V, J
we derive MPIE’s for arbitrarily shaped, three-dimensional I, rad
objects embedded in such a medium and express their kernels o
in terms of the TLGF's. In Section VI, we specialize the (0.0) /
formulation for multilayered media with piecewise-constant ’
parameters and give a practical algorithm for the efficient % /
computation of the TLGF's. In Section VII, we briefly discuss / /
the treatment of the Sommerfeld integrals. In Section VIII, we 7
extend the formulation to the practically important case of a /! //\
medium shielded by a rectangular enclosure. In Section IX, [ /é, N
we make some concluding remarks. N7 n
The ¢/«* time dependence is implicit in the formulation and
the stratification is assumed to be transverse to:tlaeis of (b)
the Cartesiariz, y, z)-coordinate system. Source coordinate§g- 1. Arbitrarily shaped object in a layered medium. (&) Physical config-
are distinguished by primes, vectors are denoted by boldfat@ion- (b) External equivalent problem.
letters, unit vectors are distinguished by carets, and dyadics

are denoted by doubly underlined boldface letters. S dictate that
M, =-nx (E'+E°[J,, M])s, 1)
Jo=ax (H +H°[J,, M,))s, 2

Il. FORMULATION OF INTEGRAL EQUATIONS . )
where 7 is the outward unit vector normal t¢ and the

Consider an arbitrarily shaped object embedded in a layerghscript s, indicates that the fields are evaluated as the

medium and excited by known electric and magnetic curreni§senation point approaches from the exterior region. In

(J°, M"), as illustrated in Fig. 1(a). The equations goveming,qar media, the fields due to arbitrary current distributions
the resulting electric and magnetic field&, H) are most (J, M) may be expressed as

easily derived by means of the equivalence principle [81, p.

106]. An externalequivalent problem is shown in Fig. 1(b), E =(G"; )+ (G"™; M) 3)
where the surface currentd (, M) and theimpressedcur- H=(G"; J) +(G"™; M) (4)
rents ¢J*, M") radiating in the layered medium produce the - -

correct fields E, H) exterior to.S and null fields insidesS. whereQ’PQ(r|r’) is the DGF relatingP-type fields atr and
Clearly, (E, H) = (E' + E*, H' + H*), where(E‘, H') are  Q-type currents at’. The notatior(, ) is used for integrals of
the impressedfields due to(J?, M*) and (E®, H®) are the products of two functions separated by the comma over their
scatteredfields due to §,, M,). The boundary conditions atcommon spatial support, with a dot over the comma indicating
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a dot product. Since the DGF's for the layered medium @fssociated with the horizontal and vertical current components

Fig. 1(b) are available, one can use (3) and (4) to compute e in general different [42]. Consequently, either the scalar

impressed fields and to express the scattered fields in (1) amdhe vector potential kernel must be modified for arbitrary

(2) in terms of the unknown currentd {; M ). current distributions. We show in Section V that choosing the
For penetrable objects, an interior equivalent problem mé#grmer route [69], [70] leads to the mixed-potential forms

be constructed, in which the surface currefis/,;, —M), . " 1 P wr

radiating in the presence of the object, produce the correct E=—jon(G"; J) + W_EOV((K , Vo)

fields (E, H) insjdeS and null fields outside. If the. object is. (0% I)) + (GEM; M) 5)

homogeneous, its medium may be extended to fill the entire 0 e

space and the homogeneous medium DGF's may used in H=(G""; J) — jweo(G"; M)

(3) and (4) to compute the fields. A set of two equations 1 D .

similar to (1) and (2) may then be written for the interior + mV«K VM) +(C%% M))  (6)

problem and combined with those of the exterior problem tghere 1, and ¢, denote the free-space permeability and

yield a coupled set uniquely solvable foJ,, M,) [82]. For permittivity, respectively, and the prime over the operator

inhomogeneous objects, DGF’s associated with the interigsbla indicates that the derivatives are with respect to the

equivalent problem are not available and (1) and (2) musburce coordinates. Furthermo@* and G* are the DGF’s

be augmented by the differential equations governing ther the magnetic and electric vector potentials, respectively,

fields inside the volume enclosed I This leads to a set K® and K'Y are the corresponding scalar potential kernels,

of hybrid integro-differential equations fd/,, M) and the andC?® andCY¥ are thecorrection factorsassociated with the

fields inside the objects [83]-{86]. An alternative proceduréongitudinal electric and magnetic currents, respectively [60].

