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Abstract—A compact representation is given of the electric- and
magnetic-type dyadic Green’s functions for plane-stratified, mul-
tilayered, uniaxial media based on the transmission-line network
analog along the axis normal to the stratification. Furthermore,
mixed-potential integral equations are derived within the frame-
work of this transmission-line formalism for arbitrarily shaped,
conducting or penetrable objects embedded in the multilayered
medium. The development emphasizes laterally unbounded envi-
ronments, but an extension to the case of a medium enclosed by
a rectangular shield is also included.

Index Terms—Green’s functions, integral equations, layered
media.

I. INTRODUCTION

I N a variety of applications, such as geophysical prospecting
[1]–[3], remote sensing [4], wave propagation [5], [6],

and microstrip circuits and antennas [7]–[9], it is necessary
to compute the electromagnetic field in a layered medium.
For a given set of sources, the field may easily be found
if the dyadic Green’s functions (DGF’s) of the environment
are available. Numerous authors have derived DGF’s for
layered media, both isotropic and anisotropic [10]–[31]. Most
of the recent developments in this area have been driven
by applications to microstrip patch antennas, printed circuit
boards, and monolithic microwave/millimeter-wave integrated
circuits.

When the currents are not knowna priori, which is usually
the case in scattering and antenna problems, the DGF’s may be
used to formulate integral equations for the true or equivalent
currents, which are then solved numerically by the method
of moments (MOM) [32]. The hypersingular behavior of
some of the integral equation kernels causes difficulties in
the solution procedure [33], which may be avoided if the
fields are expressed in terms of vector and scalar potentials
with weakly singular kernels. This led to the development
of mixed-potential integral equations (MPIE’s) for arbitrarily
shaped scatterers in free space [34]–[37]. In layered media,
an important advantage of the MPIE’s is that the spectral
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Sommerfeld-type integrals (or series, in the case of laterally
shielded environments) appearing in the potential kernels
converge more rapidly and are easier to accelerate than those
associated with the field forms that are, in effect, obtained by
differentiation of the potentials. This was recognized early on
by Mosig and Gardiol [38]–[40], who derived and successfully
applied an MPIE for planar microstrip structures on a grounded
substrate. This MPIE could not easily be extended to gen-
eral nonplanar conductors, because—as was later realized—in
layered media the scalar potential kernels associated with
horizontal and vertical current components were different
[41], [42]. However, ways to handle vertical probe feeds
were soon devised, incorporating both the “horizontal” and
“vertical” scalar potential kernels [43]–[46]. Since different
kernels were used for the horizontal and vertical currents,
a fictitious point charge had to be introduced at the feed
point. Other “two-potential” MPIE formulations were also
proposed to tackle vertical probes [47], [48]. The development
of efficient procedures for the computation of the Sommerfeld
integrals [38] and an extension to multilayered media [44]
made the MPIE an attractive approach for planar microstrip
circuit and antenna problems [49]–[59].

To tackle arbitrarily shaped, three-dimensional (3-D) con-
ducting objects, Michalski [41] proposed to use the “horizon-
tal” scalar potential kernel throughout, which necessitated a
proper “correction” of those elements of the dyadic vector
potential kernel associated with the vertical current component.
This approach was later put on firmer theoretical basis by
Michalski and Zheng [60], who described three distinct MPIE
formulations (referred to as A, B, and C) for multilayered
media and discussed their relative merits. One of these MPIE’s
(formulation C), which was deemed preferable for objects
penetrating an interface, was implemented and validated for
the case of a two-layer medium [61]. Furthermore, the MPIE
of Mosig and Gardiol and other previously used MPIE’s
[62]–[64] were classified as special cases of the newly devel-
oped formulations. The formulation C MPIE was later applied
to microstrip transmission lines of arbitrary cross section [65],
vertical probe-fed microstrip patch antennas [66], arbitrarily
shaped microstrip patch resonators in uniaxial substrates [67],
and printed spiral antennas [68]. Recently, modified MPIE’s
were proposed, in which the scalar potential (rather than the
vector potential kernel) is “corrected” [69]–[71]. Alternative
derivations of the three MPIE formulations for multilayered
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uniaxial media were also presented [72], [73]. More recently,
the formulation C MPIE was adopted to analyze electro-
magnetic scattering by wires [74] and conducting bodies of
revolution [75], [76] buried in earth.

