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MULTILEVEL ALGORITHMS FOR ACYCLIC PARTITIONING OF1

DIRECTED ACYCLIC GRAPHS∗2

JULIEN HERRMANN† , M. YUSUF ÖZKAYA† , BORA UÇAR‡ ,3

KAMER KAYA§ , AND ÜMIT V. ÇATALYÜREK†4

Abstract. We investigate the problem of partitioning the vertices of a directed acyclic graph5
into a given number of parts. The objective function is to minimize the number or the total weight6
of the edges having end points in different parts, which is also known as edge cut. The standard load7
balancing constraint of having an equitable partition of the vertices among the parts should be met.8
Furthermore, the partition is required to be acyclic, i.e., the inter-part edges between the vertices9
from different parts should preserve an acyclic dependency structure among the parts. In this work,10
we adopt the multilevel approach with coarsening, initial partitioning, and refinement phases for11
acyclic partitioning of directed acyclic graphs. We focus on two-way partitioning (sometimes called12
bisection), as this scheme can be used in a recursive way for multi-way partitioning. To ensure13
the acyclicity of the partition at all times, we propose novel and efficient coarsening and refinement14
heuristics. The quality of the computed acyclic partitions is assessed by computing the edge cut.15
We also propose effective ways to use the standard undirected graph partitioning methods in our16
multilevel scheme. We perform a large set of experiments on a dataset consisting of (i) graphs17
coming from an application and (ii) some others corresponding to matrices from a public collection.18
We report significant improvements compared to the current state of the art.19

Key words. directed graph, acyclic partitioning, multilevel partitioning20
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1. Introduction. The standard graph partitioning (GP) problem asks for a22

partition of the vertices of an undirected graph into a number of parts. The objective23

and the constraint of this well-known problem are to minimize the number of edges24

having vertices in two different parts and to equitably partition the vertices among25

the parts. The GP problem is NP-complete [13, ND14]. We investigate a variant of26

this problem, called acyclic partitioning, for directed acyclic graphs. In this variant,27

we have one more constraint: the partition should be acyclic. In other words, for a28

suitable numbering of the parts, all edges should be directed from a vertex in a part29

p to another vertex in a part q where p ≤ q.30

The directed acyclic graph partitioning (DAGP) problem arises in many appli-31

cations. The stated variant of the DAGP problem arises in exposing parallelism in32

automatic differentiation [6, Ch.9], and particularly in the computation of the Newton33

step for solving nonlinear systems [4, 5]. The DAGP problem with some additional34

constraints is used to reason about the parallel data movement complexity and to dy-35

namically analyze the data locality potential [10, 11]. Other important applications36

of the DAGP problem include (i) fusing loops for improving temporal locality, and en-37

abling streaming and array contractions in runtime systems [19], such as Bohrium [20];38

(ii) analysis of cache efficient execution of streaming applications on uniprocessors [1];39

(iii) a number of circuit design applications in which the signal directions impose40

acyclic partitioning requirement [7, 29].41

Let us consider a toy example shown in Figure 1.1(a). A partition of the vertices42
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(a) A toy graph (b) A partition ignoring the
directions; it is cyclic.

(c) An acyclic partition-
ing.

Fig. 1.1: a) A toy example with six tasks and six dependencies, b) a non-acyclic partitioning
when edges are oriented, c) an acyclic partitioning of the same directed graph.

of this graph is shown in Figure 1.1(b) with a dashed curve. Since there is a cut edge43

from s to u and another from u to t, the partition is cyclic, and is not acceptable. An44

acyclic partition is shown in Figure 1.1(c), where all the cut edges are from one part45

to the other.46

We adopt the multilevel partitioning approach [2, 14] with the coarsening, initial47

partitioning, and refinement phases for acyclic partitioning of DAGs. We propose48

heuristics for these three phases (Subsections 4.1, 4.2 and 4.3, respectively) which49

guarantee acyclicity of the partitions at all phases and maintain a DAG at every50

level. We strived to have fast heuristics at the core. With these characterizations,51

the coarsening phase requires new algorithmic/theoretical reasoning, while the initial52

partitioning and refinement heuristics are direct adaptations of the standard methods53

used in undirected graph partitioning, with some differences worth mentioning. We54

discuss only the bisection case, as we were able to improve the direct k-way algorithms55

we proposed before [15] by using the bisection heuristics recursively—we give a brief56

comparison in Subsection 5.4.57

The acyclicity constraint on the partitions precludes the use of the state of the58

art undirected graph partitioning tools. This has been recognized before, and those59

tools were put aside [15, 21]. While this is sensible, one can still try to make use of the60

existing undirected graph partitioning tools [14, 16, 25, 27], as they have been very61

well engineered. Let us assume that we have partitioned a DAG with an undirected62

graph partitioning tool into two parts by ignoring the directions. It is easy to detect63

if the partition is cyclic since all the edges need to go from part one to part two.64

Furthermore, we can easily fix it as follows. Let v be a vertex in the second part;65

we can move all u vertices for which there is a path from v to u into the second66

part. This procedure breaks any cycle containing v and hence, the partition becomes67

acyclic. However, the edge cut may increase, and the partitions can be unbalanced.68

To solve the balance problem and reduce the cut, we can apply a restricted version69

of the move-based refinement algorithms in the literature. After this step, this final70

partition meets the acyclicity and balance conditions. Depending on the structure71

of the input graph, it could also be a good initial partition for reducing the edge72

cut. Indeed, one of our most effective schemes uses an undirected graph partitioning73

algorithm to create a (potentially cyclic) partition, fixes the cycles in the partition,74

and refines the resulting acyclic partition with a novel heuristic to obtain an initial75

partition. We then integrate this partition within the proposed coarsening approaches76

to refine it at different granularities. We elaborate on this scheme in Subsection 4.4.77

The rest of the paper is organized as follows: Section 2 introduces the notation78
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ACYCLIC PARTITIONING OF DAGS 3

and background on directed acyclic graph partitioning and Section 3 briefly surveys79

the existing literature. We propose multilevel partitioning heuristics for acyclic par-80

titioning of directed acyclic graphs in Section 4. Section 5 presents the experimental81

results, and Section 6 concludes the paper.82

2. Preliminaries and notation. A directed graph G = (V,E) contains a set of83

vertices V and a set of directed edges E of the form e = (u, v), where e is directed84

from u to v. A path is a sequence of edges (u1, v1) · (u2, v2), . . . with vi = ui+1. A path85

((u1, v1) · (u2, v2) · (u3, v3) · · · (uℓ, vℓ)) is of length ℓ, where it connects a sequence of86

ℓ+1 vertices (u1, v1 = u2, . . . , vℓ−1 = uℓ, vℓ). A path is called simple if the connected87

vertices are distinct. Let u ❀ v denote a simple path that starts from u and ends at88

v. A path ((u1, v1) · (u2, v2) · · · (uℓ, vℓ)) forms a (simple) cycle if all vi for 1 ≤ i ≤ ℓ89

are distinct and u1 = vℓ. A directed acyclic graph, DAG in short, is a directed graph90

with no cycles.91

The path u ❀ v represents a dependency of v to u. We say that the edge (u, v)92

is redundant if there exists another u ❀ v path in the graph. That is, when we93

remove a redundant (u, v) edge, u remains to be connected to v, and hence, the94

dependency information is preserved. We use Pred[v] = {u | (u, v) ∈ E} to represent95

the (immediate) predecessors of a vertex v, and Succ[v] = {u | (v, u) ∈ E} to represent96

the (immediate) successors of v. We call the neighbors of a vertex v, its immediate97

predecessors and immediate successors: Neigh[u] = Pred[v]∪ Succ[v]. For a vertex u,98

the set of vertices v such that u ❀ v are called the descendants of u. Similarly, the99

set of vertices v such that v ❀ u are called the ancestors of the vertex u. We will100

call vertices without any predecessors (and hence ancestors) as the sources of G, and101

vertices without any successors (and hence descandants) as the targets of G. Every102

vertex u has a weight denoted by wu and every edge (u, v) ∈ E has a cost denoted by103

cu,v.104

A k-way partitioning of a graph G = (V,E) divides V into k disjoint subsets105

{V1, . . . , Vk}. The weight of a part Vi denoted by w(Vi) is equal to
∑

u∈Vi
wu, which106

is the total vertex weight in Vi. Given a partition, an edge is called a cut edge if its107

endpoints are in different parts. The edge cut of a partition is defined as the sum of108

the costs of the cut edges. Usually, a constraint on the part weights accompanies the109

problem. We are interested in acyclic partitions, which are defined below.110

Definition 2.1 (Acyclic k-way partition). A partition {V1, . . . , Vk} of G =111

(V,E) is called an acyclic k-way partition if two paths u ❀ v and v′ ❀ u′ do not112

co-exist for u, u′ ∈ Vi, v, v
′ ∈ Vj , and 1 ≤ i 6= j ≤ k.113

There is a related definition in the literature [11], which is called a convex par-114

tition. A partition is convex if for all vertex pairs u, v in the same part, the vertices115

in any u ❀ v path are also in the same part. Hence, if a partition is acyclic it is also116

convex. On the other hand, convexity does not imply acyclicity. Figure 2.1 shows117

that the definitions of an acyclic partition and a convex partition are not equivalent.118

For the toy graph in Figure 2.1(a), there are three possible balanced partitions shown119

in Figure 2.1(b), Figure 2.1(c), and Figure 2.1(d). They are all convex, but only the120

one in Figure 2.1(d) is acyclic.121

Deciding on the existence of a k-way acyclic partition respecting an upper bound122

on the part weights and an upper bound on the cost of cut edges is NP-complete [13].123

The formal problem treated in this paper is defined as follows.124

Definition 2.2 (DAG partitioning problem). Given a DAG G = (V,E) an im-125

balance parameter ε, find an acyclic k-way partition P = {V1, . . . , Vk} of V such that126

This manuscript is for review purposes only.