applicable to both homogeneous and inhomogeneous objepiste thatV - J andV - M are proportional to, respectively,

is to replace the object in the interior equivalent problem witihe electric and magnetic charge densities.

electric and magnetic volume polarization currents radiating\When the mixed-potential representations (5) and (6) are

in free space [36], [81, p. 126]. As a result, a set of hybridsed in (1) and (2) to express the scattered fields radiated by

volume-surface integral equations is obtained [87]. An advafJ,, M), one obtains the MPIE’s. Apart from the dyadic na-

tage of this approach is that—unlike in the standard domaiire of the vector potential kernels, these MPIE’s are similar in

integral equation methods [23], [27]—there are no Sommerfefiokm to their free-space counterparts and, thus, are amenable to

integrals associated with the interior problem. the well-established numerical solution procedures developed
Nonperfect conductors can often be modeled as surfdoe the latter [34], [35], [37], [89], [93].

impedance objects characterized by the impedance boundary

condition (IBC) M, = Z,J, xn, where Z, is the skin lIl. SCALARIZATION OF MAXWELL'S EQUATIONS

effect surface impedance [88], [89]. One can use this IBC in

either (1) or (2) to eliminatéM ;. The resulting equations are

referred to, respectively, as the electric-field integral equati

(EFIE) and the magnetic-field integral equation (MFIE). Onl

the EFIE is applicable to open, infinitesimally thick shell

made of a perfect electric conductor (PEC). In the analy

of microstrip structures, it is common to use a simplified fo”ﬁtel

of the EFIE, which neglects the contribution M, to E*

[90]. For closed-impedance or PEC objects, either the EF

or the MFIE or their combination known as the combined?

field integral equation (CFIE), may be used to solve Jor VxE=—jwpop-H-M

The CFIE does not suffer from the internal resonance problems V x H = jwepe E+J. (7)

that plague the EFIE and the MFIE [91]. -
There are important applications where the object

Consider a uniaxially anisotropic, possibly lossy medium,
which is transversely unbounded with respect to thaxis
AMd is characterized, relative to free spacezidependent, in
eneral complex-valued permeability and permittivity dyadics,
=L+ 2zp, and¢ = Le+ 2z¢.,, respectively, where
is the transverse unit dyadic. We wish to compute the
ds(E, H) at an arbitrary point due to a specified current
?éstribution(J, M), as illustrated in Fig. 2(a). These fields are
overned by the Maxwell's equations [77, p. 745]

%ince the medium is homogeneous and of infinite extent in any
lﬂqansverse (t@) plane, the analysis is facilitated by the Fourier

Fig. 1(a) is excited through an aperture in a PEC plane. N . .
such cases the aperture is “shorted” and an equivalentmagngﬁQSfprmat'on of all fields with respect to the transverse
ordinates. Hence, we express any scalar field component

surface current is placed over the shorted region to suppg?t . N L S
the correct electric field there. The contribution of this currer?tsf(r) = flps 2). where_p =TT+ Yy IS the_prolecnon ofr .
is then included in (1) and (2). Since the equivalent apertu(r)g the (=, y) pla~ne, and introduce the Fourier transform pair
current is typically unknown, the MPIE’s are supplemented  Ff(r) = f(k
by an integral equation obtained by enforcing the continuity +
of the tangential magnetic field across the aperture [92]. = /
In view of the hypersingular behavior "7 andG""™, it __, : ko) = N
is preferable to convert (3) and (4) into their mixed-potentia7l: fky; 2) = f(r)
forms before they are used in (1) and (2). In this process, :L /+Oo /+Oo f(k .7)6—jkp.p die-. d
one encounters the previously mentioned dilemma caused by (27)? J_oo J—oo n e
the fact that in layered media the scalar potential kernels 9

pr %

oo ) + oo )
/ F(ryet®oP d dy ®)

oo
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17 Fig. 3. Rotated spectrum-domain coordinate system.
—»
+ and project (10) and (11) o@ and @, we find that these
VP equations decouple into two sets of transmission line equations
of the form
- avr
— _jpPzPIP P
(z) dz TRz Tt
drr
) = —JRPYPVP 4P (16)
Fig. 2. Currents radiating in a uniaxial medium. (a) Physical configuration. d_z
(b) Transmission-line analog. where the superscript assumes the values efor 4. Hence,

the components ofs, and H, in the (u, v) plane may be
where k, = &k, + yk,. Upon applying (8) to (7), and interpreted as voltages and currents on a transmission-line
separating the transverse and longitudinal parts of the resultargalog of the medium along theaxis, which was anticipated

