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Abstract

Generalizing the approach of a previous work [15] the authors present multilevel precondi-

tioners for three-dimensional (3D) elliptic problems discretized by a family of Rannacher Turek

non-conforming finite elements.

Preconditioners based on various multilevel extensions of two-level finite element methods

(FEM) lead to iterative methods which often have an optimal order computational complexity with

respect to the number of degrees of freedom of the system. Such methods were first presented in

[6, 7], and are based on (recursive) two-level splittings of the finite element space.

An important point to make is that in the case of non-conforming elements the finite element

spaces corresponding to two successive levels of mesh refinement are not nested in general. To

handle this, a proper two-level basis is required to enable us to fit the general framework for the

construction of two-level preconditioners for conforming finite elements and to generalize the

method to the multilevel case.

The first major contribution of the paper is the derived estimates of the constant γ in the

strengthened Cauchy-Bunyakowski-Schwarz (CBS) inequality which is shown to allow the ef-

ficient multilevel extension of the related two-level preconditioners. Representative numerical

tests well illustrate the optimal complexity of the resulting iterative solver, also for the case of

non-smooth coefficients. The second important achievement concerns the experimental study

of AMLI solvers applied to the case of voxel FEM simulation. Here the coefficient jumps are

resolved on the finest mesh only and therefore the classical CBS inequality based convergence

theory is not directly applicable. The obtained results, however, demonstrate the efficiency of the

proposed algorithms in this case also, as illustrated by an example of microstructure analysis of

bones.
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1 Introduction

In this paper we consider the elliptic boundary value problem

Lu ≡ −∇ · (a(x)∇u(x)) = f(x) in Ω,
u = 0 on ΓD,

(a(x)∇u(x)) · n = 0 on ΓN ,
(1)

where Ω is a polyhedral domain in R
3, f(x) is a given function in L2(Ω), the coefficient matrix a(x)

is symmetric positive definite and uniformly bounded in Ω, n is the outward unit vector normal to the

boundary Γ = ∂Ω, and Γ = Γ̄D∪ Γ̄N . We assume that the elements of the diffusion coefficient matrix

a(x) are piecewise smooth functions on Ω̄.

The weak formulation of the above problem reads as follows:

given f ∈ L2(Ω) find u ∈ V ≡ H1
D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}, satisfying

A(u, v) = (f, v) ∀v ∈ H1
D(Ω), where A(u, v) =

∫

Ω
a(x)∇u(x) · ∇v(x)dx. (2)

We assume that the domain Ω is discretized by the partition Th which is obtained by a proper refine-

ment of a given coarser partition TH . We assume also that TH is aligned with the discontinuities of

the coefficient a(x) so that over each element E ∈ TH the coefficients of a(x) are smooth functions.

The variational problem (2) is then discretized using the finite element method, i.e., the continuous

space V is replaced by a finite dimensional subspace Vh. Then the finite element formulation is: find

uh ∈ Vh, satisfying

Ah(uh, vh) = (f, vh) ∀vh ∈ Vh, where Ah(uh, vh) =
∑

e∈Th

∫

e
a(e)∇uh · ∇vhdx. (3)

Here a(e) is a piecewise constant symmetric positive definite matrix, defined by the integral averaged

values of a(x) over each element from the coarser triangulation TH . We note that in this way strong

coefficient jumps across the boundaries between adjacent finite elements from TH are allowed.

The resulting discrete problem to be solved is then a linear system of equations

Ahuh = fh, (4)

withAh and fh being the corresponding global stiffness matrix and global right-hand side, and h being

the discretization (meshsize) parameter of the underlying partition Th of Ω.

The aim of this paper is to investigate multilevel preconditioners of optimal complexity for solving

the system (4). The general setting and some well-known results for the case of conforming finite

elements are summarized in the rest of this section. The next sections are devoted to the study of two-

level and multilevel preconditioners for the case of non-conforming Rannacher-Turek finite elements.

A unified hierarchical splitting of the FEM spaces is developed, followed by a local analysis that

results in uniform estimates of the angle between the “coarse” space and its complementary space. The

numerical results that are presented towards the end of the paper are completed by some concluding

remarks.