In this paper, we present a compact formulation of the
electric- and magnetic-type DGF’s for plane-stratified, multi-
layered uniaxial media, based on the transmission-line network
analog along the axis normal to the stratification [77]. Further-
more, we derive within the framework of this transmission-
line formalism MPIE’s for arbitrarily shaped, penetrable or
conducting objects embedded in the multilayered medium.
Attention is limited to media with at most uniaxial anisotropy,
which while being important in practice [78]–[80], still allow
the simple transmission-line representation of the electro-
magnetic fields. The emphasis is on laterally unbounded
environments, but an extension to the case of a layered medium
enclosed by a rectangular shield is also included.

The remainder of this paper is organized as follows. In
Section II, we outline the formulation of the integral equations
for penetrable or perfectly conducting objects embedded in
a layered medium. In Section III, we introduce the Fourier
transform formalism and express the spectral fields in terms
of the voltages and currents on the transmission-line analog
of the medium. In Section IV, we formulate the DGF’s for a
medium with an as yet unspecified stratification in terms of the
transmission-line Green’s functions (TLGF’s). In Section V,
we derive MPIE’s for arbitrarily shaped, three-dimensional
objects embedded in such a medium and express their kernels
in terms of the TLGF’s. In Section VI, we specialize the
formulation for multilayered media with piecewise-constant
parameters and give a practical algorithm for the efficient
computation of the TLGF’s. In Section VII, we briefly discuss
the treatment of the Sommerfeld integrals. In Section VIII, we
extend the formulation to the practically important case of a
medium shielded by a rectangular enclosure. In Section IX,
we make some concluding remarks.

The time dependence is implicit in the formulation and
the stratification is assumed to be transverse to theaxis of
the Cartesian -coordinate system. Source coordinates
are distinguished by primes, vectors are denoted by boldface
letters, unit vectors are distinguished by carets, and dyadics
are denoted by doubly underlined boldface letters.

II. FORMULATION OF INTEGRAL EQUATIONS

Consider an arbitrarily shaped object embedded in a layered
medium and excited by known electric and magnetic currents

, as illustrated in Fig. 1(a). The equations governing
the resulting electric and magnetic fields are most
easily derived by means of the equivalence principle [81, p.
106]. An externalequivalent problem is shown in Fig. 1(b),
where the surface currents ( ) and theimpressedcur-
rents ( ) radiating in the layered medium produce the
correct fields ( ) exterior to and null fields inside .
Clearly, , where are
the impressedfields due to and are the
scatteredfields due to ( ). The boundary conditions at

(a)

(b)

Fig. 1. Arbitrarily shaped object in a layered medium. (a) Physical config-
uration. (b) External equivalent problem.

dictate that

(1)

(2)

where is the outward unit vector normal to and the
subscript indicates that the fields are evaluated as the
observation point approaches from the exterior region. In
linear media, the fields due to arbitrary current distributions
( ) may be expressed as

(3)

(4)

where is the DGF relating -type fields at and
-type currents at . The notation is used for integrals of

products of two functions separated by the comma over their
common spatial support, with a dot over the comma indicating
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a dot product. Since the DGF’s for the layered medium of
Fig. 1(b) are available, one can use (3) and (4) to compute the
impressed fields and to express the scattered fields in (1) and
(2) in terms of the unknown currents ( ).

For penetrable objects, an interior equivalent problem may
be constructed, in which the surface currents ,
radiating in the presence of the object, produce the correct
fields inside and null fields outside. If the object is
homogeneous, its medium may be extended to fill the entire
space and the homogeneous medium DGF’s may used in
(3) and (4) to compute the fields. A set of two equations
similar to (1) and (2) may then be written for the interior
problem and combined with those of the exterior problem to
yield a coupled set uniquely solvable for [82]. For
inhomogeneous objects, DGF’s associated with the interior
equivalent problem are not available and (1) and (2) must
be augmented by the differential equations governing the
fields inside the volume enclosed by. This leads to a set
of hybrid integro-differential equations for and the
fields inside the objects [83]–[86]. An alternative procedure,
applicable to both homogeneous and inhomogeneous objects,
is to replace the object in the interior equivalent problem with
electric and magnetic volume polarization currents radiating
in free space [36], [81, p. 126]. As a result, a set of hybrid
volume-surface integral equations is obtained [87]. An advan-
tage of this approach is that—unlike in the standard domain
integral equation methods [23], [27]—there are no Sommerfeld
integrals associated with the interior problem.

