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ABSTRACT

In this paper, we deal with the design of high-rate multilevel two-dimensional (2D) bar codes for the print-and-
scan channel. Firstly, we derive an upper bound on the maximum achievable rate of these codes by studying an
inter-symbol interference (ISI) free, perfectly synchronized, and noiseless print-and-scan channel, in which the
printer device uses halftoning to simulate multiple gray levels. Secondly, we briefly review three state-of-the-art
coded modulation techniques for the additive white Gaussian noise channel (AWGN) in the high signal-to-noise
(SNR) ratio regime, namely, multilevel coding with multistage decoding (MLC/MSD), multilevel coding with
parallel independent decoding (MLC/PID), and bit-interleaved coded modulation (BICM). Thirdly, we present
a new model of the print-and-scan channel specifically adapted to the multilevel 2D bar code application. This
model, inspired by our experimental work, assumes no ISI and perfect synchronization, but independence between
the channel input and the noise is not supposed. We study the problem of finding the information capacity of our
channel model and extend the theory of MLC/MSD to this type of channels. Finally, we present experimental
results confirming the validity of our channel model, and showing that multilevel 2D bar codes using MLC/MSD
can reliably achieve the high-rate storage requirements of many multimedia security and data management
applications.
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1. INTRODUCTION

Two-dimensional bar codes are very attractive for various applications, where a significant amount of data needs
to be stored onto paper, plastic or other information carriers. Another attractive characteristic of 2D bar codes
as information storage modules consists in their low price: cheap printer and reader devices exist for the most
common media. For example, laser or inkjet halftone printers can be used for printing on paper; laser engraving,
a cheap and high quality technique, can be used for printing on plastic; furthermore, cheap and low-resolution
charged coupled device (CCD) based scanners or digital cameras, like those present in cell phones, can be used
for reading the printed information.

For the above reasons, 2D bar codes are being considered for new emerging applications such as M-ticketing,
where they carry selected information of a ticket that is received via a mobile phone; reliable and secure personal

identification,1 where they store personal biometric data on the identification document; and visual communi-

cations with side information,2 where they can be used as an auxiliary channel conveying additional data for
improving visual communications.

However, current 2D bar codes do not offer enough storage capability for these new applications. In part, this
is because most of them use only black and white (B&W) 2D symbols for representing data and corresponding
binary coding technology. Only few proposals exist (commercial and non-commercial) that use multiple gray
levels or colors for the 2D symbols. We call this type of symbologies multilevel 2D bar codes. Although multi-
level 2D bar codes can potentially increase the achievable rates, in bytes per square inch (bytes/in2), of B&W
symbologies, little research has been done on how to efficiently design and implement this approach. Therefore,
the main goal of this paper is to give a number of guidelines for the design of cheap and high-rate multilevel 2D
bar codes.

For further information contact S. Voloshynovskiy. E-mail: svolos@cui.unige.ch (http://sip.unige.ch)
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This paper is organized as follows. The description of the problem framework and a review of multilevel
coding for the AWGN channel is given in Section 2. A new model for the print-and-scan channel adapted to the
multilevel 2D bar code application is presented in Section 3. The extension of the theory of multilevel coding
to this new channel model is considered in Section 4. Computer simulation results are presented in Section 5.
Finally, Section 6 concludes the paper and describes future work.

Notations. We use capital letters X to denote scalar random variables, bold capital letters X to denote
vector random variables and corresponding small letters x and x to denote the realizations of scalar and vector
random variables, respectively. The probability mass (resp. density) function or p.m.f. (resp. p.d.f.) of a discrete
(resp. continuous) random variable X is denoted pX(·) (resp. fX(·)). When no confusion is possible we write
p(x) (resp. f(x)) instead of pX(x) (resp. fX(x)). We use X ∼ pX(·) to indicate that the random variable X is
distributed according to pX(·). The mathematical expectation of a random variable X ∼ pX(·) is denoted by
EpX

[X] or simply by E[X] or µX . Var[X] or σ2
X denote the variance of X. Calligraphic letters X denote sets

and |X | denotes the cardinality of X . The entropy (resp. differential entropy) of a discrete (resp. continuous)
random variable X is denoted H(X) (resp. h(X)).