equations, one obtains in the notation introduced in (15). The propagation wavenum-
d - 1 ) . bers and the characteristic impedances and admittances of this
7 B = Jocon (ki —v°kpk,)(He % 2) transmission line are given as
. P = [k — k2 17
+k, T x (10) W=k vk (47
wepe, . 1 kS
d - 1 9 h . - Z = F = —=
—H, = (k7 = "k pkp)(2 % Ey) weoet
dz Jwpope w_ 1 _ whom
~ Z" = Vh T h (18)
p = =i, (11) ook
Whokz where the square root branch in (17) is specified by the
—jweoe B, =jk, - (H, x 2) + J, (12) condition that—m < arg {kZ} < 0. The voltage and current
—jwpop.H. =jk, - (2 x Et) v (13) sources in (16) Zre given by
where k;, = koy/e, ko = wy/hoeo being the free-space vo=—L"J - M, i‘=-J,
wavenumber, and where® = ¢ /¢, and v* = p,/p. weoekz : : :
are referred to as, respectively, the electric and magnetic i" :_wupu M, — Jy, o = M,. (29)
anisotropy ratios. The subsequent analysis is greatly simplified . 0r= i
I Py rati Hbsequ ysisis g y simp' Iﬁ1 view of (15) and (12), (13), the spectral fields may now

if one defines a rotated spectrum-domain coordinate syst%rg exoressed as
based or(k,, zx k,) (see Fig. 3), with the unit vecto(g, v) P

. . 1 N
given by [94] E=aVe +aVh -2 - (jk,I¢ + J.) (20)
k k Jweoez
=54 ¥y - 1 ~
u pr$+ kpy H:_,a'_[h +oIf + 3 : (jkah—MZ) (21)
Jwpioftz
) :_k_y:“_ k_“’y (14) which indicate that outside the source regigri®, 1) and
ko ko (V" I") represent fields that are, respectively, TM and TE

where k, = |/k2+ k2. If we now express the transversdo z. The space-domain fieldss, H) are obtained from (20)
electric and magnetic fields as and (21) via the inverse transform (9).

. e o The original vector problem of Fig. 2(a) has thus been
B Ey =4V +oV reduced to the scalar transmission line problem of Fig. 2(b).
H, x z=al°+oI" (15) Note that—since the superscript representse or h—two
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transmission lines are involved and associated, respectively, [”(z\z’)
with the TM and TE partial fields. ;
kb -
IV. DYADIC GREEN'S FUNCTIONS i Vs )
z|z
Consider the solutions of the transmission line equations 7P 14 ‘
(16) for unit-strength impulsive sources. Hence, W&Y(z|z’) -
and I”(z|z’) denote the voltage and current, respectively, at o - (2)
z due to a 1-A shunt current source &t and letV?(z|z")
andI?(z|z") denote the voltage and current, respectively; at @
due to a 1-V series voltage sourcezat(see Fig. 4). Then, it I7(z|z)
follows from (16) that these TLGF'’s satisfy the following: N Y
A — U
7 =—3kZPL i v +
drr V7(z|2)
T 4 p ! v
o =—jkEYPVP + 6(2 = 2) (22) pr
avp
L:—j/fprI{.’—i—é(z—z’) (z)
dz z' Z
drr . b
T =—jgREYPVY (23) ®)
? 4. Network problems for the determination of the transmission-line

whereé is the Dirac delta, and that they possess the reciproc&%
properties [77, p. 194]

en’s functions.

VE(2l#) = VP (#]2) - -
i i In the above, the primed media parameters are evaluated at the
IB(z|7) = IE(#|) source coordinate’, and this convention is used throughout
VP(z|) ==IP(Z|2) this paper. The space-domain DGF'’s follow from (28)—(31)
IP(2|2) = =VP(Z]2). (24) upON _first projecting t_he unit vectord, ) on t_he(kg,/,7 ky)-
coordinate system via (14) and then applying the inverse

The linearity of the transmission line equations (16) allowgansformation (9). In view of the translational symmetry of
one to obtain(V'?, I?) at any pointz via the superposition {he medium with respect to the transverse coordinates, we may
integrals write

VP = (VI i) + (V7 o)
1P = (17, i) + (L7, 7). (25)

G"Url”") =G Up p's 2I2) (32)

Upon substituting these equations into (20) and (21) and usiWBere

(19), one obtains spectrum-domain counterparts of (3) and (4),

viz.