Nonperfect conductors can often be modeled as surface
impedance objects characterized by the impedance boundary
condition (IBC) , where is the skin
effect surface impedance [88], [89]. One can use this IBC in
either (1) or (2) to eliminate . The resulting equations are
referred to, respectively, as the electric-field integral equation
(EFIE) and the magnetic-field integral equation (MFIE). Only
the EFIE is applicable to open, infinitesimally thick shells
made of a perfect electric conductor (PEC). In the analysis
of microstrip structures, it is common to use a simplified form
of the EFIE, which neglects the contribution of to
[90]. For closed-impedance or PEC objects, either the EFIE
or the MFIE or their combination known as the combined-
field integral equation (CFIE), may be used to solve for.
The CFIE does not suffer from the internal resonance problems
that plague the EFIE and the MFIE [91].

There are important applications where the object in
Fig. 1(a) is excited through an aperture in a PEC plane. In
such cases the aperture is “shorted” and an equivalent magnetic
surface current is placed over the shorted region to support
the correct electric field there. The contribution of this current
is then included in (1) and (2). Since the equivalent aperture
current is typically unknown, the MPIE’s are supplemented
by an integral equation obtained by enforcing the continuity
of the tangential magnetic field across the aperture [92].

In view of the hypersingular behavior of and , it
is preferable to convert (3) and (4) into their mixed-potential
forms before they are used in (1) and (2). In this process,
one encounters the previously mentioned dilemma caused by
the fact that in layered media the scalar potential kernels

associated with the horizontal and vertical current components
are in general different [42]. Consequently, either the scalar
or the vector potential kernel must be modified for arbitrary
current distributions. We show in Section V that choosing the
former route [69], [70] leads to the mixed-potential forms

(5)

(6)

where and denote the free-space permeability and
permittivity, respectively, and the prime over the operator
nabla indicates that the derivatives are with respect to the
source coordinates. Furthermore, and are the DGF’s
for the magnetic and electric vector potentials, respectively,

and are the corresponding scalar potential kernels,
and and are thecorrection factorsassociated with the
longitudinal electric and magnetic currents, respectively [60].
Note that and are proportional to, respectively,
the electric and magnetic charge densities.

When the mixed-potential representations (5) and (6) are
used in (1) and (2) to express the scattered fields radiated by

, one obtains the MPIE’s. Apart from the dyadic na-
ture of the vector potential kernels, these MPIE’s are similar in
form to their free-space counterparts and, thus, are amenable to
the well-established numerical solution procedures developed
for the latter [34], [35], [37], [89], [93].

III. SCALARIZATION OF MAXWELL’S EQUATIONS

Consider a uniaxially anisotropic, possibly lossy medium,
which is transversely unbounded with respect to theaxis
and is characterized, relative to free space, by-dependent, in
general complex-valued permeability and permittivity dyadics,

and , respectively, where
is the transverse unit dyadic. We wish to compute the

fields at an arbitrary point due to a specified current
distribution , as illustrated in Fig. 2(a). These fields are
governed by the Maxwell’s equations [77, p. 745]

(7)

Since the medium is homogeneous and of infinite extent in any
transverse (to) plane, the analysis is facilitated by the Fourier
transformation of all fields with respect to the transverse
coordinates. Hence, we express any scalar field component
as , where is the projection of
on the plane, and introduce the Fourier transform pair

(8)

(9)
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(a)

(b)

Fig. 2. Currents radiating in a uniaxial medium. (a) Physical configuration.
(b) Transmission-line analog.

where . Upon applying (8) to (7), and
separating the transverse and longitudinal parts of the resulting
equations, one obtains

(10)

(11)

(12)

(13)

where , being the free-space
wavenumber, and where and
are referred to as, respectively, the electric and magnetic
anisotropy ratios. The subsequent analysis is greatly simplified
if one defines a rotated spectrum-domain coordinate system
based on (see Fig. 3), with the unit vectors
given by [94]

(14)

where . If we now express the transverse
electric and magnetic fields as

(15)

Fig. 3. Rotated spectrum-domain coordinate system.

and project (10) and (11) on and , we find that these
equations decouple into two sets of transmission line equations
of the form

(16)

where the superscript assumes the values ofor . Hence,
the components of and in the plane may be
interpreted as voltages and currents on a transmission-line
analog of the medium along theaxis, which was anticipated
in the notation introduced in (15). The propagation wavenum-
bers and the characteristic impedances and admittances of this
transmission line are given as

(17)

(18)

where the square root branch in (17) is specified by the
condition that . The voltage and current
sources in (16) are given by

(19)

In view of (15) and (12), (13), the spectral fields may now
be expressed as

(20)

(21)

which indicate that outside the source region and
represent fields that are, respectively, TM and TE

to . The space-domain fields are obtained from (20)
and (21) via the inverse transform (9).