4 HERRMANN et al.

a b

c d

(a) A toy graph

a b

c d

(b) Cyclic and convex

a b

c d

(c) Cyclic and convex

a b

c d

(d) Acyclic and convex

Fig. 2.1: A toy graph (left), two cyclic and convex partitions (middle two), and an
acyclic and convex partition (right).

the balance constraints127

(2.1) w(Vi) ≤ (1 + ε)

∑

v∈V wv

k
128

are satisfied for 1 ≤ i ≤ k, and the edge cut is minimized.129

3. Related work. Fauzia et al. [11] propose a heuristic for the acyclic partition-130

ing problem to optimize data locality when analyzing DAGs. To create partitions,131

the heuristic categorizes a vertex as ready to be assigned to a partition when all of132

the vertices it depends on have already been assigned. Vertices are assigned to the133

current partition set until the maximum number of vertices that would be “active”134

during the computation of the part reaches a specified limit, which is the cache size135

in their application. This implies that part sizes are not limited by the sum of the136

total vertex weights but is a complex function that depends on an external schedule137

(order) of the vertices. This differs from our problem as we limit the size of each part138

by the total sum of the weights of the vertices on that part.139

Kernighan [17] proposes an algorithm to find a minimum edge-cut partition of140

the vertices of a graph into subsets of size greater than a lower bound and inferior141

to an upper bound. The partition needs to use a fixed vertex sequence that cannot142

be changed. Indeed, Kernighan’s algorithm takes a topological order of the vertices143

of the graph as an input and partitions the vertices such that all vertices in a subset144

constitute a continuous block in the given topological order. This procedure is optimal145

for a given, fixed topological order and has a run time proportional to the number146

of edges in the graph, if the part weights are taken as constant. We used a modified147

version of this algorithm as a heuristic in the earlier version of our work [15].148

Cong et al. [7] describe two approaches for obtaining acyclic partitions of di-149

rected Boolean networks, modeling circuits. The first one is a single-level Fiduccia-150

Mattheyses (FM)-based approach. In this approach, Cong et al. generate an initial151

acyclic partition by splitting the list of the vertices (in a topological order) from left152

to right into k parts such that the weight of each part does not violate the bound.153

The quality of the results is then improved with a k-way variant of the FM heuris-154

tic [12] taking the acyclicity constraint into account. Our previous work [15] employs155

a similar refinement heuristic. The second approach of Cong et al. is a two-level156

heuristic; the initial graph is first clustered with a special decomposition, and then it157

is partitioned using the first heuristic.158

In a recent paper [21], Moreira et al. focus on an imaging and computer vision159

application on embedded systems and discuss acyclic partitioning heuristics. They160
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propose a single level approach in which an initial acyclic partitioning is obtained161

using a topological order. To refine the partitioning, they proposed four local search162

heuristics which respect the balance constraint and maintain the acyclicity of the163

partition. Three heuristics pick a vertex and move it to an eligible part if and only if164

the move improves the cut. These three heuristics differ in choosing the set of eligible165

parts for each vertex; some are very restrictive, and some allow arbitrary target parts166

as long as acyclicity is maintained. The fourth heuristic tentatively realizes the moves167

that increase the cut in order to escape from a possible local minima. It has been168

reported that this heuristic delivers better results than the others. In a follow-up169

paper, Moreira et al. [22] discuss a multilevel graph partitioner and an evolutionary170

algorithm based on this multilevel scheme. Their multilevel scheme starts with a171

given acyclic partition. Then, the coarsening phase contracts edges that are in the172

same part until there is no edge to contract. Here, matching-based heuristics from173

undirected graph partitioning tools are used without taking the directions of the174

edges into account. Therefore, the coarsening phase can create cycles in the graph;175

however the induced partitions are never cyclic. Then, an initial partition is obtained,176

which is refined during the uncoarsening phase with move-based heuristics. In order177

to guarantee acyclic partitions, the vertices that lie in cycles are not moved. In a178

systematic evaluation of the proposed methods, Moreira et al. note that there are179

many local minima and suggest using relaxed constraints in the multilevel setting.180

The proposed methods have high run time, as the evolutionary method of Moreira181

et al. is not concerned with this issue. Improvements with respect to the earlier182

work [21] are reported.183

Previously, we had developed a multilevel partitioner [15]. In this paper, we184

propose methods to use an undirected graph partitioner to guide the multilevel par-185

titioner. We focus on partitioning the graph in two parts since we can handle the186

general case with a recursive bisection scheme. We also propose new coarsening, ini-187

tial partitioning, and refinement methods specifically designed for the 2-partitioning188

problem. Our multilevel scheme maintains acyclic partitions and graphs through all189

the levels.190

Other related work on acyclic partitioning of directed graphs include an exact,191

branch-and-bound algorithm by Nossack and Pesch [23] which works on the integer192

programming formulation of the acyclic partitioning problem. This solution is, of193

course, too costly to be used in practice. Wong et al. [29] present a modification of194

the decomposition of Cong et al. [7] for clustering, and use this in a two-level scheme.195

4. Directed multilevel graph partitioning. We propose a new multilevel tool196

for obtaining acyclic partitions of directed acyclic graphs. Multilevel schemes [2, 14]197

form the de-facto standard for solving graph and hypergraph partitioning problems198

efficiently, and used by almost all current state-of-the-art partitioning tools [3, 14, 16,199

25, 27]. Similar to other multilevel schemes, our tool has three phases: the coarsening200

phase, which reduces the number of vertices by clustering them; the initial partitioning201

phase, which finds a partition of the coarsest graph; and the uncoarsening phase, in202

which the initial partition is projected to the finer graphs and refined along the way,203

until a solution for the original graph is obtained.204

4.1. Coarsening. In this phase, we obtain smaller DAGs by coalescing the ver-205

tices, level by level. This phase continues until the number of vertices becomes smaller206

than a specified bound or the reduction on the number of vertices from one level to the207

next one is lower than a threshold. At each level ℓ, we start with a finer acyclic graph208

Gℓ, compute a valid clustering Cℓ ensuring the acyclicity, and obtain a coarser acyclic209
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graph Gℓ+1. While our previous work [15] discussed matching based algorithms for210

coarsening, we present agglomerative clustering based variants here. The new vari-211

ants supersede the matching based ones. Unlike the standard undirected graph case,212

in DAG partitioning, not all vertices can be safely combined. Consider a DAG with213

three vertices a, b, c and three edges (a, b), (b, c), (a, c). Here, the vertices a and c214

cannot be combined, since that would create a cycle. We say that a set of vertices is215

contractible (all its vertices are matchable), if unifying them does not create a cycle.216

We now present a general theory about finding clusters without forming cycles, after217

giving some definitions.218

Definition 4.1 (Clustering). A clustering of a DAG is a set of disjoint subsets219

of vertices. Note that we do not make any assumptions on whether the subsets are220

connected or not.221

Definition 4.2 (Coarse graph). Given a DAG G and a clustering C of G, we222

let G|C denote the coarse graph created by contracting all sets of vertices of C.223

The vertices of the coarse graph are the clusters in C. If (u, v) ∈ G for two224

vertices u and v that are located in different clusters of C then G|C has an (directed)225

edge from the vertex corresponding to u’s cluster, to the vertex corresponding to v’s226

cluster.227

Definition 4.3 (Feasible clustering). A feasible clustering C of a DAG G is228

a clustering such that G|C is acyclic.229

Theorem 4.1. Let G = (V,E) be a DAG. For u, v ∈ V and (u, v) ∈ E, the coarse230

graph G|{(u,v)} is acyclic if and only if there is no path from u to v in G avoiding the231

edge (u, v).232

Proof. Let G′ = (V ′, E′) = G|{(u,v)} be the coarse graph, and w be the merged,233

coarser vertex of G′ corresponding to {u, v}.234

If there is a path from u to v in G avoiding the edge (u, v), then all the edges of235

this path are also in G′, and the corresponding path in G′ goes from w to w, creating236

a cycle.237

Assume that there is a cycle in the coarse graph G′. This cycle has to pass through238

w; otherwise, it must be in G which is impossible by the definition of G. Thus, there239

is a cycle from w to w in the coarse graph G′. Let a ∈ V ′ be the first vertex visited240

by this cycle after w and b ∈ V ′ be the last one, just before completing the cycle. Let241

p be an a ❀ b path in G′ such that (w, a) · p · (b, w) is the said w ❀ w cycle in G′.242

Note that a can be equal to b and in this case p = ∅. By the definition of the coarse243

graph G′, a, b ∈ V and all edges in the path p are in E\{(u, v)}. Since we have a244

cycle in G′, the following two items must hold:245

• (i) either (u, a) ∈ E or (v, a) ∈ E, or both; and246

• (ii) either (b, u) ∈ E or (b, v) ∈ E, or both.247

Hence, overall we have nine (3×3) cases. Here, we investigate only four of them, as the248

“both” conditions in (i) and (ii) can be eliminated easily by the following statements.249

• (u, a) ∈ E and (b, u) ∈ E is impossible because otherwise, (u, a) · p · (b, u)250

would be a u ❀ u cycle in the original graph G.251

• (v, a) ∈ E and (b, v) ∈ E is impossible because otherwise, (v, a) · p · (b, v)252

would be a v ❀ v cycle in the original graph G.253

• (v, a) ∈ E and (b, u) ∈ E is impossible because otherwise, (u, v)·(v, a)·p·(b, u)254

would be a u ❀ u cycle in the original graph G.255

Thus (u, a) ∈ E and (b, v) ∈ E. Therefore, (u, a) · p · (b, v) is a u ❀ v path in G256

avoiding the edge (u, v), which concludes the proof.257

This manuscript is for review purposes only.