2. FRAMEWORK AND MULTILEVEL CODING

Within the scope of this paper, the print-and-scan channel is studied only for the case of B&W halftone printers
and low-resolution CCD-based scanners (up to 600 ppi). However, our approach can be easily extended and
applied to other type of devices. In this section, we derive an upper bound on the maximum achievable rate
of reliable communications over this particular instance of the print-and-scan channel. We also review the
fundamentals of multilevel coding for the AWGN channel.

2.1. Upper bound on the maximum achievable rate

Halftone printers simulate multiple gray levels by using the so-called halftoning3 technique. It is fairly easy to
compute an upper bound on the maximum achievable rate of 2D bar codes when a halftone printer implementing
clustered-dot ordered dithering3 is used (e.g. laser printer). For this purpose, assume that ideal printer and
scanner devices are exploited so that the ISI can be avoided. Furthermore, suppose perfect synchronization,
meaning that all 2D symbols can be perfectly read. Let rp represent the printer’s resolution measured in dots
per inch (dpi), a be the length in dots of the side of a square halftone cell∗ (Figure 1(a)), and rs denote the
scanner’s resolution measured in pixels per inch (ppi). In this case, the printer produces (rp/a)2 halftone cells

a

(a)

1 inch

1 inch

rp/arp/a

(b)

Figure 1. Clustered-dot ordered dithering. (a) Square halftone cell of a-by-a dots. (b) Array of halftone cells.

per square inch (Figure 1(b)) and each halftone cell can represent up to a2 +1 equivalent gray levels.3 Assuming
we use a halftone cell as 2D symbol, we can place up to:

U = (rp/a)2 · log 2(a
2 + 1) (1)

information bits per square inch. This upper bound is strictly decreasing for positive integer values of a (Figure 2).
At first, since the maximum value is obtained for a = 1, it seems that the best one can do is to use only B&W
symbols. However, for this situation, the minimum scanner resolution to be used is rs ≥ rp, which is incongruent
to our low-resolution requirement for this device. On the other hand, if a > 1, meaning that we use a2 + 1 gray

∗The quotient rp/a (Figure 1(b)) is usually known as the printer’s screen frequency and is measured in lines per inch
(lpi).
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Figure 2. Upper bound on the maximum achievable rate of multilevel 2D bar codes when a halftone printer implementing
clustered-dot ordered dithering is used.

levels, the minimum scanner resolution to be used is rs ≥ rp/a. This implies that for given printer and scanner
resolutions there is an optimum number of gray levels to be used, which is (rp/rs)

2 + 1 for our ideal setup, such
that the achievable rate of the multilevel 2D bar code is maximized.

2.2. Multilevel coding for the AWGN channel

The idea of coded modulation is to jointly optimize coding and modulation in order to improve the performance
of digital communication schemes.4 Multilevel coding with multistage decoding, multilevel coding with parallel
independent decoding, and bit-interleaved coded modulation are three well-known bandwidth-efficient schemes
for the AWGN channel in the high-SNR regime.5–11 In the following paragraphs we recall the fundamental ideas
behind these coded modulation schemes.

Consider the discrete-time AWGN channel:

Y = X + Z, X ∈ X , Y ∈ Y, Z ∼ N (0, σ2
Z), (2)

where X (resp. Y) is the input (resp. output) alphabet, X (resp. Y ) is the channel input (resp. output) and Z
represents the noise. For each channel use, the noise Z is drawn i.i.d. from a zero-mean Gaussian distribution
with variance σ2

Z and is assumed to be independent from the channel input X. Given the channel input variance
σ2

X , the capacity of this channel, in bits per channel use, is:

CAWGN = max
pX(·)

I(X;Y ) =
1

2
log2

(

1 +
σ2

X

σ2
Z

)

, (3)

which is attained when the channel input X is Gaussian, say X ∼ N (0, σ2
X).

Due to the technical impossibility of using either a continuous or an infinite input alphabet, practical systems
usually employ a discrete and finite M = 2L– ary input alphabet (signal constellation), i.e. |X | = 2L. It is then
customary to assign a label (binary address vector) to each signal point by means of a bijective mapping µ:

(x0, x1, . . . , xL−1) 7→
µ

x, xi ∈ B = {0, 1}, x ∈ X , i = 0, 1, . . . , L − 1. (4)

Given a specific probability distribution {p(x) : x ∈ X} over the channel inputs, the maximum rate of reliable
communications of such systems is given by the mutual information I(X;Y ) between the channel input X and
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the channel output Y . We now briefly review MLC/MSD, MLC/PID, and BICM, which are coded modulation
schemes capable of approaching I(X;Y )†. The reader is encouraged to consult the corresponding references for
more details.