The original vector problem of Fig. 2(a) has thus been
reduced to the scalar transmission line problem of Fig. 2(b).
Note that—since the superscript represents or —two
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transmission lines are involved and associated, respectively,
with the TM and TE partial fields.

IV. DYADIC GREEN’S FUNCTIONS

Consider the solutions of the transmission line equations
(16) for unit-strength impulsive sources. Hence, let
and denote the voltage and current, respectively, at

due to a 1-A shunt current source at, and let
and denote the voltage and current, respectively, at
due to a 1-V series voltage source at(see Fig. 4). Then, it
follows from (16) that these TLGF’s satisfy the following:

(22)

(23)

where is the Dirac delta, and that they possess the reciprocity
properties [77, p. 194]

(24)

The linearity of the transmission line equations (16) allows
one to obtain at any point via the superposition
integrals

(25)

Upon substituting these equations into (20) and (21) and using
(19), one obtains spectrum-domain counterparts of (3) and (4),
viz.

(26)

(27)

where the spectral DGF’s are given as

(28)

(29)

(30)

(31)

(a)

(b)

Fig. 4. Network problems for the determination of the transmission-line
Green’s functions.

In the above, the primed media parameters are evaluated at the
source coordinate , and this convention is used throughout
this paper. The space-domain DGF’s follow from (28)–(31)
upon first projecting the unit vectors on the -
coordinate system via (14) and then applying the inverse
transformation (9). In view of the translational symmetry of
the medium with respect to the transverse coordinates, we may
write

(32)

where

(33)

The spectral integrals that arise in (33) may be expressed as

(34)

where

(35)

is referred to as a Sommerfeld integral. Here,is the Bessel
function of order and are the cylindrical coordinates
of the projection of the field point on the plane. Note
that although (34) and (35) correspond to the case where the
source is on the axis, they are easily generalized for arbitrary
source locations by the substitutions

(36)

The spectral DGF’s (28)–(31) may directly be used in
integral-equation formulations based on the spectral domain
approach (SDA) [95]–[97]. The SDA and the space-domain
integral equation technique are formally equivalent, and only
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differ in the order in which the spatial and spectral integrations
are performed. However, the SDA is less flexible in terms of
the geometries it can handle and is in general less efficient than
the space-domain MPIE, because it leads to double spectral
integrals rather than Sommerfeld integrals [98].

V. MIXED POTENTIAL REPRESENTATIONS

Consider first the case where only electric currents are
present. It is then permissible to express the fields in terms
of vector and scalar potentials through the equations

(37)

The linearity of the problem allows us to write

(38)

where is the vector potential DGF. From (4) and
(37) (with ) it follows that

(39)

Since has already been determined, we will use this
relationship to obtain . The derivations are simplified
in the spectrum domain, where the operator nabla becomes

. Clearly, (39) does not uniquely specify
, making different formulations possible [60]. Here, we

postulate the form

(40)

which is consistent with the Sommerfeld’s choice of potentials
[99, p. 258] for a horizontal Hertzian dipole over a dielectric
half-space. This is more evident when (40) is projected on
the Cartesian-coordinate system via (14) and put in the matrix
form

(41)

which indicates that horizontal and vertical components of the
vector potential are involved for a horizontal current source.

To find the components of , we substitute (29)
and (40) into the spectrum-domain counterpart of (39), which
leads to the equations

(42)

(43)

(44)

where is the intrinsic impedance of free space.
From (42) and (44), upon using (18) and (22), we finally obtain

(45)

The scalar potential may be found from the auxiliary con-
dition

(46)

which can be shown to be consistent with the vector potential
obtained above. To arrive at the mixed-potential form of,
we postulate the decomposition

(47)

where is the scalar potential kernel and is the
correction factor, which arises in general when both horizontal
and vertical current components are present [41], [42], [60]. To
find and , we substitute (40) in the spectrum-domain
counterpart of (47) and, noting that , we
obtain

(48)

(49)

which upon using (22) and (23) yield

(50)

(51)

The space-domain counterparts of the spectral kernels de-
rived above can be expressed in terms of the Sommerfeld
integrals via (34)–(36). Hence, we find

(52)

(53)

(54)

(55)

(56)

(57)

We next substitute (46) and (47) in the second equation
of (37) and, after some transformations involving the Gauss’
theorem, arrive at

(58)

which is the desired mixed-potential representation of. Note
that the kernels in the above are given as Sommerfeld integrals
of spectral functions, for which explicit expressions in terms
of the TLGF’s have been derived.