ACYCLIC PARTITIONING OF DAGS 7

Theorem 4.1 can be extended to a set of vertices by noting that this time all258

paths connecting two vertices of the set should contain only the vertices of the set.259

The theorem (nor its extension) does not imply an efficient algorithm, as it requires260

at least one transitive reduction. Furthermore, it does not describe a condition about261

two clusters forming a cycle, even if both are individually contractible. In order to262

address both of these issues, we put a constraint on the vertices that can form a263

cluster, based on the following definition.264

Definition 4.4 (Top level value). For a DAG G = (V,E), the top level value265

of a vertex u ∈ V is the length of the longest path from a source of G to that vertex.266

The top level values of all vertices can be computed in a single traversal of the graph267

with a complexity O(|V |+ |E|). We use top[u] to denote the top level of the vertex u.268

The top level value of a vertex is independent of the topological order used for269

computation. By restricting the set of edges considered in the clustering to the edges270

(u, v) ∈ E such that top[u] + 1 = top[v], we ensure that no cycles are formed by271

contracting a unique cluster (the condition identified in Theorem 4.1 is satisfied). Let272

C be a clustering of the vertices. Every edge in a cluster of C being contractible is a273

necessary condition for C to be feasible, but not a sufficient one. More restrictions on274

the edges of vertices inside the clusters should be found to ensure that C is feasible.275

We propose three coarsening heuristics based on clustering sets of more than two276

vertices, whose pair-wise top level differences are always zero or one.277

4.1.1. Acyclic clustering with forbidden edges. To have an efficient heuris-278

tic, we rely only on static information computable in linear time while searching for279

a feasible clustering. As stated in the introduction of this section, we rely on the280

top level difference of one (or less) for all vertices in the same cluster, and an addi-281

tional condition to ensure that there will be no cycles when a number of clusters are282

contracted simultaneously. In Theorem 4.2, we give two sufficient conditions for a283

clustering to be feasible (that is, the graphs at all levels are DAGs) and prove their284

correctness.285

Theorem 4.2 (Correctness of the proposed clustering). Let G = (V,E) be a286

DAG and C = {C1, . . . , Ck} be a clustering. If C is such that:287

• for any cluster Ci, for all u, v ∈ Ci, |top[u]− top[v]| ≤ 1,288

• for two different clusters Ci and Cj and for all u ∈ Ci and v ∈ Cj either289

(u, v) /∈ E, or top[u] 6= top[v]− 1,290

then, the coarse graph G|C is acyclic.291

Proof. Let us assume (for the sake of contradiction) that there is a clustering292

with the same properties above, but the coarsened graph has a cycle. We pick one293

such clustering C = {C1, . . . , Ck} with the minimum number of clusters. Let ti =294

min{top[u], u ∈ Ci} be the smallest top level value of a vertex of Ci. According to the295

properties of C, for every vertex u ∈ Ci, either top[u] = ti, or top[u] = ti +1. Let wi296

be the coarse vertex in G|C obtained by contracting all vertices in Ci, for i = 1, . . . , k.297

By the assumption, there is a cycle in G|C , and let c be one with the minimum length.298

This cycle passes through all the wi vertices. Otherwise, there would be a smaller299

cardinality clustering with the properties above and creating a cycle in the coarsened300

graph, contradicting the minimal cardinality of C. Let us renumber, without loss of301

generality, the wi vertices such that c is a w1 ❀ w1 cycle which passes through all302

the wi vertices in the non-decreasing order of the indices. This also renumbers the303

clusters accordingly.304

After renumbering the wi vertices, for every i ∈ {1, . . . , k}, there is a path in G|C305
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8 HERRMANN et al.

from wi to wi+1. Given the definition of the coarsened graph, for every i ∈ {1, . . . , k}306

there exists a vertex ui ∈ Ci, and a vertex ui+1 ∈ Ci+1 such that there exists a307

path ui ❀ ui+1 in G. Thus, top[ui] + 1 ≤ top[ui+1]. According to the second308

property, either there is at least one intermediate vertex between ui and ui+1 and309

then top[ui] + 1 < top[ui+1]; or top[ui] + 1 6= top[ui+1] and then top[ui] + 1 <310

top[ui+1]. Thus, in any case, top[ui] + 1 < top[ui+1] which can be rewritten as311

top[ui] < top[ui+1]− 1.312

By definition, we know that ti ≤ top[ui] and top[ui+1]−1 ≤ ti+1. Thus for every313

i ∈ {1, . . . , k}, we have ti < ti+1, which leads to the self-contradicting statement314

t1 < tk+1 = t1 and concludes the proof.315

The main heuristic based on Theorem 4.2 is described in Algorithm 1. This316

heuristic visits all vertices in an order, and adds the visited vertex to a cluster, if317

certain criteria are met; if not, the vertex stays as a singleton. When visiting a318

singleton vertex, the clusters of its in-neighbors and out-neighbors are investigated,319

and the best (according to an objective value) among those meeting the criterion320

described in Theorem 4.2 is selected.321

Algorithm 1 returns the leader array of each vertex for the current coarsening322

step. Vertices with the same leader form a cluster (and will form a single vertex in323

the coarsened graph). For each vertex u ∈ V , leader[u] is the id of the representative324

vertex for the cluster that will contain u after Algorithm 1. The leader table will325

be used to build the coarse graph. Any arbitrary vertex in a given cluster can be326

used as the leader of this cluster without impacting the rest of the algorithm. At the327

beginning, each vertex belongs to a singleton cluster, and leader[u] = u. To keep328

the track of trivial clusters (singleton vertices), we use an auxiliary mark array. The329

value mark[u] is false if u still belongs to a singleton cluster. Otherwise, the value is330

set to true.331

For each singleton vertex u, we maintain an auxiliary array nbbadneighbors to332

keep the number of non-trivial bad neighbor clusters. That is to say, the number333

of clusters containing a neighbor of u that would violate the second condition of334

Theorem 4.2 in case u was put in another cluster. Hence, if u has only one bad335

neighbor cluster, it can only be put into this cluster. For instance in Figure 4.1(a),336

at this point of the coarsening, vertex B can only be put in Cluster 1. Otherwise, if337

vertex B was matched with one of its other neighbors, the second condition of the338

theorem would be violated. Thus, if a vertex has more than one bad neighbor in339

different clusters, it has to stay as a singleton. For instance in Figure 4.1(b), vertex340

B has two bad neighbor clusters and cannot be put in any cluster without violating341

the second condition of Theorem 4.2. To check if there exists another bad neighbor342

cluster previously formed, we maintain an array leaderbadneighbor that keeps the343

representative/leader of the first bad neighbor cluster for each vertex. Initially, this344

value is set to minus one.345

In Algorithm 1, the function ValidNeighbors selects the compatible neighbors of346

vertex u, that is the neighbors in clusters that vertex u can join. This selection is347

based on the top level difference (to respect the first condition of Theorem 4.2), the348

number of bad neighbors of u, and u’s neighbors (to respect the second condition of349

Theorem 4.2), and the size limitation (we do not want a cluster to be bigger than350

10% of the total weight of the graph). Then, a best neighbor, BestNeigh, according351

to an objective value, such as the edge cost, is selected. After setting the leader of352

vertex u to the same value as the leader of BestNeigh, some bookkeeping is done353

for the arrays related to the second condition of Theorem 4.2. More precisely, at354
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Lines 16–22 of Algorithm 1, the neighbors of u are informed about u joining a new355

cluster, potentially becoming a bad neighbor. While doing that, the algorithm skips356

the vertices v such that |top[u] − top[v]| > 1, since u cannot form a bad neighbor357

cluster for such v. Similarly, if the best neighbor chosen for u was not in a cluster358

previously, i.e., was a singleton vertex, the number of bad neighbors of its neighbors359

are updated (Lines 24–30).360

(a) (b)

Fig. 4.1: Two examples of acyclic clustering.

In our framework, we also implemented the version in the preliminary study [15]361

where the size of cluster is limited to two, meaning that it computes a matching of362

the vertices.363

It can be easily seen that Algorithm 1 has a worst case time complexity of O(|V |+364

|E|). The array top is constructed in O(|V |+ |E|) time, and the best, valid neighbor365

of a vertex u is found in O(|Neigh[u]|) time. The neighbors of a vertex are visited at366

most once to keep the arrays related to the second condition of Theorem 4.2 up to367

date at Lines 16 and 24.368

4.1.2. Acyclic clustering with cycle detection. We now propose a less re-369

strictive clustering algorithm to ensure that the acyclicity of the coarse graph is370

maintained. As in the previous section, we rely on the top level difference of one371

(or less) for all vertices in the same cluster, i.e., for any cluster Ci, for all u, v ∈ Ci,372

|top[u]−top[v]| ≤ 1. Knowing this invariant, when a new vertex is added to a cluster,373

a cycle-detection algorithm checks that no cycles are formed when all the clusters are374

contracted simultaneously. This algorithm does not traverse the entire graph by also375

using the fact that the top level difference within a cluster is at most one.376

From the proof of Theorem 4.2, we know that with a feasible clustering, if adding377

a vertex to a cluster whose vertices’ top level values are t and t + 1 creates a cycle378

in the contracted graph, then this cycle goes through only the vertices with top level379

values t or t + 1. Thus, when considering the addition of a vertex u to a cluster C380

containing v, we check potential cycle formations by traversing the graph starting381

from u in a breadth-first manner in the DetectCycle function used in Algorithm 2.382

Let t denote the minimum top level in C. When at a vertex w, we normally add a383

successor y of w into the queue, if |top(y)− t| ≤ 1; if w is in the same cluster as one384

of its predecessors x, we also add x to the queue if |top(x) − t| ≤ 1. This function385

uses markers to not to visit the same vertex multiple times, returns true if at some386

point in the traversal a vertex from cluster C is reached, and returns false, otherwise.387