Remarkably, MLC/MSD6–8 is a straightforward consequence of the chain rule for mutual information. Since
the mapping µ in (4) is bijective, the mutual information I(X;Y ) between the transmitted signal X and the
received signal Y equals the mutual information I(X0,X1, . . . ,XL−1;Y ) between the address vector and the
received signal Y . Applying the chain rule for mutual information, we get:

I(X;Y ) = I(X0,X1, . . . ,XL−1;Y )

= I(X0;Y ) + I(X1;Y |X0) + . . . + I(XL−1;Y |X0,X1, . . . ,XL−2).
(5)

Equation (5) may be interpreted as follows. Transmission of vectors with binary digits xi, i = 0, 1, . . . , L − 1,
over the physical channel can be separated into the parallel transmission of individual bits xi over L equivalent
channels, provided that x0, x1, . . . , xi−1 are known. At the transmitter side (Figure 3), a binary data block of
length K bits is partitioned into L sub-blocks:

q = (q1, . . . , qK), qk ∈ B, k = 1, . . . ,K, (6)

q = (q0, . . . ,qL−1), qi = (qi
1, . . . , q

i
Ki

), i = 0, 1, . . . , L − 1,

L−1
∑

i=0

Ki = K. (7)

Each data sub-block qi is fed into an individual binary encoder Ei of rate Ri = Ki/N producing a codeword:

xi = (xi
1, . . . , x

i
N ), xi

n ∈ B, n = 1, . . . , N, i = 0, 1, . . . , L − 1, (8)

of the corresponding component code. In this manner L levels of coding are created. In principle, any binary

Partitioning

of

data

Mapping

µµ

q0q0

q1q1

qL−1qL−1

E1E1

E0E0

EL−1EL−1

. 
. 
.

xL−1xL−1

x0x0

x1x1 xxqq

Figure 3. Multilevel encoder.

code can be used as a component code, e.g. block codes, convolutional codes, concatenated codes, etc.12–14

For simplicity, we assume that all codewords have equal length, N bits, at all levels. Then, the n-th bit xi
n,

n = 1, . . . , N , of every codeword xi is selected to form a binary label (x0
n, x1

n, . . . , xL−1
n ) of L bits, which is

mapped via µ to a signal point xn ∈ X . In this way, we obtain a vector:

x = (x1, . . . , xN ), xn ∈ X , n = 1, . . . , N, (9)

of N channel inputs, which are serially transmitted over the AWGN channel. It is very easy to show that the
code rate of the overall scheme, R = K/N , is equal to the sum of the individual code rates, i.e.:

L−1
∑

i=0

Ri =

L−1
∑

i=0

Ki

N
=

1

N

L−1
∑

i=0

Ki =
K

N
= R. (10)

†In order to approach the capacity of the AWGN channel, i.e. max
pX (·)

I(X; Y ), these schemes need to combine coding

with signal shaping.
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At the receiver side, the component codes are successively decoded by the corresponding decoders starting from
the lowest level. At any stage i, i = 0, 1, . . . , L − 1, the decoder processes not only the N received signal points:

y = (y1, . . . , yN ), yn ∈ Y, n = 1, . . . , N, (11)

but also decisions of previous decoding stages:

x̂j = (x̂j
1, . . . , x̂

j
N ), x̂j

n ∈ B, n = 1, . . . , N, j = 0, 1, . . . , i − 1. (12)

The block diagram of the receiver is shown in Figure 4. For simplicity, this diagram doest not represent neither
the ‘Data selection’ block, which outputs q̂0, . . . , q̂L−1 nor the ‘Concatenation of data’ block, which outputs
q̂. One can demonstrate that MLC/MSD corresponds to transmission over L equivalent channels and prove

D0D0

DL−1DL−1

D1D1

. . .. 
. 
.

x̂L−1x̂L−1

x̂0x̂0

x̂1x̂1yy

Figure 4. Multistage decoder.

that the maximum achievable rate of a modulation scheme (e.g. 8–PAM) with given a-priori probabilities of its
signal constellation points can indeed be achieved by MLC/MSD if, and only if, the individual rates Ri of the
component codes are chosen to be equal to the capacities of the equivalent channels, i.e:

Ri = I(Xi;Y |X0,X1, . . . ,Xi−1), i = 0, 1, . . . , L − 1. (13)

This is the so-called capacity rule for choosing the individual code rates.7 In principle, there is no restriction on
the particular labeling used in MLC/MSD. Nevertheless, for finite codeword length, Ungerböck’s labeling turns
out to lead to the highest performance among MLC/MSD schemes with different labelings.