EJ o~ E

G"(ps 2|) = F1G ki 217, (33)

The spectral integrals that arise in (33) may be expressed as

E=@" J)+@""; m) (26) | |
- L ~ . . _1 ] sin b1 n SIIL s
a=@" )+ ) (27) F 1{ néf (k,,)} = (=) o 0 Sul S ()},
where the spectral DGFQPQ(k,,; z|2') are given as n=0,1,2 (34)
- where
G = —aave — oV 21 yas Ty A 1
e T v, i)} = 5= [ Fe) Ity dt, @)
+ 2z - L ~ | = 5 IS —6(z = 2) (28) is referred to as a Sommerfeld integral. Hefg,is the Bessel
Jweoes | JwWeocs function of ordern and(p, ¢) are the cylindrical coordinates
NI ooh e s k, W oan ko e of the projection of the field point on ther, y) plane. Note
G =uwel -l -2 W= Vit + o2 weoe, L, (29) that although (34) and (35) correspond to the case where the
L EM S S source is on the axis, they are easily generalized for arbitrary
G =—wV; +ouV, + 20 weoc. I source locations by the substitutions
_ o
YL/ (30) p—e=lo=sl.
Whop, -
ey , k, , ko @ — ¢ = arctan i — (36)
G =-ual —wel, + 24 Wit fhz Vo e Witopt, g The spectral DGF's (28)—(31) may directly be used in
1 k2 integral-equation formulations based on the spectral domain
+ 22 Lyl —6(z=2)|. (31) approach (SDA) [95]-[97]. The SDA and the space-domain

Jwpopl | Jwhofz

integral equation technique are formally equivalent, and only
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differ in the order in which the spatial and spectral integrations The scalar potential may be found from the auxiliary con-
are performed. However, the SDA is less flexible in terms dfition
the geometries it can handle and is in general less efficient than B )

; : Vo (utuitp - A) = —jwpocoes® (46)
the space-domain MPIE, because it leads to double spectral A Jwhococt

integrals rather than Sommerfeld integrals [98] which can be shown to be consistent with the vector potential

obtained above. To arrive at the mixed-potential formHyf
V. MIXED POTENTIAL REPRESENTATIONS we postulate the decomposition

Consider first the case where only electric currents are 6t_1V'(Nt_1N;1”'QA) = _VK®1L0% (47)
present. It is then permissible to express the fields in terms =

o . o
of vector and scalar potentials through the equations where K is the scalar potential kernel an@™ is the
correction factor which arises in general when both horizontal

pop - H=V x A and vertical current components are present [41], [42], [60]. To
T E- CjwA—V®, 37) find K* andC?, we substitgte (4(3)/ in the spectrum-domain
counterpart of (47) and, noting th& = jk, &+ z2d/dz’, we
The linearity of the problem allows us to write obtain
- 1 1 d
; P __ h = % rh _ ge
A= (G5 ) (38) K = iia T Fo dz (L' —I7)  (48)
where G*(r|r') is the vector potential DGF. From (4) and c® = % a I+ i/ K® (49)
(37) (with M = 0) it follows that _ Jweoezer dz " dz
which upon using (22) and (23) yield
p-G =V xGh (39) o1,
o = V=0 (50)
Since G"7 has already been determined, we will use this o
relationship to obtainG*. The derivations are simplified - C :w(vvh_v;)_ (51)
in the spectrum domain, where the operator nabla becomes Jweo kp

V = —jk,u+ 2d/dz. Clearly, (39) does not uniquely specify The space-domain counterparts of the spectral kernels de-
G4, making different formulations possible [60]. Here, weived above can be expressed in terms of the Sommerfeld

postulate the form integrals via (34)—(36). Hence, we find
y . . . G2 (p; 2|2') = G2 (p; 2|2’
G = LG + G, + 20 (40) =l 2[7) = G 05 217)
- = So{ Gk (ki 212)} (52)
which is consistent with the Sommerfeld’s choice of potentials G (p; 2|2") = So{GA(k,; 2|2} (53)
[99, p. 258] for a horizontal Hertzian dipole over a dielectric S N SA ry N
half-space. This is more evident when (40) is projected on Gj‘"(p’ Z|Z/) o ‘{C?S ‘P‘Sl{?ju(’“m Z|Z/)} (54)
the Cartesian-coordinate system via (14) and put in the matrix GZy(p; 2|2") = —j sin o SI{GZ, (kps 22)} (55)
form K®(p; 2|2') = So{ K® (ks 2[2)} (56)
G4, 0 0 C®(p; 2|7) = So{C®(k,; 2|2)}. (57)
N A A
(G = 1 0~ G'u;v ~0 (41) We next substitute (46) and (47) in the second equation
T Y o €1t of (37) and, after some transformations involving the Gauss’
ko ko theorem, arrive at

which indicates that horizontal and vertical components of th%7 . A 1 O o &4
vector potential are involved for a horizontal current source. Jwno(@%5 J) + Jweg VIES, V2 ) +(C7% )