In the worst-case, this cycle detection algorithm completes a full graph traversal but388

in practice, it stops quickly and does not introduce a significant overhead.389

Here, we propose different clustering strategies. These algorithms consider all390

the vertices in the graph, one by one, and put them in a cluster if their top level391
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Algorithm 1: Clustering with forbidden edges

Data: Directed graph G = (V,E), a traversal order of the vertices in V , a priority on
edges

Result: The leader array for the coarsening
1 top← CompTopLevels(G)

/* Initialize all the auxiliary data to be used */
2 for u ∈ V do
3 mark[u]← false // all vertices are marked as singleton
4 leader[u]← u
5 weight[u]← wu // keeps the total weight for each cluster

/* nbbadneighbors[u] stores the number of bad clusters for a vertex u. If
it exceeds one, u is left alone (the second condition of Theorem 4.2.).
*/

6 nbbadneighbors[u]← 0
7 leaderbadneighbors[u]← −1

8 for u ∈ V following the traversal order in input do
9 if mark[u] then continue

/* The function ValidNeighbors returns the set of valid match candidates
for u based on Theorem 4.2. It also checks the threshold for the
maximum cluster size, and the number of bad neighbor clusters for u. */

10 N ← ValidNeighbors(u, G, nbbadneighbors, leaderbadneighbors, weight)
11 if N = ∅ then continue
12 BestNeigh← BestNeighbour(N)
13 ℓ← leader[BestNeigh]
14 leader[u]← ℓ // assign u to BestNeigh’s cluster
15 weight[ℓ]← weight[ℓ] + wu

/* Let the neighbors of u know that it is not a singleton anymore */
16 for v ∈ Neigh[u] do
17 if |top[u]− top[v]| > 1 then continue // u cannot form a bad cluster
18 if nbbadneighbors[v] = 0 then
19 nbbadneighbors[v]← 1
20 leaderbadneighbors[v]← ℓ

21 else if nbbadneighbors[v] = 1 and leaderbadneighbors[v] 6= ℓ then
22 nbbadneighbors[v]← 2 // mark v as unmatchable

/* If BestNeigh was forming a singleton cluster before u’s assignment */
23 if mark[BestNeigh] = false then

/* Let BestNeigh’s neighbors know that it is not a singleton anymore */
24 for v ∈ Neigh[BestNeigh] do
25 if |top[BestNeigh]− top[v]| > 1 then continue
26 if nbbadneighbors[v] = 0 then
27 nbbadneighbors[v]← 1 // The first bad neighbor cluster for v
28 leaderbadneighbors[v]← ℓ

29 else if nbbadneighbors[v] = 1 and leaderbadneighbors[v] 6= ℓ then
30 nbbadneighbors[v]← 2 // mark v as unmatchable

31 mark[BestNeigh]← true // BestNeigh is not a singleton anymore

32 mark[u]← true // u is not a singleton anymore

33 return leader

differences are at most one and if no cycles are introduced. The clustering algorithms392

depending on different vertex traversal orders and priority definitions on the adjacent393

edges are described in Algorithm 2. As Algorithm 1, this algorithm also returns the394

leader array of each vertex for the current coarsening step. When a vertex is put in a395

cluster with top level values t and t+ 1, its markup (respectively markdown) value is396

set to true if its top level value is t (respectively t+1). Since the worst case complexity397

of the cycle detection is O(|V | + |E|), the worst case complexity of Algorithm 2 is398

O(|V |(|V | + |E|)). However, the cycle detection stops quickly in practice and the399
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behavior of Algorithm 2 is closer to O(|V |+ |E|) as described in Subsection 5.6.400

Algorithm 2: Clustering with cycle detection

Data: Directed graph G = (V,E), a traversal order of the vertices in V , a priority
on edges

Result: A feasible clustering C of G
1 top← CompTopLevels(G)
2 for u ∈ V do
3 markup[u]← false // if u’s cluster has a v with top[v] = top[u] + 1
4 markdown[u]← false // if u’s cluster has a v with top[v] = top[u]− 1
5 leader[u]← u // the leader vertex id for u’s cluster

6 for u ∈ V following the traversal order in input do
7 if markup[u] or markdown[u] then continue
8 for v ∈ Neigh[u] following given priority on edges do
9 if (|top[u]− top[v]| > 1) then continue // we use |top[u]− top[v]| = 1

/* If this is a (u, v) edge */

10 if v ∈ Succ[u] then
11 if markup[v] then continue

12 if DetectCycle(u, v, G, leader) then continue

13 leader[u]← leader[v]
14 markup[u]← markdown[v]← true

/* If this is a (v, u) edge */

15 if v ∈ Pred[u] then
16 if markdown[v] then continue

17 if DetectCycle(u, v, G, leader) then continue

18 leader[u]← leader[v]
19 markdown[u]← markup[v]← true

20 return leader

4.1.3. Hybrid acyclic clustering. The cycle detection based algorithm can401

suffer from quadratic run time for vertices with large in-degrees or out-degrees. To402

avoid this, we design a hybrid acyclic clustering which uses the clustering strategy403

described in Algorithm 2 by default and switches to the clustering strategy in Al-404

gorithm 1 for large degree vertices. We define a limit on the degree of a vertex405

(typically
√

|V |/10) for calling it large degree. When considering an edge (u, v) where406

top[u]+1 = top[v], if the degrees of u and v do not exceed the limit, we use the cycle407

detection algorithm to determine if we can contract the edge. Otherwise, if the out-408

degree of u or the indegree of v is too large, the edge will be contracted if Algorithm 1409

allows so. The complexity of this algorithm is in between those of Algorithm 1 and410

Algorithm 2 and will likely avoid the quadratic behavior in practice (if not, the degree411

parameter can be adapted).412

4.2. Initial partitioning. After the coarsening phase, we compute an initial413

acyclic partitioning of the coarsest graph. We present two heuristics. One of them414

is akin to the greedy graph growing method used in the standard graph/hypergraph415

partitioning methods. The second one uses an undirected partitioning and then fixes416

the acyclicity of the partitions. Throughout this section, we use (V0, V1) to denote417

the bisection of the vertices of the coarsest graph G. The acyclic bisection (V0, V1) is418

such that there is no edge from the vertices in V1 to those in V0.419
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4.2.1. Greedy directed graph growing. One approach to compute a bisec-420

tion of a directed graph is to design a greedy algorithm that moves vertices from one421

part to another using local information. Greedy algorithms have shown to be effective422

for initial partitioning in multilevel schemes in the undirected case. We start with423

all vertices in V1 and replace vertices towards V0 by using heaps. At any time, the424

vertices that can be moved to V0 are in the heap. These vertices are those whose all425

in-neighbors are in V0. Initially only the sources are in the heap, and when all the426

in-neighbors of a vertex v are moved to the first part, v is inserted into the heap. We427

separate this process into two phases. In the first phase, the key-values of the vertices428

in the heap are set to the weighted sum of their incoming edges, and the ties are bro-429

ken in favor of the vertex closer to the first vertex moved. The first phase continues430

until the first part has more than 0.9 of the maximum allowed weight (modulo the431

maximum weight of a vertex). In the second phase, the actual gain of a vertex is432

used. This gain is equal to the sum of the weights of the incoming edges minus the433

sum of the weights of the outgoing edges. In this phase, the ties are broken in favor434

of the heavier vertices. The second phase stops as soon as the required balance is435

obtained. The reason that we separated this heuristic into two phases is that at the436

beginning, the gains are of no importance, and the more vertices become movable the437

more flexibility the heuristic has. Yet, towards the end, parts are fairly balanced, and438

using actual gains can help keeping the cut small.439

Since the order of the parts is important, we also reverse the roles of the parts,440

and the directions of the edges. That is, we put all vertices in V0, and move the441

vertices one by one to V1, when all out-neighbors of a vertex have been moved to V1.442

The proposed greedy directed graph growing heuristic returns the best of the these443

two alternatives.444

4.2.2. Undirected bisection and fixing acyclicity. In this heuristic, we par-445

tition the coarsest graph as if it were undirected and then move the vertices from one446

part to another in case the partition was not acyclic. Let (P0, P1) denote the (not447

necessarily acyclic) bisection of the coarsest graph treated as if it were undirected.448

The proposed approach designates arbitrarily P0 as V0 and P1 as V1. One way to449

fix the cycle is to move all ancestors of the vertices in V0 to V0, thereby guaranteeing450

that there is no edge from vertices in V1 to vertices in V0, making the bisection (V0, V1)451

acyclic. We do these moves in a reverse topological order, as shown in Algorithm 3.452

Another way to fix the acyclicity is to move all descendants of the vertices in V1453

to V1, again guaranteeing an acyclic partition. We do these moves in a topological454

order, as shown in Algorithm 4. We then fix the possible unbalance with a refinement455

algorithm.456

Note that we can also initially designate P1 as V0 and P0 as V1, and again use457

Algorithms 3 and 4 to fix a potential cycle in two different ways. We try all four of458

these choices, and return the best partition (essentially returning the best of the four459

choices to fix the acyclicity of (P0, P1)).460

4.3. Refinement. This phase projects the partition obtained for a coarse graph461

to the next, finer one and refines the partition by vertex moves. As in the standard462

refinement methods, the proposed heuristic is applied in a number of passes. Within a463

pass, we repeatedly select the vertex with the maximum move gain among those that464

can be moved. We tentatively realize this move if the move maintains or improves465

the balance. Then, the most profitable prefix of vertex moves are realized at the end466

of the pass. As usual, we allow the vertices move only once in a pass; therefore once a467

vertex is moved, it is not eligible to move again during the same pass. We use heaps468
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Algorithm 3: fixAcyclicityUp