In the MLC/PID7, 8 approach, the decoders do not process decisions of previous levels, meaning that indi-
vidual levels are decoded in parallel (Figure 5). In contrast to the MLC/MSD scheme, the maximum achievable

D0D0

DL−1DL−1

D1D1

. 
. 
.

x̂L−1x̂L−1

x̂0x̂0

x̂1x̂1yy

Figure 5. Parallel independent decoder.

rate of a modulation scheme using MLC/PID strongly depends on the particular labeling of signal points. Nev-
ertheless, it can be shown that for very large codeword lengths N , the performance gap between MLC/PID
and MLC/MSD is very small when Gray labeling is used.7 Similar results with respect to how to choose the
individual rates of the component codes can also be obtained for this scheme.

BICM9, 10 was first proposed for fading channels, but turned out to be capable of approaching the capacity
of the AWGN channel in the high-SNR regime. Moreover, it can be shown that BICM is actually a derivative
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of the MLC/PID scheme using a single binary code. A BICM transmitter comprises an encoder for a binary
code C, a bit interleaver, and a signal mapper. The output sequence of the bit interleaver is segmented into
L-bit blocks, which are mapped into a signal point of a 2L-ary constellation using Gray labeling. A BICM
transmitter and receiver pair is shown in Figure 6. Although BICM cannot operate arbitrarily close to capacity,

Encoder
Bit

interleaver
Modulatorqq xx

(a)

Deinterleaver DecoderDemodulatoryy q̂̂q

(b)

Figure 6. Bit interleaved coded modulation. (a) BICM transmitter. (b) BICM receiver.

good performance close to capacity can be obtained if C is a long parallel or serially concatenated Turbo code,
and the decoder is an iterative Turbo decoder.9

3. PRINT-AND-SCAN CHANNEL MODEL

We consider the problem of data transmission via the print-and-scan channel as a digital communications problem
in the high-SNR regime. Thus a 2D bar code symbol is modeled as a signal (pulse) and signaling using multiple
gray levels is modeled by pulse amplitude modulation (PAM).

The print-and-scan channel is such that it introduces several types of distortions, specifically, luminance
transformations, scaling, rotation, low pass filtering, aliasing, and noise. Furthermore, its behavior will depend
on the selected image resolution (in ppi); the parameters used for printing, namely, resolution (in dpi), screen
frequency (in lpi), and halftoning algorithm; and the parameters used for scanning, namely, resolution (in ppi),
bit-depth, tone correction (e.g. γ-correction), and driver filters (e.g. descreening filter).

Let ri be the selected image resolution. Without loss of generality, we only consider the case in which rs ≥ ri.
Although a general model of the print-and-scan channel has been proposed for the case when rs = ri,

15, 16 we
do not use it here because, in general, a synchronization algorithm is required in this case for correctly reading
and decoding the 2D symbols. Since in this work we do not address synchronization problems, we only consider
the case in which rs > ri and make some assumptions in order to simplify the channel model.

Let us fix the shape of the 2D symbol to be a square and use some space between symbols to avoid the ISI
produced by the print-and-scan channel.16 In Figure 7, we show an example of such a multilevel 2D bar code.

(a) (b)

Figure 7. Eight–level 2D bar code. (a) Original digital image: 2×2 pixel symbols, 1 pixel of inter-symbol space, ri = 200
ppi. (b) Printed-and-scanned digital image: rp = 600 dpi, rs = 3 · ri = 600 ppi, 6 × 6 pixel noisy symbols.

Based on our experimental results, reported in Sections 5.1 and 5.2, we model the print-and-scan channel as:

Y = ϕ(X) + Z, X ∈ X , Y ∈ Y = R, (14)
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where X (the channel input) represents the gray value of a 2D symbol, ϕ : X → [−1,+1] is a nonlinear function
representing the response of the print-and-scan channel, Z represents zero-mean additive noise, and Y (the
channel output) represents the obtained gray value of the corresponding 2D symbol. Gray values are represented
as numbers in the interval [−1,+1]‡. For an M–ary multilevel 2D bar code system, we have |X | = M . The
function ϕ(·) is in general different for every particular instance of the print-and-scan channel, i.e. for every
printer and scanner combination. Contrary to what is usually assumed, the noise term Z is not assumed to
be independent of the gray value X. In fact, we approximate the probability distribution of Z by a Gaussian
distribution with variance depending on the channel input X. Thus, we model Z as:

Z = σZ(X) · W, (15)

where, for each channel use, W is drawn i.i.d. from a standard normal distribution N (0, 1) independently from
X, and σZ : X → R

+ is a function that determines the noise variance given the channel input X.