1.1 Two-level setting

We are concerned with the construction of a two-level preconditioner M for Ah, such that the spectral

condition number κ(M−1Ah) of the preconditioned matrixM−1Ah is uniformly bounded w.r.t. mesh

size h and possible coefficient jumps (if the averaging of coefficients on the macro elements is used).
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The classical theory for constructing optimal order two-level preconditioners was first developed

in [4, 9], see also [3]. The general framework requires to define two nested finite element spaces

VH ⊂ Vh, that correspond to two consecutive (regular) mesh refinements. The well studied case of

conforming linear finite elements is the starting point in the theory of two- and multilevel methods.

Let TH and Th be two successive mesh refinements of the domain Ω, which correspond to VH

and Vh. Let {φ(k)
H , k = 1, 2, · · · , NH} and {φ(k)

h , k = 1, 2, · · · , Nh} be the standard finite element

nodal basis functions. We split the meshpoints Nh from Th into two groups: the first group contains

the nodes NH from TH and the second one consists of the rest, where the latter are the newly added

node-points Nh\H from Th\TH . Next we define the so-called hierarchical basis functions

{φ̃(k)
h , k = 1, 2, · · · , Nh} = {φ(l)

H on TH} ∪ {φ(m)
h on Th\TH}. (5)

Let then Ãh be the corresponding hierarchical stiffness matrix. Under the splitting (5) both matrices

Ah and Ãh admit in a natural way a two-by-two block structure

Ah =

[
A11 A12

A21 A22

]
}Nh\H

}NH
, Ãh =

[
A11 Ã12

Ã21 AH

]
}Nh\H

}NH
. (6)

Remark 1.1 Clearly, the hierarchical stiffness matrix Ãh is more dense than Ah and therefore its

action on a vector is computationally more expensive. However, there exists a sparse transformation

matrix J , which enables us in practical implementations to work with Ah, since Ãh = JAhJ
T .

1.2 Two-level preconditioners and the strengthened Cauchy-Bunyakowski-Schwarz

inequality

The key role in the derivation of optimal convergence rate estimates of two- and multilevel methods

plays the constant γ in the so-called strengthened Cauchy-Bunyakowski-Schwarz (CBS) inequality,

associated with the angle between the two subspaces of the splitting. More precisely, the value of the

upper bound for γ ∈ (0, 1) is a part of the construction of various multilevel extensions of the related

two-level methods.

Consider a general matrix A, which is assumed to be symmetric positive definite and partitioned

as in (6). The quality of this partitioning is characterized by the corresponding strengthened CBS

inequality constant:

γ = sup
v1∈Rn1−n2 , v2∈Rn2

v
T
1 A12v2(

vT
1 A11v1

)1/2 (
vT

2 A22v2

)1/2
, (7)

where n1 = |Nh| and n2 = |NH | denote the cardinality of the sets Nh and NH , respectively.

Consider now the two-level preconditioners (a detailed description can be found, e.g., in [3]) to A
under the assumptions

A11 ≤ C11 ≤ (1 + δ1)A11 and A22 ≤ C22 ≤ (1 + δ2)A22. (8)

The inequalities (8) are in a positive semidefinite sense where C11 and C22 are symmetric and positive

definite matrices for some positive constants δi, i = 1, 2.

The additive preconditioner MA and the multiplicative preconditioner MF are then introduced as

MA =

[
C11 0
0 C22

]
, and MF =

[
C11 0
A21 C22

] [
I1 C−1

11 A12

0 I2

]
, (9)
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respectively. When C11 = A11 and C22 = A22, then the following estimates hold (for some details

on various two-level estimates, see, e.g., [3]):

κ(M−1
A A) ≤ 1 + γ

1 − γ
, and κ(M−1

F A) ≤ 1

1 − γ2
.

In the hierarchical bases context V1 and V2 are subspaces of the finite element space Vh spanned,

respectively, by the basis functions at the new nodes Nh\H and by the basis functions at the old nodes

NH . For the strengthened CBS inequality constant, there holds that

γ = cos(V1, V2) = sup
u ∈ V1, v ∈ V2

A(u, v)√
A(u, u)A(v, v)

(10)

where A(·, ·) is the bilinear form which appears in the variational formulation of the original problem.