To find the components ctEA(k,,; z|'), we substitute (29) (58)
and (40) into the spectrum-domain counterpart of (39), whiglhich is the desired mixed-potential representatiozoNote
leads to the equations that the kernels in the above are given as Sommerfeld integrals
; = \ of spectral functions, for which explicit expressions in terms
jwquﬁv :Vi} (42) of tr?e TLGF's have been derived.p P
jwuoéfz :773 u—f.ff; (43) When only magnetic currents are present, the analysis is
© dual to that given above. The mixed-potential representation
ié;;?erjkpéﬁu =—pedf (44) for H may be obtained from the above formulas by the
dz following replacements of symbolst? — H, J — M,

whereng = \/j10/€o is the intrinsic impedance of free spacef‘1 - F e = We—pp -V L L=V,

From (42) and (44), upon using (18) and (22), we finally obtafy — % ¢ — v, ¢ — h, andh — e. In the general case,
where both electric and magnetic currents are present, we

juwpeGl = M([ih —I9). (45) Use superposition and, in view of (3) and (4), arrive at the
ko mixed-potential forms (5) and (6).
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?p =p Consider first the caser = n, whenz is within the source
o /_\ L section. The TLGR/? is then readily determined from (22) as
4
T - + — zZP P | 1 SR
‘ VPl = Zn — kY |z=2" o = RP e Ikinvns
K2y | J K2, Vo k., AER =S o & e
| -
~ - (62)
S | Zy 1A | Zpes where
| ) J (z) DP =1—TrT2e (63)
Zﬂ z Zn+1 —
Rﬁl =y
Fig. 5. Voltage and current point sources in a transmission-line section. -
Rfﬂ =y
Finally, we point out that the correction term in (58) may Rys =Ry, =177 (64)
be grouped with the vector potential term, resulting in an Yn1 =22n41 — (2 + 2')
alternative mixed-potential representation, which corresponds Y2 =(z+2") =22,
to formulation C of Michalski and Zheng [60]. For planar —9d _
. . R Yn3 n + (Z z )
conductors, this formulation reduces to that of Mosig and —2d, — (2 — ) (65)
Gardiol [38]. Tnd = 2n mAE =2,

The first term in (62) represents the direct ray between the
source and the field point, while the second term represents
VI. TRANSMISSIONLINE GREEN'S FUNCTIONS the rays that undergo partial reflections at the upper and lower
The formulation developed so far is for an unspecifieslab boundaries before reaching the observation point. The
stratification, since no assumption has been made regardififiaining TLGF's may readily be derived from (62) upon
the » dependence of the media parameters. We now speciakz"9 (22)—(24). For example, one may obté@’nfr_om |78 via
it to the case of a multilayered medium with piecewisdl® first equation of (22), from whick follows via the third
constant parameters. The parameters pertaining to fayth equation of (24). The result is .
boundaries at,, and z,,, are distinguished by a subscrijpt i e 1 o
The transmission line J;malog of the layered medium consi§{§(2|zl):§ e~/ l_D_g Z(_l) Ry e /R
of a cascade connection of uniform transmission line sections, =1
: X . ) (66)
where sectiom with terminals at:,, andz,,+; has propagation
constantk2, and characteristic impedanc&?. To find the Where the upper and lower signs pertain 40> 2" and
TLGF’s, we excite the transmission line network by unitz < #’, respectively. To conserve space, we do not list the
strength voltage and current sourceszatin sectionn and €Xpressions forl and I W?)'Ch' as is evident from (22) and
compute the voltage and current atin sectionm. Hence, (23), are dual to those fdr;” and V?, respectively, and may

. . . obtained from the latter by replacing the impedances by
the primed m_edla param(_aters assume the values pertam{?lﬁgnittances (which has also the effect of changing the signs
to layer n, while the unprimed ones are those of layer