When only magnetic currents are present, the analysis is
dual to that given above. The mixed-potential representation
for may be obtained from the above formulas by the
following replacements of symbols: , ,

, , , , , ,
, , , and . In the general case,

where both electric and magnetic currents are present, we
use superposition and, in view of (3) and (4), arrive at the
mixed-potential forms (5) and (6).
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Fig. 5. Voltage and current point sources in a transmission-line section.

Finally, we point out that the correction term in (58) may
be grouped with the vector potential term, resulting in an
alternative mixed-potential representation, which corresponds
to formulation C of Michalski and Zheng [60]. For planar
conductors, this formulation reduces to that of Mosig and
Gardiol [38].

VI. TRANSMISSION-LINE GREEN’S FUNCTIONS

The formulation developed so far is for an unspecified
stratification, since no assumption has been made regarding
the dependence of the media parameters. We now specialize
it to the case of a multilayered medium with piecewise-
constant parameters. The parameters pertaining to layerwith
boundaries at and are distinguished by a subscript.
The transmission line analog of the layered medium consists
of a cascade connection of uniform transmission line sections,
where section with terminals at and has propagation
constant and characteristic impedance . To find the
TLGF’s, we excite the transmission line network by unit-
strength voltage and current sources atin section and
compute the voltage and current atin section . Hence,
the primed media parameters assume the values pertaining
to layer , while the unprimed ones are those of layer.
The source section is illustrated in Fig. 5, where and
are the voltage reflection coefficients looking to the left and
right, respectively, out of the terminals of section. These
coefficients, which are referred to and , respectively,
may be computed from the relations

(59)

(60)

where

(61)

and with . These formulas
follow from the source-free transmission line equations (16)
and the continuity of the voltages and currents at the line
junctions. One applies (59) and (60) recursively beginning at,
respectively, the left and the right ends of the transmission
line network.

Consider first the case , when is within the source
section. The TLGF is then readily determined from (22) as

(62)

where

(63)

(64)

(65)

The first term in (62) represents the direct ray between the
source and the field point, while the second term represents
the rays that undergo partial reflections at the upper and lower
slab boundaries before reaching the observation point. The
remaining TLGF’s may readily be derived from (62) upon
using (22)–(24). For example, one may obtainfrom via
the first equation of (22), from which follows via the third
equation of (24). The result is

(66)

where the upper and lower signs pertain to and
, respectively. To conserve space, we do not list the

expressions for and which, as is evident from (22) and
(23), are dual to those for and , respectively, and may
be obtained from the latter by replacing the impedances by
admittances (which has also the effect of changing the signs
of the reflection coefficients). Observe that the discontinuous
terms appearing in and cancel out when the TE and
TM TLGF’s are subtracted to form and .

Consider next the case , when is outside the source
section and . Given the voltage across the left
terminals of section , the voltage and current at
any point in section can be found from the homogeneous
form of the transmission-line equations (16) as [100]

(67)

where

(68)

with , and where

(69)

(70)



MICHALSKI AND MOSIG: GREEN’S FUNCTIONS IN INTEGRAL EQUATION FORMULATIONS 515

It is understood that the product in (67) is equal to one if
the lower limit exceeds the upper limit. Note that (67) is
applicable irrespective of the source type. Hence, if section

is excited by a unit-strength current source at, then
, and and represent

and , respectively. If, on the other hand, section
is excited by a unit-strength voltage source at, then

, and and represent
and , respectively.

Analogous formulas may be developed for the case ,
when is outside the source section and . However,
this is hardly necessary because the reciprocity theorems (24)
allow one to interchange the source and field point locations.
For example, may be computed as . This
application of reciprocity also results in a shorter and more
efficient computer code.