As shown in [4], the constant γ can be estimated locally over each (macro) finite element E ∈ TH ,

which means that γ = max
E

γE, where

γE = sup
u ∈ V1(E), v ∈ V2(E)

AE(u, v)√
AE(u, u)AE(v, v)

, v 6= const.

The spaces Vk(E) above contain the functions from Vk restricted to E and AE(u, v) corresponds to

A(u, v) restricted over the element E of TH (see also [16]).

We stress here, that the above technique is originally developed and straightforwardly applicable

for conforming finite elements and nested finite element spaces only, i.e., when VH ⊂ Vh.

2 Rannacher-Turek finite elements

Non-conforming finite elements based on rotated multilinear shape functions were introduced by

Rannacher and Turek [22] as a class of simple elements for the Stokes problem. More generally,

recent activities in the development of efficient solution methods for non-conforming finite element

systems are inspired by their attractive properties as a stable discretization tool for ill-conditioned

problems.

The cube [−1, 1]3 is used as a reference element ê to define the isoparametric rotated trilinear

element e ∈ Th. Let ψe : ê → e be the trilinear bijective mapping between the reference element ê
and e. The polynomial space of shape functions φ̂i on the reference element ê is defined by

P̂ := {φ̂i : 1 ≤ i ≤ 6} = span{1, x, y, z, x2 − y2, y2 − z2},

and the shape functions φi on e are computed from φ̂i via the relations

{φi}6
i=1 = {φ̂i ◦ ψ−1

e }6
i=1,

where ◦ means the superposition of functions φ̂i and ψ−1
e .

In the following, two different discretization variants, i.e., two different sets of shape functions

φ̂i are considered. For the variant MP (mid point), {φ̂i}6
i=1 are found by the point-wise interpolation

condition

φ̂i(b
j
Γ) = δij ,
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Figure 1: Node numbering and connectivity pattern of the reference element ê.

where bjΓ, j = 1, 6 are the centers of the faces of the cube ê. Then,

φ̂1(x, y, z) =
1 − 3x+ 2x2 − y2 − z2

6
, φ̂2(x, y, z) =

1 + 3x+ 2x2 − y2 − z2

6
,

φ̂3(x, y, z) =
1 − x2 − 3y + 2y2 − z2

6
, φ̂4(x, y, z) =

1 − x2 + 3y + 2y2 − z2

6
,

φ̂5(x, y, z) =
1 − x2 − y2 − 3z + 2z2

6
, φ̂6(x, y, z) =

1 − x2 − y2 + 3z + 2z2

6
.

Alternatively, the variant MV (mean value) corresponds to integral mean-value interpolation condition

|Γj
ê|−1

∫

Γj

ê

φ̂idΓ
j
ê = δij ,

where Γj
ê are the faces of the reference element ê. This leads to

φ̂1(x, y, z) =
2 − 6x+ 6x2 − 3y2 − 3z2

12
, φ̂2(x, y, z) =

2 + 6x+ 6x2 − 3y2 − 3z2

12
,

φ̂3(x, y, z) =
2 − 3x2 − 6y + 6y2 − 3z2

12
, φ̂4(x, y, z) =

2 − 3x2 + 6y + 6y2 − 3z2

12
,

φ̂5(x, y, z) =
2 − 3x2 − 3y2 − 6z + 6z2

12
, φ̂6(x, y, z) =

2 − 3x2 − 3y2 + 6z + 6z2

12
.

Let us consider the model isotropic problem with diagonal coefficient matrix

a(x) = a(e)




1 0 0
0 1 0
0 0 1


 . (11)

In what follows we will assume that all elements in the triangulation are cubes with mesh size h. Then

the element stiffness matrices, corresponding to the variants MP and MV are given by

AMP
e = a(e)

2h

9




17 −1 −4 −4 −4 −4
−1 17 −4 −4 −4 −4
−4 −4 17 −1 −4 −4
−4 −4 −1 17 −4 −4
−4 −4 −4 −4 17 −1
−4 −4 −4 −4 −1 17



, AMV

e = a(e)2h




3 1 −1 −1 −1 −1
1 3 −1 −1 −1 −1

−1 −1 3 1 −1 −1
−1 −1 1 3 −1 −1
−1 −1 −1 −1 3 1
−1 −1 −1 −1 1 3



.
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3 Hierarchical two-level splittings

Let us consider two consecutive discretizations TH and Th. It is obvious that VH and Vh are not nested

in this case, which is well illustrated by Figure 2.