T L = 7, of the reflection coefficients). Observe that the discontinuous
The source section is illustrated in Fig. 5, whéig and 1'% terms appearing i’? and I” cancel out when the TE and
are the voltage reflection coefficients looking to the left anfl\ TLGF’s are subtracted to formi’® and G

. . . . zu"

right, respectively, out of the terminals of sectien These  Consider next the case < n, whenz is outside the source
coefficients, which are referred tg, and 4., respectively, section and: < 2’. Given the voltagd/?(z,) across the left

may be computed from the relations terminals of sectiom, the voltageV?(z) and current’?(z) at
» - any pointz in sectionm can be found from the homogeneous
e = L ngr T TRER (59) form of the transmission-line equations (16) as [100]
n+l —

1417 Theh

n—1
II %

SR Y Ry » E
D=1 o (60 {0} =veen 2=
1+ Fn, n—lrnt" (Z) 14+ T84,
TP . B
where X {%;ngjg }G—Jk;m(4m+1—4) (67)

]_‘*I‘)' — le B Zf (61) where
ij ZP L 7P —
! oo VP(zm) _ (L+THER
= = = (68)
VP(zet1) 14T

and 2 = ¢~92kndn with d,, = 2,41 — 2,. These formulas
follow from the source-free transmission line equations (16)
and the continuity of the voltages and currents at the lingith 67 = e=Ik.dx and where
junctions. One applies (59) and (60) recursively beginning at, p B Tp —J2KP (a—zm)

respectively, the left and the right ends of the transmission Th(2) =[1+ Fmek o ] (69)
line network. YP (z) = =YP[l — TP e i2im(z—2m)], (70)
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It is understood that the product in (67) is equal to one #5], [105] or the continued fraction expansion [106], may
the lower limit exceeds the upper limit. Note that (67) ishen be applied.
applicable irrespective of the source type. Hence, if sectionEven with the state-of-the-art techniques, the Sommerfeld
n is excited by a unit-strength current source 74t then integrals may take a significant part of the overall compu-
VP(z,) = VP (2n|2'), andV?(z) andI?(z) represenV;”(z|2')  tational effort involved in the solution of the MPIE. One
and I7(z|2"), respectively. If, on the other hand, sectiomtractive remedy is to precompute these integrals on a grid
n is excited by a unit-strength voltage source 7t then of points in the solution domain and to use table look-up
VP(zn) = VE(2n|7'), andV?(z) andI?(z) represenV’?(z|z’)  and interpolation techniques. For arbitrarily shaped objects,
and IZ(z|z"), respectively. 3-D interpolation ing, z, and 2’ is required [2], except for
Analogous formulas may be developed for the case 7,  gpiects confined to a single layer, when one may split the
when z is outside the source section and> 2'. However, arnels into parts depending da, z — /) and (o, z + '),

this is hardly necessary because the reciprocity theorems (28} compute them separately using 2-D interpolations [102].
allow one to interchange the source and field point Iocatmr@my 1-D interpolation ing is needed for strictly planar

For example,V#(z|2") may be computed as I'(+'|). This  microstrip structures, which leads to a particularly efficient
application of reciprocity also results in a shorter and MO\ tion procedure [45], [105].

efficient computer code. Another approach, which came into prominence recently, is

the discrete complex image method (DCIM) [52], [107]-[113].
VII. DISCUSSION OFSOMMERFELD INTEGRALS The basic idea of the DCIM is to extract from the spectral

The Computation of the Sommerfeld integrajs (35) is Iaernel its quasistatic part and its gUIdEd wave terms, and to
difficult task because of the in general oscillatory and divergedPproximate the remainder function by a sum of complex
behavior of the integrands and the occurrence of singularit@$ponentials, using an established systems identification pro-
near the integration path in the compléx plane [44], [45]. cedure [114]. The Sommerfeld integrals are then evaluated in
Since these integrals must be repeatedly evaluated in filliftpsed form via the Sommerfeld identity [101, p. 66]. Since
of the MOM matrix, their efficient computation is of paraDCIM obviates numerical integration, it affords at least an
mount importance and has been the subject of much reseafdHer-of-magnitude speed-up in the MOM matrix fill time
Nevertheless, it is fair to say that a completely satisfactol}15]. However, to gain this advantage, the objects must be
solution to this problem is still lacking, especially in the caseonfined to a single layer and the quasi-static terms must
of arbitrarily shaped objects extending over more than of# invertible in closed form. Also, DCIM has no built-in
layer of the multilayered medium. A detailed treatment of theonvergence measures and its accuracy can only be ascertained
Sommerfeld integration being outside the scope of this articR posterioriby checking the results against those obtained by
here we only highlight some of the techniques involved. Sommerfeld integration. Furthermore, the application of this

The integrand singularities, which occur in complexmethod in multilayered media is currently impeded by the
conjugate pairs in the second and fourth quadrants of ti@€k of reliable automated procedures for the extraction of the
k, plane, consist of poles and branch points [101, p. 11Quided wave poles.