VII. D ISCUSSION OFSOMMERFELD INTEGRALS

The computation of the Sommerfeld integrals (35) is a
difficult task because of the in general oscillatory and divergent
behavior of the integrands and the occurrence of singularities
near the integration path in the complex plane [44], [45].
Since these integrals must be repeatedly evaluated in filling
of the MOM matrix, their efficient computation is of para-
mount importance and has been the subject of much research.
Nevertheless, it is fair to say that a completely satisfactory
solution to this problem is still lacking, especially in the case
of arbitrarily shaped objects extending over more than one
layer of the multilayered medium. A detailed treatment of the
Sommerfeld integration being outside the scope of this article,
here we only highlight some of the techniques involved.

The integrand singularities, which occur in complex-
conjugate pairs in the second and fourth quadrants of the

plane, consist of poles and branch points [101, p. 111].
In the lossless case some of these singularities appear on the
real axis and the integration path in (35) must be indented
into the first quadrant to avoid them. The branch points
only occur for vertically unbounded media, i.e., when the
top and/or the bottom layer is a half-space. In this case,
the integration path must approach infinity on the proper
sheet of the Riemann surface associated with the longitudinal
propagation wavenumbers (17) of the half-spaces. The poles
are associated with the TM and TE guided waves and are
found as roots of the resonant denominator (63) in any finite-
thickness layer, or as roots of the denominator of the reflection
coefficient (59) or (60) looking into the layered medium from
a half-space. The number of poles is in general infinite, but
only a finite number of them appear on the proper sheet in
the case of vertically unbounded media. Various integration
paths in the plane have been employed [38], [61], [102],
[103], but the real-axis path, indented into the first quadrant
to avoid the branch-point and pole singularities [104], has
proven to be most convenient for multilayered media, because
it obviates the need to locate the poles. When , the
integral over the real axis tail of the path may be computed
as a sum of an alternating series of integrals between zeros
of the Bessel function. To speed up the convergence, series
acceleration techniques, such as the method of averages [38],

[45], [105] or the continued fraction expansion [106], may
then be applied.

Even with the state-of-the-art techniques, the Sommerfeld
integrals may take a significant part of the overall compu-
tational effort involved in the solution of the MPIE. One
attractive remedy is to precompute these integrals on a grid
of points in the solution domain and to use table look-up
and interpolation techniques. For arbitrarily shaped objects,
3-D interpolation in , , and is required [2], except for
objects confined to a single layer, when one may split the
kernels into parts depending on and ,
and compute them separately using 2-D interpolations [102].
Only 1-D interpolation in is needed for strictly planar
microstrip structures, which leads to a particularly efficient
solution procedure [45], [105].

Another approach, which came into prominence recently, is
the discrete complex image method (DCIM) [52], [107]–[113].
The basic idea of the DCIM is to extract from the spectral
kernel its quasistatic part and its guided wave terms, and to
approximate the remainder function by a sum of complex
exponentials, using an established systems identification pro-
cedure [114]. The Sommerfeld integrals are then evaluated in
closed form via the Sommerfeld identity [101, p. 66]. Since
DCIM obviates numerical integration, it affords at least an
order-of-magnitude speed-up in the MOM matrix fill time
[115]. However, to gain this advantage, the objects must be
confined to a single layer and the quasi-static terms must
be invertible in closed form. Also, DCIM has no built-in
convergence measures and its accuracy can only be ascertained
a posterioriby checking the results against those obtained by
Sommerfeld integration. Furthermore, the application of this
method in multilayered media is currently impeded by the
lack of reliable automated procedures for the extraction of the
guided wave poles.

VIII. SHIELDED ENVIRONMENTS

Although the formulation presented so far can easily accom-
modate horizontal perfectly conducting or impedance ground
planes, the underlying assumption has been that the layered
medium is of infinite lateral extent. We now extend this
theory to the practically important case of a layered medium
enclosed by a rectangular shield with PEC walls. The cross-
sectional dimensions of the shield are , as illustrated in
Fig. 6. Note that the shield forms a rectangular waveguide
along the axis [116], or a rectangular cavity—if it is
sandwiched between horizontal ground planes [117]. Here,
we represent the effect of the side walls by a set of image
sources radiating in a laterally unbounded medium [81, p.
103], [118], which makes it possible to take advantage of
the formulation developed in the preceding sections. We then
convert the image representations to the formally equivalent
modal (spectrum-domain) expansions.