Figure 2: One macro element.
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Figure 3: Node numbering in macro element

3.1 ”First reduce” (FR) two-level splitting

We follow the idea of [12, 15, 20] to define an algebraic two-level preconditioner. For that reason,

let ϕE = {φi(x, y)}36
i=1 be the macro-element vector of the nodal basis functions and AE be the

macro-element stiffness matrix corresponding to E ∈ Th. The global stiffness matrix Ah is given by

Ah =
∑

E∈Th

AE

where the summation is understood as the FEM assembly procedure. Next, we introduce the following

macro-element level transformation matrix JE in the 2 × 2 block diagonal form

JE =
1

4


 4I

JE,22


 , (12)

where I is the 12 × 12 identity matrix and

JE,22 =




P
P

P
P

P
P

E1 E2 E3 E4 E5 E6




. (13)
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Each block Ei is a 6 × 4 zero matrix except for its i-th row which is composed of all ones, and

P =




−1 1 −1 1
−1 −1 1 1

1 −1 −1 1


 .

The matrix JE defines locally a two-level hierarchical basis ϕ̃E , namely, ϕ̃E = JEϕE . The hierarchi-

cal two-level macro-element stiffness matrix is then obtained as

ÃE = JEAEJ
T
E ,

and the related global stiffness matrix reads as

Ãh =
∑

E∈Th

ÃE.

We split now the two-level stiffness matrix Ãh into 2 × 2 block form

Ãh =


 Ã11 Ã12

Ã21 Ã22


 , (14)

where Ã11 corresponds to interior nodal unknowns with respect to the macro elements E ∈ Th. The

first step of the ”First Reduce” (FR) algorithm is to eliminate these unknowns. For this purpose we

factor Ãh, i.e.,

Ãh =


 Ã11 0

Ã21 B




 I1 Ã−1

11 Ã12

0 I2


 , (15)

where B = Ã22 − Ã21Ã
−1
11 Ã12 stands for the Schur complement of this elimination step.

Next we consider a two-level splitting of the matrix B in the block form

B =


 B11 B12

B21 B22


 , (16)

where the first block corresponds to the differences of three different couples of basis functions from

each macro-element face. The matrixB22 corresponds to the sum of basis functions from each macro-

element face and can be associated with the coarse grid. It is important to note that

ker(BE;22) = ker(Ae) = span{(1, 1, 1, 1, 1, 1)T }

which allows us to apply a local analysis to estimate the constant γ corresponding to the splitting

defined by the block partition (16).

For our analysis we proceed as follows:

Step 1: We observe that the upper-left block of Ãh is a block-diagonal matrix. The diagonal entries

of Ã11 are 12 × 12 blocks, related to the interior points {1, 2, . . . , 12}, cf. Figure 2, which

are not connected to nodes in other macro elements. Thus, the corresponding unknowns can

be eliminated exactly, i.e., to be done locally. Therefore, we first compute the local Schur
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complements arising from static condensation of the “interior degrees of freedom” and obtain

the (24 × 24) matrix BE . Next we split BE as

BE =

[
BE,11 BE,12

BE,21 BE,22

]
}two-level “difference” basis functions

}two-level “sum” basis functions

written again in two-by-two block form.

Step 2: We are now in a position to estimate the CBS constant corresponding to the 2×2 splitting of B.