In the lossless case some of these singularities appear on the
real axis and the integration path in (35) must be indented
into the first quadrant to avoid them. The branch points
only occur for vertically unbounded media, i.e., when the Although the formulation presented so far can easily accom-
top and/or the bottom layer is a half-space. In this casmodate horizontal perfectly conducting or impedance ground
the integration path must approach infinity on the prop@tanes, the underlying assumption has been that the layered
sheet of the Riemann surface associated with the longitudimaédium is of infinite lateral extent. We now extend this
propagation wavenumbers (17) of the half-spaces. The pothsory to the practically important case of a layered medium
are associated with the TM and TE guided waves and amclosed by a rectangular shield with PEC walls. The cross-
found as roots of the resonant denominator (63) in any finitsectional dimensions of the shield are< b, as illustrated in
thickness layer, or as roots of the denominator of the reflectiéig. 6. Note that the shield forms a rectangular waveguide
coefficient (59) or (60) looking into the layered medium fronalong the » axis [116], or a rectangular cavity—if it is

a half-space. The number of poles is in general infinite, bsandwiched between horizontal ground planes [117]. Here,
only a finite number of them appear on the proper sheetive represent the effect of the side walls by a set of image
the case of vertically unbounded media. Various integrati@ources radiating in a laterally unbounded medium [81, p.
paths in thek, plane have been employed [38], [61], [102]103], [118], which makes it possible to take advantage of
[103], but the real-axis path, indented into the first quadratite formulation developed in the preceding sections. We then
to avoid the branch-point and pole singularities [104], hanvert the image representations to the formally equivalent
proven to be most convenient for multilayered media, becaus®dal (spectrum-domain) expansions.

it obviates the need to locate the poles. When> 0, the To begin with, consider a point charge located at
integral over the real axis tail of the path may be computdd’, 4/, ') inside the rectangular shield and its three images
as a sum of an alternating series of integrals between zelosated at(—2/, v/, 2'), (¢/, =%/, /), and(—2’, —v/, 2'), as

of the Bessel function. To speed up the convergence, seiilasstrated in Fig. 6. Note that the polarities (signs) of these
acceleration techniques, such as the method of averages [88hges are consistent with the boundary conditions at two

VIIl. SHIELDED ENVIRONMENTS
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the type of the kernel or Green’s function considered. For
example, ifG represent&’ , which is thez component of the
vector potential Green'’s function due to ardirected current
element, we find from Table | that, = +1 ands, = —1.

For the scalar potential and correction kern&l& and C®,

Fig. 6. Point charge inside a rectangular shield and its images in theé the sign coefficients are those associated with

andy = 0 PEC planes. The spatial sum (71) may be transformed by the Poisson’s
formula [119, p. 47] into the spectral sum [120]

TABLE | +oo +oo
IMAGE SIGN COEFFICIENTS FORELECTRIC SOURCES / 1

G = >
m=—oo N=—0o0

X é(/ﬂxm, kyn; z|zl)e—j(k‘mmx+kwy)

J. +1] -1 X (ejkl‘m“”, + Sxe_jka:mw,)(ejkyﬂy, + Sye_jkyny’)
z

(72)

(y ) environmentis given by
+oo +oo
. o= ¥
{\r 777777777777777 X {G(z — 2" + 2ma, y — y + 2nb; 2|7)
| ! / !
| , + 5:G(x + 2" = 2ma,y — v + 2nb; z|2")
: @ Y+ @ 9 b / / . /
! +5,G(x — 2’ +2ma, y + 3y — 2nb; 2|2")
i + 528,G(x + &' — 2ma, y +y' — 2nb; z|2')}.
3 - } (x) (71)
| I . . . .
E @ @ E The sign coefficientss, and s, in the above depend on
| |
| |
| |