Data: Directed graph G = (V,E) and a bisection part

Result: An acyclic bisection of G
1 for u ∈ G (in reverse topological order) do
2 if part[u] = 0 then
3 for v ∈ Pred[u] do
4 part[v]← 0

5 return part

Algorithm 4: fixAcyclicityDown

Data: Directed graph G = (V,E) and a bisection part

Result: An acyclic bisection of G
1 for u ∈ G (in topological order) do
2 if part[u] = 1 then
3 for v ∈ Succ[u] do
4 part[v]← 1

5 return part

with the gain of moves as the key value, where we keep only movable vertices. We469

call a vertex movable, if moving it to the other part does not create a cyclic partition.470

As previously done, we use the notation (V0, V1) to designate the acyclic bisection471

with no edge from vertices in V1 to vertices in V0. This means that for a vertex to472

move from part V0 to part V1, one of the two conditions should be met (i) either all its473

out-neighbors should be in V1; (ii) or the vertex has no out-neighbors at all. Similarly,474

for a vertex to move from part V1 to part V0, one of the two conditions should be met475

(i) either all its in-neighbors should be in V0; (ii) or the vertex has no in-neighbors476

at all. This is in a sense the adaptation of boundary Fiduccia-Mattheyses [12] (FM)477

to directed graphs, where the boundary corresponds to the movable vertices. The478

notion of movability being more restrictive results in an important simplification with479

respect to the undirected case. The gain of moving a vertex v from V0 to V1 is480

(4.1)
∑

u∈Succ[v]

w(v, u)−
∑

u∈Pred[v]

w(u, v) ,481

and the negative of this value when moving it from V1 to V0. This means that the gain482

of vertices are static: once a vertex is inserted in the heap with the key value (4.1),483

it is never updated. A move could render some vertices unmovable; if they were in484

the heap, then they should be deleted. Therefore, the heap data structure needs to485

support insert, delete, and extract max operations only.486

We have also implemented a swapping based refinement heuristic akin to the487

boundary Kernighan-Lin [18] (KL), and another one moving vertices only from the488

maximum loaded part. For graphs with unit weight vertices, we suggest using the489

boundary FM, and for others we suggest using one pass of boundary KL followed by490

one pass of the boundary FM that moves vertices only from the maximum loaded491

part.492

4.4. Constraint coarsening and initial partitioning. There are a number493

of highly successful, undirected graph partitioning libraries [16, 25, 27]. They are494
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Fig. 4.2: 8 × 8 grid graph whose vertices are ordered in a spiral way; a few of the
vertices are labeled with their number. All edges are oriented from a lower numbered
vertex to a higher numbered one. There is a unique bipartition with 32 vertices in
each side. The edges defining the total order are shown in red and blue, except the
one from 32 to 33; the cut edges are shown in gray; other internal edges are not shown.

not directly usable for our purposes, as the partitions can be cyclic. Fixing such495

partitions, by moving vertices to break the cyclic dependencies among the parts, can496

increase the edge cut dramatically (with respect to the undirected cut). Consider for497

example, the n× n grid graph, where the vertices are integer positions for i = 1, . . . n498

and j = 1, . . . , n and a vertex at (i, j) is connected to (i′, j′) when |i − i′| = 1 or499

|j − j′| = 1, but not both. There is an acyclic orientation of this graph, called spiral500

ordering, as described in Figure 4.2 for n = 8. This spiral ordering defines a total501

order. When the directions of the edges are ignored, we can have a bisection with502

perfect balance by cutting only n = 8 edges with a vertical line. This partition is503

cyclic; and it can be made acyclic by putting all vertices numbered greater than 32504

to the second part. This partition, which puts the vertices 1–32 to the first part and505

the rest to the second part, is the unique acyclic bisection with perfect balance for506

the associated directed acyclic graph. The edge cut in the directed version is 35 as507

seen in the figure (gray edges). In general one has to cut n2 − 4n+3 edges for n ≥ 8:508

the blue vertices in the border (excluding the corners) have one edge directed to a red509

vertex; the interior blue vertices have two such edges; finally, the blue vertex labeled510

n2/2 has three such edges.511

Let us also investigate the quality of the partitions from a more practical stand-512

point. We used MeTiS [16] as the undirected graph partitioner on a dataset of 94513

matrices (their details are in Section 5). The results are given in Figure 4.3. For514

this preliminary experiment, we partitioned the graphs into two with the maximum515

allowed load imbalance ε = 3%. In the experiment, for only two graphs, the output516

of MeTiS is acyclic, and the geometric mean of the normalized edge cut is 0.0012.517

Figure 4.3(a) shows the normalized edge cut and the load imbalance after fixing the518

cycles, while Figure 4.3(b) shows the two measurements after meeting the balance519

criteria. A normalized edge cut value is computed by normalizing the edge cut with520

respect to the number of edges.521

In both figures, the horizontal lines mark the geometric mean of the normalized522

edge cuts, and the vertical lines mark the 3% imbalance ratio. In Figure 4.3(a), there523

are 37 instances in which the load balance after fixing the cycles is feasible. The524
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Fig. 4.3: Normalized edge cut (normalized with respect to the number of edges), and
the balance obtained after using an undirected graph partitioner and fixing the cycles
(left), and after ensuring balance with refinement (right).

geometric mean of the normalized edge cuts in this subfigure is 0.0045, while in the525

other subfigure, it is 0.0049. Fixing the cycles increases the edge cut with respect to526

an undirected partitioning, but not catastrophically (only by 0.0045/0.0012 = 3.75527

times in these experiments), and achieving balance after this step increases the cut528

only a little (goes to 0.0049 from 0.0045). That is why we suggest using an undirected529

graph partitioner, fixing the cycles among the parts, and performing a refinement530

based method for load balancing as a good (initial) partitioner.531

In order to refine the initial partition in a multilevel setting, we propose a scheme532

similar to the iterated multilevel algorithm used in the existing partitioners [3, 28]. In533

this scheme, first a partition P is obtained. Then, the coarsening phase is employed534

to match (or to agglomerate) the vertices that were in the same part in P . After535

the coarsening, an initial partitioning is freely available by using the partition P536

on the coarsest graph. The refinement phase then can work as before. Moreira537

et al. [22] use this approach for the directed graph partitioning problem. To be538

more concrete, we first use an undirected graph partitioner, then fix the cycles as539

discussed in Section 4.2.2, and then refine this acyclic partition for balance with the540

proposed refinement heuristics in Subsection 4.3. We then use this acyclic partition for541

constraint coarsening and initial partitioning. We expect this scheme to be successful542

in graphs with many sources and targets where the sources and targets can lie in any543

of the parts while the overall partition is acyclic. On the other hand, if a graph is such544

that its balanced acyclic partitions need to put sources in one part and the targets in545

another part, then fixing acyclicity may result in moving many vertices. This in turn546

will harm the edge cut found by the undirected graph partitioner.547

5. Experimental evaluation. The partitioning tool presented (dagP) is imple-548

mented in C/C++ programming languages. The experiments are conducted on a549

computer equipped with dual 2.1 GHz, Xeon E5-2683 processors and 512GB memory.550

The source code and more information is available at http://tda.gatech.edu/software/551

dagP/.552

We have performed an extensive evaluation of the proposed multilevel directed553
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Graph Parameters #vertex #edge max. deg. avg. deg. #source #target

2mm P=10, Q=20, R=30, 36,500 62,200 40 1.704 2100 400
S=40

3mm P=10, Q=20, R=30, 111,900 214,600 40 1.918 3900 400
S=40, T=50

adi T=20, N=30 596,695 1,059,590 109,760 1.776 843 28
atax M=210, N=230 241,730 385,960 230 1.597 48530 230
covariance M=50, N=70 191,600 368,775 70 1.925 4775 1275
doitgen P=10, Q=15, R=20 123,400 237,000 150 1.921 3400 3000
durbin N=250 126,246 250,993 252 1.988 250 249
fdtd-2d T=20, X=30, Y=40 256,479 436,580 60 1.702 3579 1199
gemm P=60, Q=70, R=80 1,026,800 1,684,200 70 1.640 14600 4200
gemver N=120 159,480 259,440 120 1.627 15360 120
gesummv N=250 376,000 500,500 500 1.331 125250 250
heat-3d T=40, N=20 308,480 491,520 20 1.593 1280 512
jacobi-1d T=100, N=400 239,202 398,000 100 1.664 402 398
jacobi-2d T=20, N=30 157,808 282,240 20 1.789 1008 784
lu N=80 344,520 676,240 79 1.963 6400 1
ludcmp N=80 357,320 701,680 80 1.964 6480 1
mvt N=200 200,800 320,000 200 1.594 40800 400
seidel-2d M=20, N=40 261,520 490,960 60 1.877 1600 1
symm M=40, N=60 254,020 440,400 120 1.734 5680 2400
syr2k M=20, N=30 111,000 180,900 60 1.630 2100 900
syrk M=60, N=80 594,480 975,240 81 1.640 8040 3240
trisolv N=400 240,600 320,000 399 1.330 80600 1
trmm M=60, N=80 294,570 571,200 80 1.939 6570 4800

Table 5.1: Instances from the Polyhedral Benchmark suite (PolyBench).

acyclic graph partitioning method on DAG instances coming from two sources. The554

first set of instances is from the Polyhedral Benchmark suite (PolyBench) [26], whose555

parameters are listed in Table 5.1. The graphs in the Polyhedral Benchmark suite556

arise from various linear computation kernels. The parameters in the second column557

of Table 5.1 represent the size of these computation kernels. For more details, we re-558

fer the reader to the description of the Polyhedral Benchmark suite (PolyBench) [26].559

The second set of instances is obtained from the matrices available in the SuiteS-560

parse Matrix Collection (formerly known as the University of Florida Sparse Matrix561

Collection) [8]. From this collection, we pick all the matrices satisfying the following562

properties: listed as binary, square, and has at least 100000 rows and at most 226563

nonzeros. There were a total of 95 matrices at the time of experimentation, where564

two matrices (ids 1514 and 2294) having the same pattern. We discard the duplicate565

and use the remaining 94 matrices for experiments. For each such matrix, we take566

the strict upper triangular part as the associated DAG instance, whenever this part567

has more nonzeros than the lower triangular part; otherwise we take the strict lower568

triangular part. All edges have unit cost, and all vertices have unit weight.569

Since the proposed heuristics have a randomized behavior (the traversals used570

in the coarsening and refinement heuristics are randomized), we run them 10 times571

for each DAG instance, and report the averages of these runs. We use performance572

profiles [9] to present the edge-cut results. A performance profile plot shows the573

probability that a specific method gives results within a factor θ of the best edge cut574

obtained by any of the methods compared in the plot. Hence, the higher and closer575

a plot to the y-axis, the better the method is.576

We set the load imbalance parameter ε = 0.03 in (2.1) for all experiments. The577

vertices are unit weighted, therefore, the imbalance is rarely an issue for a move-based578

partitioner.579
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Fig. 5.1: Performance profiles of the proposed multilevel algorithm variants using
three difference coarsening heuristics in terms of edge cut.