Following the general theory, it suffices to compute the minimal eigenvalue of the generalized

eigenproblem

SEvE = λ
(1)
E BE,22vE, vE 6= c := (c, c, . . . , c)T ,

where SE = BE,22 −BE,21B
−1
E,11BE,12, and then

γ2 ≤ max
E∈Th

γ2
E = max

E∈Th

(1 − λ
(1)
E ). (17)

3.2 Two-level splitting by differences and aggregates (DA)

Similarly to the FR case, the DA splitting is easily described for one macro element. If φ1, . . . , φ36

are the standard nodal basis functions for the macro element, then we define

V (E) = span {φ1, . . . , φ36} = V1(E) ⊕ V2(E) ,
V1 (E) = span {φ1, . . . , φ12, φ14 + φ16 − (φ13 + φ15), φ15 + φ16 − (φ13 + φ14),

φ13 + φ16 − (φ14 + φ15), . . . , φ34 + φ36 − (φ33 + φ35),
φ35 + φ36 − (φ33 + φ34), φ33 + φ36 − (φ34 + φ35)}

V2 (E) = span {φ13 + φ14 + φ15 + φ16 +

12∑

j=1

β1jφj , . . . ,

φ33 + φ34 + φ35 + φ36 +

12∑

j=1

β6jφj} .

Using the related transformation matrix

JE =
1

4


 4I

JE,21 JE,22


 , (18)

where I is 12 × 12 identity matrix, JE,22 is the same as (13),

JE,21 =

[
0

B

]

and B = (βij)6×12. The vector of the macro-element basis functions ϕE = {φi}36
i=1 is transformed to

a new hierarchical basis ϕ̃E = {φ̃i}36
i=1 = JEϕE . Accordingly, JE transforms the macro-element

stiffness matrix into a hierarchical form

ÃE = JEAEJ
T
E =

[
ÃE,11 ÃE,12

ÃE,21 ÃE,22

]
φ̃i ∈ V1(E)

φ̃i ∈ V2(E)
. (19)
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Following the local definitions, for the whole finite element space Vh with the standard nodal finite

element basis ϕ = {φ(i)
h }Nh

i=1 we can similarly construct the new hierarchical basis ϕ̃ = {ϕ̃(i)
h }Nh

i=1

and the corresponding splitting

Vh = V1 ⊕ V2 . (20)

The transformation J such that ϕ̃ = Jϕ, can be used for transformation of the stiffness matrix Ah

to hierarchical form Ãh = JAhJ
T , which allows preconditioning by the two-level preconditioners

based on the splitting (20).

Now, we are in a position to analyze the constant γ = cos(V1, V2) for the splitting (20). Again,

as in the previous section, we would like to perform this analysis locally, by considering the corre-

sponding problems on macro elements. For this purpose we need to have satisfied the condition

(i) ker(ÃE,22) = ker(Ae),

which is equivalent to
6∑

i=1

βij = 1 , ∀j ∈ {1, 2, . . . , 12}. (21)

There are obviously various DA splittings satisfying the condition (i). See for some more details

about aggregation based preconditioners in the review paper [11].

When the two-level algorithm is recursively generalized to the multilevel case, it could be desir-

able if

(ii) ÃE,22 is proportional to Ae.

It seems to be rather complicated to find a parameter matrix B, which satisfies the condition (ii) in

the general case of Rannacher-Turek trilinear finite elements.

4 Uniform estimates of the CBS constant

We study in this section both splitting algorithms, FR and DA, for both variants MP and MV of rotated

trilinear finite elements.

4.1 FR algorithm

Following (17) we compute the local CBS constant and derive the following global estimates for the

isotropic model problem on a mesh composed of cubic elements. The bounds are uniform with respect

to the size of the discrete problem and any possible jumps of the coefficients.

Variant MP: For the FR splitting we have

λ
(1)
E =

13

21
, γ2

E = 1 − λ
(1)
E =

8

21
,

and therefore

γ2
MP ≤ 8

21
. (22)

Variant MV: For the FR splitting we further have

λ
(1)
E =

1

2
, γ2

E = 1 − λ
(1)
E =

1

2
,

9



and therefore

γ2
MV ≤ 1

2
. (23)

Let us remind once again, that the obtained estimates hold theoretically for the two-level algorithm

only. This is because the matrixB22 is only associated with the coarse discretization e ∈ TH and is not

proportional to the related element stiffness matrix Ae. As we will see later, the CBS constants have

a very stable behavior in the FR multilevel setting, which has been verified numerically, cf. Table 1

and Figure 4.