Our print-and-scan channel model is depicted in Figure 8. This figure does not explicitly show the modulation

ϕ(·)ϕ(·)

σZ (·)σZ (·)

W ∼ N (0, 1)W ∼ N (0, 1)

+

×

XX

ZZ

YY

Figure 8. Model for the print-and-scan channel.

and demodulation steps. Given a gray value X, the modulation step consists in creating a square (e.g. a 2×2 pixel
square) with gray value X and the demodulation step consists in determining the gray value Y best describing
the received square (e.g. a 4 × 4 pixel square if rs = 2 · ri). Notice also that our channel model assumes perfect
synchronization at the receiver side. A block diagram showing the different elements considered in our model
is depicted in Figure 9. Observe that since the demodulation algorithm is to be chosen, the performance of a
multilevel 2D bar code system will be influenced by the demodulation step.

mod print scan demod

4

42

2

ri

X Y

resolution

screen frequency

halftoning algorithm

resolution

bit-depth

tone correction

driver filtering

rs

Figure 9. Modulation and demodulation steps for communications over the print-and-scan channel.

As a final remark, notice that we can guarantee that our system works in the high-SNR regime by making
the 2D symbols large enough (or equivalently, increasing their energy). This condition being satisfied allows us
to use powerful coded modulation techniques.

‡It is customary to encode 8-bit gray images using decimal numbers from 0 (black) to 255 (white). We use the linear
transform T (x) = 2

255
x − 1 in order to normalize gray values to the interval [−1, +1].
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4. MULTILEVEL CODING FOR PRINT-AND-SCAN CHANNELS

In this section, we extend the theory of MLC/MSD to the case of the print-and-scan channel modeled by (14)
and (15).

Suppose we use an M–ary (|X | = M = 2L) modulation system with given a-priori probabilities of the signal
constellation points {p(x) : x ∈ X}. Since our channel is memoryless, i.e. the output Y depends solely on the
current channel input X and current noise term Z, the maximum rate of reliable communications is given by the
mutual information I(X;Y ). Although we cannot provide a closed-form expression for I(X;Y ) it is fairly easy
to compute it numerically. By definition:

I(X;Y ) = h(Y ) − h(Y |X). (16)

Firstly, we can compute the term h(Y ) in (16) as follows. By definition:

h(Y ) = −

∫

Y

f(y) log f(y) dy. (17)

In order to numerically compute the integral in (17), we need to specify f(y). This can be done by conditioning
on X:

f(y) =
∑

x∈X

f(y|x)p(x). (18)

The term f(y|x) in (18) can be obtained noting that Y |X = x has a Gaussian distribution with mean ϕ(x) and
variance σ2

Z(x), i.e. (Y |X = x) ∼ N (ϕ(x), σ2
Z(x)).

Secondly, the term h(Y |X) in (16) can be computed as follows:

h(Y |X) = h(ϕ(X) + Z|X) = h(Z|X) =
∑

x∈X

h(Z|X = x)p(x), (19)

where we used (14) and the definition of conditional differential entropy. Since Z|X = x has a Gaussian
distribution with zero mean and variance σ2

Z(x), we have h(Z|X = x) = 1
2 log(2πeσ2

Z(x)). Therefore,

h(Y |X) =
∑

x∈X

1

2
log(2πeσ2

Z(x))p(x) = EpX

[

1

2
log(2πeσ2

Z(X))

]

. (20)

Although we are able to compute I(X;Y ) for any given input distribution pX(·), the problem of finding the
capacity max

pX(·)
I(X;Y ) of the print-and-scan channel is more involved. The difficulty arises from the fact that

both terms in the right-hand-side of (16) depend on pX(·).