5.1. Coarsening evaluation. We first evaluate the proposed coarsening heuris-580

tics. The aim is to find an effective one to set as a default coarsening heuristic.581

The performance profile chart given in Figure 5.1 shows the effect of the coarsen-582

ing heuristics on the final edge cut for the whole dataset. The variants of the proposed583

multilevel algorithm which use different coarsening schemes are named as CoTop (Sec-584

tion 4.1.1), CoCyc (Section 4.1.2), and CoHyb (Section 4.1.3). Here, and in the rest of585

the paper, we used a randomized Depth-First topological order for the node traversal586

in the coarsening heuristics, since it performed better in practice. In Figure 5.1, we587

see that CoCyc and CoHyb behave similarly; this is expected as not all graphs have588

vertices with large degrees. From this figure, we conclude that in general, the coars-589

ening heuristics CoHyb and CoCyc are more helpful than CoTop in reducing the edge590

cut.591

Another important characteristic to assess for a coarsening heuristic is its con-592

traction efficiency. It is important that the coarsening phase does not stop too early593

and that the coarsest graph is small enough to be partitioned efficiently. Table 5.2594

gives the maximum, the average, and the standard deviation of vertex and edge weight595

ratios, and the average, the minimum, and the maximum number of coarsening levels596

observed for the two datasets. An effective coarsening heuristic should have small597

vertex and edge weight ratios. We see that CoCyc and CoHyb behave similarly and598

provide slightly better results than CoTop on both datasets. The graphs from the two599

datasets have different characteristics. All coarsening heuristics perform better on the600

PolyBench instances compared to the UFL instances: they obtain smaller ratios in601

the number of remaining vertices, and yield smaller edge weights. Furthermore, the602

maximum vertex and edge weight ratios are smaller in PolyBench instances, again603

with all coarsening methods. To the best of our understanding, these happen due to604

two reasons; (i) the average degree in the UFL instances is larger than that of the605

PolyBench instances (3.63 vs. 1.72); (ii) the ratio of the total number of source and606

target vertices to the total number of vertices is again larger in the UFL instances607

(0.13 vs. 0.03). Based on Figure 5.1 and Table 5.2, we set CoHyb as the default608

coarsening heuristic, as it performs better than CoTop in terms of final edge cut, and609

is guaranteed to be more efficient than CoCyc in terms of run time.610

5.2. Constraint coarsening and initial partitioning. We now investigate611

the effect of using undirected graph partitioners to obtain a more effective coarsen-612
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Algorithm Vertex ratio (%) Edge weight ratio (%) Coarsening levels
avg std. dev max avg std. dev max avg min max

CoTop 1.29 6.34 46.72 26.07 24.95 87.00 12.45 2 17.0
CoCyc 1.06 6.31 47.29 25.97 24.86 87.90 12.74 2 17.6
CoHyb 1.08 6.27 46.70 26.00 24.80 87.00 12.69 2 17.7
CoTop 1.33 2.26 8.50 25.67 11.08 47.60 7.44 4 11.8
CoCyc 0.41 0.90 4.10 24.96 9.20 37.00 8.37 5 12.0
CoHyb 0.54 0.88 3.60 24.81 9.33 39.00 8.46 5 11.9

Table 5.2: The maximum, average, and standard deviation of vertex and edge weight
ratios, and the average, the minimum, and the maximum number of coarsening levels
for the UFL dataset on the upper half of the table, and for the PolyBench dataset on
the lower half.

ing and better initial partitions as explained in Subsection 4.4. We compare three613

variants of the proposed multilevel scheme. All of them use the refinement described614

in Subsection 4.3 in the uncoarsening phase.615

• CoHyb: this variant uses the hybrid coarsening heuristic described in Sec-616

tion 4.1.3 and the greedy directed graph growing heuristic described in Sec-617

tion 4.2.1 in the initial partitioning phase. This method does not use con-618

straint coarsening.619

• CoHyb C: this variant uses an acyclic partition of the finest graph obtained as620

outlined in Section 4.2.2 to guide the hybrid coarsening heuristic described621

in Subsection 4.4, and uses the greedy directed graph growing heuristic in the622

initial partitioning phase.623

• CoHyb CIP: this variant uses the same constraint coarsening heuristic as the624

previous method, but inherits the fixed acyclic partition of the finest graph625

as the initial partitioning.626

The comparison of these three variants are given in Figure 5.2 for the whole627

dataset. From Figure 5.2, we see that using the constraint coarsening is always helpful628

with respect to not using them. This clearly separates CoHyb C and CoHyb CIP from629

CoHyb after θ = 1.1. Furthermore, applying the constraint initial partitioning (on top630

of the constraint coarsening) brings tangible improvements.631

In the light of the experiments presented here, we suggest the variant CoHyb CIP632

for general problem instances, as this has clear advantages over others in our dataset.633

5.3. Evaluating CoHyb CIP with respect to a single level algorithm. We634

compare CoHyb CIP (the variant of the proposed approach with constraint coarsening635

and initial partitioning) with a single-level algorithm that uses an undirected graph636

partitioning, fixes the acyclicity, and refines the partitions. This last variant is denoted637

as UndirFix, and it is the algorithm described in Section 4.2.2. Both variants use638

the same initial partitioning approach, which utilizes MeTiS [16] as the undirected639

partitioner. The difference between UndirFix and CoHyb CIP is the latter’s ability to640

refine the initial partition at multiple levels. Figure 5.3 presents this comparison. The641

plots show that the multilevel scheme CoHyb CIP outperforms the single level scheme642

UndirFix at all appropriate ranges of θ, attesting to the importance of the multilevel643

scheme.644

5.4. Comparison with existing work. Here we compare our approach with645

the evolutionary graph partitioning approach developed by Moreira et al. [21], and646
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Fig. 5.2: Performance profiles for the edge cut obtained by the proposed multilevel
algorithm using the constraint coarsening and partitioning (CoHyb CIP), using the
constraint coarsening and the greedy directed graph growing (CoHyb C), and the best
identified approach without constraints (CoHyb).
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Fig. 5.3: Performance profiles for the edge cut obtained by the proposed multilevel
approach using the constraint coarsening and partitioning (CoHyb CIP) and using the
same approach without coarsening (UndirFix).

briefly with our previous work [15].647

Figure 5.4 shows how CoHyb CIP and CoTop compare with the evolutionary ap-648

proach in terms of the edge cut on the 23 graphs of the PolyBench dataset, for the649

number of partitions k ∈ {2, 4, 8, 16, 32}. We use the average edge cut value of 10650

runs for CoTop and CoHyb CIP and the average values presented in [21] for the evolu-651

tionary algorithm. As seen in the figure, the CoTop variant of the proposed multilevel652

approach obtains the best results on this specific dataset (all variants of the proposed653

approach outperform the evolutionary approach).654

Tables A.1 and A.2 show the average and best edge cuts found by CoHyb CIP and655

CoTop variants of our partitioner and the evolutionary approach on the PolyBench656

dataset. The two tables just after them (Tables A.3 and A.4) give the associated657

balance factors. The variants CoHyb CIP and CoTop of the proposed algorithm obtain658

strictly better results than the evolutionary approach in 78 and 75 instances (out of659

115), respectively, when the average edge cuts are compared.660
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Fig. 5.4: Performance profiles for the edge cut obtained by CoHyb CIP, CoTop, and
Moreira et al.’s approach on the PolyBench dataset with k ∈ {2, 4, 8, 16, 32}.