4.2 DA algorithm

Due to the isotropy of the model problem, the non-zero part B of the down-left block JE,21 of the

transformation matrix JE can be simplified to the form

B =




a a a a b c b c b c b c
a a a a c b c b c b c b
b c b c a a a a b b c c
c b c b a a a a c c b b
b b c c b b c c a a a a
c c b b c c b b a a a a



. (24)

The condition (i) is equivalent to

a+ b+ c = 1.

Let us write the condition (ii) in the form

ÃE,22 = pAe. (25)

Then, (ii) is reduced to a system of three nonlinear equations for (a, b, c), with a parameter p. For the

relatively less complicated 2D case, a similar approach was recently proposed in [15]. Now it appears

that in the 3D case the system for (a, b, c) has again a solution if p ∈ [p0,∞) for some p0 > 0. In such

a case, we can optimize the parameter p, so that the CBS constant is minimal. The obtained results are

summarized below. For the related analysis we have used symbolic computations with the computer

algebra program MATHEMATICA.

Variant MP:

Lemma 4.1 There exists a DA two-level splitting satisfying the condition (ii), if and only if,

p ≥ 3

14
.

Then, the obtained solutions for (a, b, c) are invariant with respect to the local CBS constant

γ2
E = 1 − 1

8p
,

and for the related optimal splitting

γ2
MP ≤ 5

12
. (26)
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Although the statements of Lemma 4.1. look very simply, the midterm derivations are rather

technical, which is just illustrated by the following expressions of four different solutions for (a, b, c):

(
94

273
− 2

21
ξ(p) − 3 η(p)

26
√

2
,

10 − 26 ξ(p)

273
+

3
√

2 η(p)

52
,

5 + 8 ξ(p)

42

)
,

(
94

273
+

2

21
ξ(p) +

3 η(p)

26
√

2
,

10 + 26 ξ(p)

273
− 3

√
2 η(p)

52
,

5 − 8 ξ(p)

42

)
,

(
94

273
− 2

21
ξ(p) +

3 η(p)

26
√

2
,

10 − 26 ξ(p)

273
− 3

√
2 η(p)

52
,

5 + 8 ξ(p)

42

)
,

(
94

273
+

2

21
ξ(p) − 3 η(p)

26
√

2
,

10 + 26 ξ(p)

273
+

3
√

2 η(p)

52
,

5 − 8 ξ(p)

42

)
,

where ξ(p) =
√−3 + 14 p and η(p) =

√−21 + 104 p .

Variant MV: The same approach is applied to get the estimates below.

Lemma 4.2 There exists a DA two-level splitting satisfying the condition (ii), if and only if,

p ≥ 1

4
.

Then, the obtained solutions for (a, b, c) are invariant with respect to the local CBS constant

γ2
E = 1 − 1

8p
,

and for the related optimal splitting

γ2
MV ≤ 1

2
. (27)

5 Multilevel preconditioning

The multilevel methods have evolved from two-level methods. The straightforward recursive exten-

sion leads to the class of hierarchical basis (HB) methods for which the condition number grows in

general exponentially with the number of levels ℓ. Therefore, in order to obtain multilevel precondi-

tioners of both additive or multiplicative type, which have optimal convergence rate, i.e.,

κ(M (ℓ)−1
A) = O(1),

and optimal computational complexity (linearly proportional to the number of degrees of freedom nℓ

at the finest discretization level), HB preconditioners are combined with various types of stabilization

techniques.