However, we can follow the same reasoning and notation as in Section 2.2 and still make use of MLC/MSD
in order to approach I(X;Y ). The main difference with respect to the AWGN channel is that in our case we
have to take into account the dependence of the channel input X and the noise Z. For i = 0, 1, . . . , L − 1, the
individual rates Ri of the component codes can be computed as follows:

Ri = I(Xi;Y |X0, . . . ,Xi−1) = h(Y |X0, . . . ,Xi−1) − h(Y |X0, . . . ,Xi−1,Xi). (21)

We compute the term h(Y |X0, . . . ,Xi−1) in (21) as follows. By definition:

h(Y |X0, . . . ,Xi−1) =
∑

(x0,...,xi−1)∈Bi

h(Y |X0 = x0, . . . ,Xi−1 = xi−1)p(x0, . . . , xi−1), (22)

and

h(Y |X0 = x0, . . . ,Xi−1 = xi−1) = −

∫

Y

f(y|x0, . . . , xi−1) log f(y|x0, . . . , xi−1) dy. (23)
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Figure 10. Print-and-scan channel characterization. (a) Sample mean µ̂Y |X(x). (b) Square root of the sample variance
σ̂2

Y |X(x).

Hence, in order to compute h(Y |X0 = x0, . . . ,Xi−1 = xi−1) we need to specify f(y|x0, . . . , xi−1). This can be
done by conditioning on Xi, . . . ,XL−1:

f(y|x0, . . . , xi−1) =
∑

(xi,...,xL−1)∈BL−i

f(y|x0, . . . , xi−1, xi, . . . , xL−1)p(xi, . . . , xL−1)

=
∑

(xi,...,xL−1)∈BL−i

f(y|µ(x0, . . . , xL−1))p(xi, . . . , xL−1).
(24)

Exactly like for f(y) in (18), f(y|µ(x0, . . . , xL−1)) can be obtained noting that (Y |X = x) ∼ N (ϕ(x), σ2
Z(x)).

Obviously, we can proceed in the same manner in order to compute the term h(Y |X0, . . . ,Xi−1,Xi) in (21).
Finally, notice that since f(y|µ(x0, . . . , xL−1)) depends on the actual mapping µ, Ri in (21) will also be mapping
dependent for i = 0, 1, . . . , L − 1.

5. COMPUTER SIMULATION RESULTS

The experimental study performed in the scope of this work can be divided in three parts: characterization of
the print-and-scan channel, rate design for MLC/MSD over the print-and-scan channel, and performance results
of MLC/MSD in terms of achievable rate and bit error rate (BER). We exploited the following equipment in our
experiments:

• Halftone printer: HP Color LaserJet 4600 (B&W mode, 600 dpi);

• CCD-based scanner: Epson Perfection 3170 Photo.

The settings that were used for the experiments are described below. Printer: resolution rp = 600 dpi, default
screen frequency, and default halftoning algorithm. Scanner: rs = 600 ppi, 8 bits of bit-depth, black point set
to 23, white point set to 248, γ–correction set to 1, and no driver filtering.

Furthermore, we used 2 × 2 pixel 2D symbols and 1 pixel of inter-symbol space. The image resolution
parameter ri of all our digital images was set to 200 ppi. Finally, the demodulation algorithm (Figure 9) we used
consisted in averaging the gray values of all but the borderline pixels of a noisy 2D symbol§. As an example,

§We do not take into account borderline pixels in order to reduce desynchronization problems. The choice rs = 3 · ri

is justified by the same reason.
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we show in Figure 7 the original and noisy versions of a 2D multilevel bar code printed-and-scanned under the
above conditions.

5.1. Characterization of the print-and-scan channel

In this experiment, all gray levels from 0 (black) to 255 (white) were used. For each gray level x ∈ [−1,+1],
J = 200 bar code symbols with gray level x were sent through the print-and-scan channel. Then, the sample mean
µ̂Y |X(x) and sample variance σ̂2

Y |X(x) of the received noisy symbols yj(x) ∈ R, j = 1, . . . , J, were computed¶.

We show in Figures 10(a) and 10(b) the obtained results for all the 256 tested gray levels.

The channel response ϕ(·) was then approximated by the sample mean µ̂Y |X(x), i.e. ϕ(x) = µ̂Y |X(x), and
the noise variance σ2

Z(·) by the sample variance σ̂2
Y |X(x), i.e. σ2

Z(x) = σ̂2
Y |X(x).

5.2. Rate design for MLC/MSD over the print-and-scan channel

First, by using the estimated ϕ(·) and σ2
Z(·), we selected a signal constellation X in such a way that the received

signal points were close to each other where the noise variance was small and farther apart where the noise
variance was large. Specifically, we selected the following non-equidistant 8–PAM signal constellation:

X = {0, 99, 120, 141, 176, 199, 216, 255}. (25)

In Figure 11, we schematize the employed algorithm for selecting this constellation.