As seen in the last row of Table A.2, CoHyb CIP obtains 26% less edge cut than661

the evolutionary approach on average (geometric mean) when the average cuts are662

compared (0.74 vs. 1.00 in the table); when the best cuts are compared, CoHyb CIP663

obtains 48% less edge cut (0.50 vs. 0.96). Moreover, CoTop obtains 37% less edge cut664

than the evolutionary approach when the average cuts are compared (0.63 vs. 1.00665

in the table); when the best cuts are compared, CoTop obtains 41% less cut (0.57666

vs. 0.96). In some instances (for example covariance and gemm in Table A.1 and667

syrk and trmm in Table A.2), we see large differences between the average and the668

best results of CoTop and CoHyb CIP. Combined with the observation that CoHyb CIP669

yields better results in general, this suggests that the neighborhood structure can be670

improved (see the notion of the strength of a neighborhood [24, Section 19.6]). All671

partitions attain 3% balance.672

The proposed approach with all the reported variants take about 30 minutes to673

complete the whole set of experiments for this dataset, whereas the evolutionary ap-674

proach is much more compute-intensive, as it has to run the multilevel partitioning675

algorithm numerous times to create and update the population of partitions for the676

evolutionary algorithm. The multilevel approach of Moreira et al. [21] is more compa-677

rable in terms of characteristics with our multilevel scheme. When we compare CoTop678

with the results of the multilevel algorithm by Moreira et al., our approach provides679

results that are 37% better on average and CoHyb CIP approach provides results that680

are 26% better on average, highlighting the fact that keeping the acyclicity of the681

directed graph through the multilevel process is useful.682

Finally, CoTop and CoHyb CIP also outperform the previous version of our mul-683

tilevel partitioner [15], which is based on a direct k-way partitioning scheme and684

matching heuristics for the coarsening phase, by 45% and 35% on average, respec-685

tively, on the same dataset.686

5.5. Single commodity flow-like problem instances. In many of the in-687

stances of our dataset, graphs have many source and target vertices. We investigate688

how our algorithm performs on problems where all source vertices should be in a given689

part, and all target vertices should be in the other part, while also achieving balance.690

This is a problem close to the maximum flow problem, where we want to find the691

maximum flow (or minimum cut) from the sources to the targets with balance on692

part weights. Furthermore, addressing this problem also provides a setting for solving693
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Fig. 5.5: Performance profiles of CoHyb, CoHyb CIP and UndirFix in terms of edge
cut for single source, single target graph dataset. The average of 5 runs are reported
for each approach.

partitioning problems with fixed vertices.694

For these experiments, we used the UFL dataset. We discarded all isolated ver-695

tices, added to each graph a source vertex S (with an edge from S to all source vertices696

of the original graph with a cost equal to the number of edges) and target vertex T697

(with an edge from all target vertices of the original graph to T with a cost equal698

to the number of edges). A feasible partition should avoid cutting these edges, and699

separate all sources from the targets.700

The performance profiles of CoHyb, CoHyb CIP and UndirFix are given in Fig-701

ure 5.5 with the edge cut as the evaluation criterion. As seen in this figure, CoHyb is702

the best performing variant, and UndirFix is the worst performing variant. This is703

interesting as in the general setting, we saw a reverse relation. The variant CoHyb CIP704

performs in the middle, as it combines the other two.705

5.6. Runtime performance. We now assess the runtime performance of the706

proposed algorithms. Figure 5.6 shows the runtime comparison and distribution for707

13 graphs with the longest coarsening time for the CoTop variant. A description of708

these 13 graphs can be found in Table 5.3. In Figure 5.6, each graph has three bars709

representing the runtime for the multilevel algorithm using the coarsening heuristics710

described in Subsection 4.1: CoTop, CoCyc, and CoHyb. We can see that the run time711

performance of the three coarsening heuristics are similar. This means that, the cycle712

detection function in CoCyc does not introduce a large overhead, as stated in Sec-713

tion 4.1.2. Most of the time, CoCyc has a bit longer run time than CoTop, and CoHyb714

offers a good tradeoff. Note that in Figure 5.6, the computation time of the initial715

partitioning is negligible compared to that of the coarsening and uncoarsening phases,716

which means that the graphs have been efficiently contracted during the coarsening717

phase.718

Figure 5.7 shows the comparison of the five variants of the proposed multilevel719

scheme and the single level scheme on the whole dataset. Each algorithm is run 10720

times on each graph. As expected, CoTop offers the best performance, and CoHyb721

offers a good trade-off between CoTop and CoCyc. An interesting remark is that these722

three algorithms have a better run time than the single level algorithm UndirFix. For723

example, on the average, CoTop is 1.44 times faster than UndirFix. This is mainly due724

to cost of fixing acyclicity. Undirected partitioning accounts for roughly 25% of the725

This manuscript is for review purposes only.



22 HERRMANN et al.

Graph #vertex #edge Max In Max Out Avg Deg #source #target

333SP 3,712,815 11,108,633 9 27 2.992 188,112 316,151
AS365 3,799,275 11,368,076 10 13 2.992 306,791 519,431
M6 3,501,776 10,501,936 10 10 2.999 280,784 472,230
cit-Patents 3,774,768 16,518,209 779 770 4.376 515,980 1,685,419
delaunay-n22 4,194,304 12,582,869 15 17 3 555,807 337,743
hugebubbles-00010 19,458,087 29,179,764 3 3 1.5 3,355,886 3,054,827
hugetrace-00020 16,002,413 23,998,813 3 3 1.5 2,514,461 2,407,017
hugetric-00010 6,592,765 9,885,854 3 3 1.5 1,085,866 1,006,163
italy-osm 6,686,493 7,013,978 5 8 1.049 155,509 458,561
rgg-n-2-22-s0 4,194,304 30,359,198 24 25 7.238 3,550 3,576
road-usa 23,947,347 28,854,312 8 8 1.205 6,392,288 8,010,032
wb-edu 9,845,725 29,494,732 17,489 3841 2.996 1,489,057 2,794,680
wikipedia-20060925 2,983,494 26,103,626 74,970 5,844 8.749 1,406,429 72,744

Table 5.3: 13 instances from the UFL dataset with the longest coarsening times for
CoTop.

Fig. 5.6: Runtimes for CoTop, CoCyc, and CoHyb variants of the proposed multilevel
scheme. For each bar group, the first, second, and the third bar present the detailed
runtimes of CoTop, CoCyc, and CoHyb, respectively.

execution time of UndirFix, and fixing the acyclicity constitutes the remaining 75%.726

Finally, the variants of the multilevel algorithm using constraint coarsening heuristics727

provide satisfying run time performance with respect to the others.728

6. Conclusion. We proposed a multilevel approach for acyclic partitioning of729

directed acyclic graphs. This problem is close to the standard graph partitioning in730

that the aim is to partition the vertices into a number of parts while minimizing the731

edge cut and meeting a balance criterion on the part weights. Unlike the standard732

graph partitioning problem, the directions of the edges are important and the resulting733

partitions should have acyclic dependencies.734

We proposed coarsening, initial partitioning, and refinement heuristics for the735

target problem. The proposed heuristics take the directions of the edges into account736

and maintain the acyclicity through all the multilevel hierarchy. We also proposed737

efficient and effective approaches to use the standard undirected graph partitioning738

tools in the multilevel scheme for coarsening and initial partitioning. We performed739

a large set of experiments on a dataset with graphs having different characteristics740

and evaluated different combinations of the proposed heuristics. Our experiments741

suggested (i) the use of constraint coarsening and initial partitioning, where the main742

coarsening heuristic is a hybrid one which avoids the cycles, and in case it does not,743

performs a fast cycle detection (CoHyb CIP) for the general case; (ii) a pure multilevel744

This manuscript is for review purposes only.



ACYCLIC PARTITIONING OF DAGS 23

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

p CoTop
CoHyb
CoCyc
UndirFix
CoHyb_CIP
CoHyb_C

Fig. 5.7: Runtime performance profile of CoCyc, CoHyb, CoTop, CoHyb C, CoHyb CIP

and UndirFix on the whole dataset. The values are the averages of 10 runs.

scheme without constraint coarsening, using the hybrid coarsening heuristic (CoHyb)745

for the cases where a number of sources need to be separated from a number of targets;746

(iii) a pure multilevel scheme without constraint coarsening, using the fast coarsening747

algorithm (CoTop) for the cases where the degrees of the vertices are small. All three748

approaches are shown to be more effective and efficient than the current state of the749

art.750

An avenue for the future work is applying the proposed multilevel scheme in real751

life applications that are based on task-graphs. This requires a scheduling step to be752

applied after the proposed partitioning scheme, which needs further investigations. A753

recent work uses a multilevel algorithm for recombination and mutation [22]. Plugging754

in our multilevel scheme to that framework can yield significant improvements.755
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Tables A.1 and A.2 the detailed edge cut results of the proposed CoTop, CoHyb CIP and839
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of Moreira et al.’s evolutionary algorithm [21]. Tables A.3 and A.4 give the balance840

attained in the partitions. In these two tables, the average balance of the ten runs841

yielding the average edge cut of Tables A.1 and A.2 is reported per problem instance.842

The balance of the partition yielding the best edge cut of the previous tables is also843

given per problem instance.844
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Graph k
Moreira et al. [21] CoHyb CIP CoTop

Average Best Average Best Average Best

2mm

2 200 200 200 200 200 200
4 947 930 6134 2686 2160 1900
8 7181 6604 8713 6300 5361 4027

16 13330 13092 12135 9380 11196 10698
32 14583 14321 15911 14829 15932 14838

3mm

2 1000 1000 7399 800 1000 1000
4 38722 37899 16771 7653 9264 8634
8 58129 49559 24330 9832 28121 24270

16 64384 60127 37041 31036 39683 37194
32 62279 58190 46437 43062 48567 43210

adi

2 134945 134675 142719 142174 143067 139672
4 284666 283892 212938 211939 215399 214945
8 290823 290672 271949 266349 256302 255522

16 326963 326923 300755 292351 282485 281511
32 370876 370413 324494 316241 306075 305411

atax

2 47826 47424 44942 38679 39876 39876
4 82397 76245 60187 47184 48645 48645
8 113410 111051 63353 51580 51243 50419

16 127687 125146 70723 62697 59208 57085
32 132092 130854 78264 67401 69556 63166

covariance

2 66520 66445 27269 4775 55195 17183
4 84626 84213 82125 61793 61991 34307
8 103710 102425 136946 122656 74325 50680

16 125816 123276 142177 123221 119284 106422
32 142214 137905 121155 103751 133522 117431

doitgen

2 43807 42208 5035 3000 5947 5947
4 72115 71072 37767 22290 37051 31157
8 76977 75114 51283 43572 53244 50795

16 84203 77436 62296 56650 66483 64488
32 94135 92739 68350 62576 74786 70168

durbin

2 12997 12997 12997 12997 12997 12997
4 21641 21641 21572 21572 21566 21566
8 27571 27571 27519 27518 27520 27520