Source || 55 | sy

Jy e wherek,,, = mwn/a, ky, = nn/b. Furthermore, the series in

the above may be folded, with the result

q,J, || —1]| —1

, _i o o N . /
g(rir') = — z_:o Z:O EmenCGkam, kyn; 2|2
intersecting PEC ground planes definedsby 0 andy = 0. menn= ) /
The so-constructed four-source set (the original source plus X Ta(kom)Se(Rem' )Ly (kyny)Sy(kyny')  (73)

the three images) forms theasic image seBIS). Note that \wheree,, = 1 for » = 0 ande,, = 2 for n > 0, and where

the BIS is located within th€a x 2b reference cellcentered
cos &, s, =+1

at (z, y) = (0, 0). Similar image sets may be constructed S,(€) :{ o (74)
for z-, -, and z-oriented current elements. The polarities of jeing s =-1

the images for different sources are conveniently described T,(¢) :{ §0§€ Sy Cy = —|—1' (75)
by two sign coefficientss, and s,, wheres, = +1 if the Y —jsing s, =-1

polarity of thg .image in ther = 0 PEQ wall .is the same aS\yo pave introduced in the above the sign coefficients
that of the orlg_lnal source, ang, = —1 if the imaged source andc,, defined as followsz, = +1 (=1) if ¢ is an even
undergoes a sign reversal. The values otinds, for electric (odd) function ofk,. For example, ifX represents | the
sources are listed in Table I. For magnetic sources, all si ; indi _ pr
o h d g 9ASpection of (41) and (45) indicates that = —1 and¢, =
should be reversed. o _+1. When the reference cell in Fig. 6 is centered at an arbitrary
To maintain the correct boundary conditions at the four sigg)jnt (2o, o), rather than afo, 0), the above formulas must
walls, the BIS of the reference cell must be imaged in thg modified by the substitutior, y) — (x — o, 3 — 10)
z = a andy = b PEC planes, and the new image sets MUghd (+/, ') — («' — 0, ¥ — yo)-
again be imaged in the = 0 andy = 0 planes, etc. Asaresult, The double series in (73) is slowly convergent, especially
a doubly periodic lattice of BIS's is obtained, with perics when » = 2/, which is often the case in the analysis of
and2b along ther andy axes, respectively. Since these sourcgganar microstrip structures, and must in practice be ac-
are now embedded in a transversely unbounded medium, tl@?}erated. This may be accomplished by subtracting from
may be analyzed within the framework of the theory developed its quasistatic form,G°, which converts (73) into a
in the previous sections. Hence,@f(z — ', z — 2’; z|z’) is  rapidly converging series, becau§eand G* have the same
a scalar potential kernel or a scalar component of a dyadisymptotic behavior. The double series of the subtracted
kernel (or Green’s function) in thiaterally open mediugnwe quasistatic terms is then added back in its spatial form (71).
find that the corresponding kernégl, in thelaterally shielded Since the latter is comprised of the direct and quasistatic
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image terms, it is amenable to the well-established acceleratigs
methods [70], [121]-[124]. These techniques employ mixed-

domain representations involving both a space-domain and;g
spectrum-domain series and have an arbitrary parameter which
distributes the computational burden between the two domaifg!
In a simpler approach [125], [126], one of the asymptotic series

is left in the space domain and the other is transformed via a 1-
D Poisson’s formula, leading to a rapidly convergent series Bf!
modified Bessel functions of the second kind. The quasi-statig;
terms must be invertible in closed form for these techniques

to be applicable. [13]

IX. CONCLUSION [14]
We have presented a simple derivation of the dyadic Green'’s
functions for plane-stratified, multilayered, uniaxial medigys)
based on the transmission-line network analog along the axis
normal to the stratification [77]. Within the framework of 16]
this transmission-line formalism, we have also derived mixed-
potential integral equations (MPIE’s) for arbitrarily shaped17]
conducting or penetrable objects embedded in the multilayered
medium. The formulation presented here is compact and
computationally efficient, and it affords much insight intd18]
the various Green’s functions and kernels, because the be-
havior of the transmission-line voltages and currents—which
are governed by the simple telegraphist’'s equations—is wélfl
understood. The MPIE’s derived here are well-suited for the
analysis of inhomogeneities buried in layered earth and fgo]
the modeling of integrated dielectric waveguides, probe-fed
and aperture-coupled microstrip patch antennas and arrgys
as well as complex microwave integrated circuits—including
those comprising vertical transitions, air-bridges, and vias.
There has been a definite trend recently to use MPIE’s evgp,
for strictly planar microstrip structures. Among the integral
equation formulations, the space-domain MPIE approach is, in
our experience, the most versatile and efficient way to analygzg;
complex 3-D objects embedded in multilayered media.
[24]
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