To begin with, consider a point charge located at
inside the rectangular shield and its three images

located at , , and , as
illustrated in Fig. 6. Note that the polarities (signs) of these
images are consistent with the boundary conditions at two
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Fig. 6. Point charge inside a rectangular shield and its images in thex = 0

and y = 0 PEC planes.

TABLE I
IMAGE SIGN COEFFICIENTS FORELECTRIC SOURCES

intersecting PEC ground planes defined by and .
The so-constructed four-source set (the original source plus
the three images) forms thebasic image set(BIS). Note that
the BIS is located within the reference cellcentered
at . Similar image sets may be constructed
for -, -, and -oriented current elements. The polarities of
the images for different sources are conveniently described
by two sign coefficients, and , where if the
polarity of the image in the PEC wall is the same as
that of the original source, and if the imaged source
undergoes a sign reversal. The values ofand for electric
sources are listed in Table I. For magnetic sources, all signs
should be reversed.

To maintain the correct boundary conditions at the four side
walls, the BIS of the reference cell must be imaged in the

and PEC planes, and the new image sets must
again be imaged in the and planes, etc. As a result,
a doubly periodic lattice of BIS’s is obtained, with periods
and along the and axes, respectively. Since these sources
are now embedded in a transversely unbounded medium, they
may be analyzed within the framework of the theory developed
in the previous sections. Hence, if is
a scalar potential kernel or a scalar component of a dyadic
kernel (or Green’s function) in thelaterally open medium, we
find that the corresponding kernel,, in the laterally shielded

environmentis given by

(71)

The sign coefficients and in the above depend on
the type of the kernel or Green’s function considered. For
example, if represents , which is the component of the
vector potential Green’s function due to an-directed current
element, we find from Table I that and .
For the scalar potential and correction kernels and ,
the sign coefficients are those associated with.

The spatial sum (71) may be transformed by the Poisson’s
formula [119, p. 47] into the spectral sum [120]

(72)

where , . Furthermore, the series in
the above may be folded, with the result

(73)

where for and for , and where

(74)

(75)

We have introduced in the above the sign coefficients
and , defined as follows: ( ) if is an even
(odd) function of . For example, if represents , the
inspection of (41) and (45) indicates that and

. When the reference cell in Fig. 6 is centered at an arbitrary
point , rather than at , the above formulas must
be modified by the substitutions
and .

The double series in (73) is slowly convergent, especially
when , which is often the case in the analysis of
planar microstrip structures, and must in practice be ac-
celerated. This may be accomplished by subtracting from

its quasistatic form, , which converts (73) into a
rapidly converging series, becauseand have the same
asymptotic behavior. The double series of the subtracted
quasistatic terms is then added back in its spatial form (71).
Since the latter is comprised of the direct and quasistatic
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image terms, it is amenable to the well-established acceleration
methods [70], [121]–[124]. These techniques employ mixed-
domain representations involving both a space-domain and a
spectrum-domain series and have an arbitrary parameter which
distributes the computational burden between the two domains.
In a simpler approach [125], [126], one of the asymptotic series
is left in the space domain and the other is transformed via a 1-
D Poisson’s formula, leading to a rapidly convergent series of
modified Bessel functions of the second kind. The quasi-static
terms must be invertible in closed form for these techniques
to be applicable.

IX. CONCLUSION

We have presented a simple derivation of the dyadic Green’s
functions for plane-stratified, multilayered, uniaxial media,
based on the transmission-line network analog along the axis
normal to the stratification [77]. Within the framework of
this transmission-line formalism, we have also derived mixed-
potential integral equations (MPIE’s) for arbitrarily shaped,
conducting or penetrable objects embedded in the multilayered
medium. The formulation presented here is compact and
computationally efficient, and it affords much insight into
the various Green’s functions and kernels, because the be-
havior of the transmission-line voltages and currents—which
are governed by the simple telegraphist’s equations—is well
understood. The MPIE’s derived here are well-suited for the
analysis of inhomogeneities buried in layered earth and for
the modeling of integrated dielectric waveguides, probe-fed
and aperture-coupled microstrip patch antennas and arrays,
as well as complex microwave integrated circuits—including
those comprising vertical transitions, air-bridges, and vias.
There has been a definite trend recently to use MPIE’s even
for strictly planar microstrip structures. Among the integral
equation formulations, the space-domain MPIE approach is, in
our experience, the most versatile and efficient way to analyze
complex 3-D objects embedded in multilayered media.
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