16 32865 32865 32852 32848 32912 32912
32 39726 39725 39738 39732 39826 39826

fdtd-2d

2 5494 5494 6264 6003 6024 5896
4 15100 15099 15294 13199 16965 16674
8 33087 32355 23699 21886 35711 34361

16 35714 35239 32917 30725 44643 43608
32 43961 42507 42515 41258 53658 52420

gemm

2 383084 382433 4200 4200 44549 44549
4 507250 500526 168962 12600 59854 46677
8 578951 575004 183228 36273 116990 96059

16 615342 613373 294777 241136 263050 238125
32 626472 623271 330937 307225 332946 299774

gemver

2 29349 29270 26368 22824 20913 20913
4 49361 49229 45689 38663 40299 40185
8 68163 67094 56930 49776 55266 53759

16 78115 75596 62143 57779 59072 56598
32 85331 84865 75425 68673 73131 71349

gesummv

2 1666 500 24762 500 500 500
4 98542 94493 24613 1783 10316 8710
8 101533 98982 25342 13522 9618 9397

16 112064 104866 37819 21155 35686 30954
32 117752 114812 48775 42523 45050 40671

heat-3d

2 8695 8684 10165 9648 9378 9225
4 14592 14592 17093 16321 16700 16424
8 20608 20608 28388 25862 25883 25470

16 31615 31500 47612 46825 42137 41261
32 51963 50758 64614 62894 70462 69439

Table A.1: Comparing the edge cuts obtained by CoHyb CIP and CoTop with those
obtained by the evolutionary algorithm of Moreira et al. on the Polyhedral Benchmark
Suite (first set of results).
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Graph k
Moreira et al. [21] CoHyb CIP CoTop

Average Best Average Best Average Best

jacobi-1d

2 596 596 646 472 682 660
4 1493 1492 1617 1272 1789 1756
8 3136 3136 2845 2560 3431 3216

16 6340 6338 4519 3841 5089 4872
32 8923 8750 6742 6026 6883 6634

jacobi-2d

2 2994 2991 4327 4002 3445 3342
4 5701 5700 8405 7379 7370 7247
8 9417 9416 14872 13802 13168 12895

16 16274 16231 22626 21625 21565 21098
32 22181 21758 30423 28911 29558 28979

lu

2 5210 5162 5351 4160 6085 6039
4 13528 13510 21258 13141 22979 16959
8 33307 33211 53643 44342 57437 49080

16 74543 74006 105289 96617 108189 102868
32 130674 129954 156187 147852 164737 158621

ludcmp

2 5380 5337 5731 5337 6942 5339
4 14744 14744 25247 19339 22368 22065
8 37228 37069 60298 50208 60255 50101

16 78646 78467 106223 98324 109920 99798
32 134758 134288 158619 151063 165018 155120

mvt

2 24528 23091 57216 33263 21281 19792
4 74386 73035 55679 36564 38215 35788
8 86525 82221 62453 47771 46776 43724

16 99144 97941 71650 59399 54925 48385
32 105066 104917 83635 79030 62584 60389

seidel-2d

2 4991 4969 4374 3401 4772 4638
4 12197 12169 13177 12553 11784 11485
8 21419 21400 24396 22452 21937 21619

16 38222 38110 38065 35777 39747 38831
32 52246 51531 58319 57012 59278 57885

symm

2 94357 94214 26374 24629 43597 43330
4 127497 126207 59815 49450 85730 78379
8 152984 151168 91892 75126 118259 111126

16 167822 167512 105418 96322 135278 131127
32 174938 174843 108950 99584 145903 141223

syr2k

2 11098 3894 4343 900 16124 14404
4 49662 48021 12192 3121 22915 17959
8 57584 57408 29194 24912 28787 27259

16 59780 59594 29519 26327 31807 29132
32 60502 60085 36111 34079 36689 35155

syrk

2 219263 218019 76767 3240 11740 9036
4 289509 289088 72148 9995 56832 34893
8 329466 327712 112236 66981 121664 109730

16 354223 351824 179042 172076 184437 170781
32 362016 359544 196173 186162 224330 213676

trisolv

2 6788 3549 367 280 336 336
4 43927 43549 38148 1277 828 828
8 66148 65662 20163 9364 2156 2156

16 71838 71447 20421 12847 6240 5881
32 79125 79071 25279 19949 13431 13172

trmm

2 138937 138725 50057 32720 13659 3440
4 192752 191492 58477 16617 72276 35000
8 225192 223529 92185 58957 134574 102693

16 240788 238159 128838 122111 157277 145934
32 246407 245173 153644 147551 171562 158113

Geomean 1.00 0.96 0.74 0.50 0.63 0.57

Table A.2: Comparing the edge cuts obtained by CoHyb CIP and CoTop with those
obtained by the evolutionary algorithm of Moreira et al. on the Polyhedral Benchmark
Suite (second set of results). The last line (Geomean) is for the whole PolyBench
dataset (i.e., computed by combining this table with the previous one), where the
performance of the algorithms are normalized with respect to the average values shown
under the column Moreira et al.
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Graph k
CoHyb CIP CoTop

Average Best Average Best

2mm

2 1.001 1.001 1.001 1.001
4 1.028 1.030 1.024 1.001
8 1.030 1.030 1.030 1.030

16 1.029 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

3mm

2 1.021 1.009 1.017 1.017
4 1.027 1.030 1.030 1.030
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

adi

2 1.000 1.000 1.030 1.030
4 1.030 1.030 1.030 1.029
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

atax

2 1.010 1.011 1.030 1.030
4 1.020 1.030 1.030 1.030
8 1.027 1.016 1.029 1.030

16 1.029 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

covariance

2 1.022 1.023 1.030 1.030
4 1.026 1.021 1.030 1.030
8 1.028 1.030 1.030 1.030

16 1.029 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

doitgen

2 1.003 1.000 1.030 1.030
4 1.030 1.030 1.030 1.030
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

durbin

2 1.024 1.024 1.024 1.024
4 1.018 1.018 1.023 1.023
8 1.020 1.020 1.028 1.028

16 1.028 1.028 1.030 1.030
32 1.030 1.029 1.030 1.030

fdtd-2d

2 1.007 1.000 1.006 1.000
4 1.023 1.026 1.021 1.025
8 1.026 1.028 1.027 1.024

16 1.027 1.027 1.029 1.028
32 1.029 1.030 1.028 1.029

gemm

2 1.010 1.008 1.029 1.029
4 1.024 1.025 1.030 1.030
8 1.029 1.028 1.029 1.027

16 1.030 1.030 1.027 1.030
32 1.030 1.030 1.030 1.030

gemver

2 1.008 1.000 1.000 1.000
4 1.030 1.030 1.029 1.030
8 1.029 1.025 1.030 1.029

16 1.029 1.029 1.030 1.030
32 1.030 1.030 1.030 1.030

gesummv

2 1.014 1.010 1.022 1.022
4 1.026 1.013 1.030 1.030
8 1.028 1.027 1.027 1.030

16 1.029 1.029 1.030 1.030
32 1.030 1.030 1.030 1.030

heat-3d

2 1.008 1.030 1.030 1.030
4 1.030 1.030 1.030 1.030
8 1.020 1.016 1.030 1.030

16 1.024 1.022 1.030 1.030
32 1.030 1.028 1.030 1.030

Table A.3: The partition balances for the edge cuts given in table A.1
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Graph k
CoHyb CIP CoTop

Average Best Average Best

jacobi-1d

2 1.009 1.010 1.016 1.006
4 1.019 1.027 1.016 1.022
8 1.016 1.006 1.024 1.028

16 1.025 1.024 1.024 1.024
32 1.027 1.027 1.028 1.028

jacobi-2d

2 1.027 1.030 1.028 1.030
4 1.017 1.012 1.029 1.030
8 1.027 1.027 1.030 1.030

16 1.027 1.028 1.030 1.030
32 1.029 1.028 1.030 1.030

lu

2 1.023 1.003 1.030 1.030
4 1.027 1.030 1.029 1.027
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

ludcmp

2 1.020 1.020 1.022 1.020
4 1.027 1.030 1.030 1.030
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

mvt

2 1.020 1.028 1.024 1.030
4 1.021 1.015 1.028 1.021
8 1.025 1.030 1.029 1.021

16 1.028 1.030 1.029 1.030
32 1.029 1.030 1.030 1.030

seidel-2d

2 1.012 1.011 1.016 1.008
4 1.024 1.022 1.028 1.025
8 1.026 1.030 1.030 1.030

16 1.029 1.029 1.030 1.030
32 1.029 1.028 1.030 1.030

symm

2 1.016 1.030 1.030 1.030
4 1.021 1.019 1.030 1.030
8 1.027 1.029 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

syr2k

2 1.018 1.016 1.026 1.000
4 1.029 1.030 1.020 1.029
8 1.030 1.027 1.029 1.030

16 1.030 1.030 1.027 1.021
32 1.030 1.030 1.030 1.030

syrk

2 1.021 1.022 1.024 1.026
4 1.030 1.030 1.028 1.030
8 1.029 1.027 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

trisolv

2 1.012 1.021 1.027 1.027
4 1.026 1.028 1.020 1.020
8 1.028 1.030 1.026 1.026

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

trmm

2 1.028 1.024 1.016 1.010
4 1.027 1.021 1.030 1.030
8 1.030 1.030 1.030 1.030

16 1.030 1.030 1.030 1.030
32 1.030 1.030 1.030 1.030

Min 1.000 1.000 1.000 1.000
Average 1.025 1.025 1.027 1.027

Max 1.030 1.030 1.030 1.030

Table A.4: The partition balances for the edge cuts given in table A.2. The last 3
lines (Min, Average, Max) are for the whole PolyBench dataset (i.e., computed by
combining this table with the previous one).
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