-1 -0.87 -0.73 -0.60 -0.47 -0.33 -0.20 -0.07 0.07 0.20 0.33 0.47 0.60 0.73 0.87 1 
-1 

-0.87

-0.73

-0.60

-0.47

-0.33

-0.20

-0.07

0.07

0.20

0.33

0.47

0.60

0.73

0.87

1 
0 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255

99

120

141

176

199

216

ϕ(x)− σZ (x)ϕ(x)− σZ (x)

ϕ(x) + σZ (x)ϕ(x) + σZ (x)

ϕ(x)ϕ(x)

Figure 11. Non-equidistant 8–PAM signal constellation.

Second, we assigned uniform priors to the signal points in X and sent each of them 3200 times over the
print-and-scan channel. We show in Figure 12 the frequency distribution of the received signal points for each
x ∈ X . We observe from this figure that given a signal point x ∈ X , the conditional noise distribution fZ|X(·|x)
can be approximated, at first order, by a Gaussian distribution with mean ϕ(x) and variance σ2

Z(x).

Finally, by using the procedure described in Section 4, we numerically computed the rates Ri, i = 0, 1, 2, of
a non-equidistant 8–PAM MLC/MSD scheme employing Ungerböck’s labeling:

R0 = 0.519, R1 = 0.981, R2 = 1. (26)

¶The following estimators were used: µ̂Y |X(x) = 1
J

PJ

j=1 yj(x) and σ̂2
Y |X(x) = 1

J−1

PJ

j=1(yj(x) − µ̂Y |X(x))2.
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Figure 12. Frequency distribution of the received signal points for each x ∈ X .

5.3. Performance results of MLC/MSD over the print-and-scan channel

We implemented a non-equidistant 8–PAM MLC/MSD scheme using the parameters obtained in Sections 5.1 and
5.2. For the component codes of individual levels we used low-density parity-check (LDPC) codes. Specifically,
we used the Matlab implementation of quasi-regular LDPC codes from I. Kozintsev.17

The multilevel encoder has a straightforward implementation. For the multistage decoder, one should take
into account the derived print-and-scan channel statistics in order to correctly compute the log-likelihood ratios
used in the LDPC belief propagation algorithm:

lin = ln
fY |Xi,X0,...,Xi−1(yn|1, x̂0, . . . , x̂i−1)

fY |Xi,X0,...,Xi−1(yn|0, x̂0, . . . , x̂i−1)
, i = 0, . . . , L − 1, n = 1, . . . , N. (27)

For a block length of N = 2048 bits, the rate of our scheme was 1403 bytes/in2 at a bit error rate (BER) of
2 × 10−4. For comparison, the rate of the uncoded version of our multilevel 2D bar code is 1684 bytes/in2 at a
BER of 4 × 10−2 and the rate of DataMatrix,18 a commercial high-rate B&W 2D bar code, is 375 bytes/in2.
Although, the current BER might not be small enough, we are persuaded that by using irregular LDPC codes
and larger block lengths, we are able to reduce the BER to an acceptable level.

6. CONCLUSION AND FUTURE WORK

In this work, we highlighted the attractiveness of multilevel 2D bar codes for high capacity storage applications.
We have also shown how to apply powerful coded modulation schemes developed for the AWGN channel to the
print-and-scan channel in the context of multilevel 2D bar codes. Key point is the construction of a simplified
model of the print-and-scan channel specifically adapted for this application. Our approach can be applied to
other printing and reading devices as well as to enhance existing B&W 2D bar codes. Finally, the experimental
results show that, under the same conditions, optimally designed multilevel 2D bar codes can reliably achieve
higher rates than their B&W counterparts and can therefore meet the high capacity storage requirements of
many new multimedia security and data management applications.

In future work, we plan to investigate the synchronization problem of print-and-scan channels in the context
of multilevel 2D bar codes.16 A good synchronization algorithm would lead to a reduction in BER and the
possibility to use lower scanner resolutions, e.g. rs = 2 · ri. Moreover, since our practical system neglects the
border of the received 2D symbols when performing the demodulation step, a significant improvement in terms
of achievable rate may be obtained by eliminating the inter-symbol space. Finally, a more general framework
where the ISI is fully considered is to be investigated.
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