One particular purely algebraic stabilization technique is the so-called Algebraic Multilevel It-

eration (AMLI) method, where a specially constructed matrix polynomial Pβk
of degree βk is used

on some (all) levels k = 1, · · · , ℓ. The AMLI methods are originally introduced and studied in a

multiplicative form, see [6, 7].
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Starting from the coarsest mesh (level 0) withM
(0)
F = A(0), the basic idea is to apply the two-level

preconditioner (9) recursively at all levels k = 1, 2, . . . , ℓ of mesh refinement, i.e.,

M
(k)
F =

[
C

(k)
11 0

Ã
(k)
21 C

(k)
22

][
I C

(k)
11

−1
Ã

(k)
12

0 I

]
. (28)

Here C
(k)
11 is some preconditioner for the upper left block of the (hierarchical) stiffness matrix

Ã(k) =

[
Ã

(k)
11 Ã

(k)
12

Ã
(k)
21 Ã

(k)
22

]

at level k and the matrix C
(k)
22 is implicitly defined by the equation

C
(k)
22

−1
=

[
I − Pβ

(
M

(k−1)
F

−1
Ã(k−1)

)]
Ã(k−1)−1

(29)

where M
(k−1)
F and Ã(k−1) denote the multiplicative preconditioner and the (aggregated in the case

of DA) stiffness matrix corresponding to level (k − 1), respectively, and Ã(0) = A(0) by definition.

Then, as well known from theory [6, 7], a properly shifted Chebyshev polynomial Pβk
of degree βk,

satisfying the conditions

0 ≤ Pβk
(t) < 1, 0 < t ≤ 1, Pβk

(0) = 1,

can be used in order to stabilize the condition number of the linear AMLI preconditioner.

The main result from this analysis is that the AMLI preconditioner has optimal computational

complexity, if βk = β and
1√

1 − γ2
< β < τ, (30)

where τ ≈ nk+1

nk
is the reduction factor of the number of degrees of freedom.

In the case DA, γ2
MP < 5/12, γ2

MV < 1/2, and the optimality condition is reached for polynomial

degrees β ∈ {2, 3, . . . , 7}.

Now, let us turn back to the case FR. The multilevel behavior of the CBS constant is studied

numerically. This means, that at the current coarsening step, the role of the element stiffness matrix is

played by the related last computed block BE,22. The obtained results are shown below in both, table

and graphic form.

The computed (local) estimates for γ2 for the FR algorithm are always smaller than the related

ones for the DA algorithm. One can also observe a nice one-side convergence to the value of θ ≈
0.39238 for both, MP and MV, cases, see Figure 4; Similar results were reported in [15] for 2D

problems.

The conclusion of the considerations in this section is that the DA splitting provides better oppor-

tunities for a systematic theoretical analysis. However, the practical value of the counterpart approach

FR seems to compensate for this advantage.

Remark 5.1 It is important to note, that the CBS constant is not only used to analyze the related two-

level and multilevel preconditioners. It is also involved in the construction of the acceleration matrix

polynomial Pβ . In other words, the smaller γ means the faster the PCG method convergence in a very

general setting.
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Table 1: Multilevel behavior of γ2 for ”First reduce” algorithm

variant ℓ ℓ− 1 ℓ− 2 ℓ− 3 ℓ− 4 ℓ− 5

MP 0.38095 0.39061 0.39211 0.39234 0.39237 0.39238

MV 0.5 0.4 0.39344 0.39253 0.39240 0.39238

MV

MP

0.39238

0.38095

0.5

l l−5l−4l−3l−2l−1

Figure 4: Multilevel behavior of γ2 for ”First reduce” algorithm

Remark 5.2 According to our local estimates for γ there is evidence to suggest that the symmetric

preconditioner of block-diagonal (additive) form yields an optimal order AMLI method for the DA

approach provided third- to seventh-order stabilization polynomials are employed, i.e., the optimality

condition √
1 + γ

1 − γ
< β < τ (31)

is met for both – MP and MV – discretization variants if β ∈ {3, 4, . . . , 7}.

Stabilization techniques for additive multilevel iteration methods and nearly optimal order param-

eter-free block-diagonal preconditioners of AMLI-type are discussed in References [2, 5, 21].

Regarding the computational complexity of the multilevel algorithms we remark that the left-hand

side inequalities in (30) and (31) assure that the condition number will be bounded uniformly in the

number of levels whereas the right-hand side inequalities allow to estimate the computational work

w(ℓ) that is required for one application of the preconditioner at level ℓ of the finest discretization, i.e.,

w(ℓ) ≤ c (N (ℓ) + β N (ℓ−1) + . . . + βℓN (0)) < cN/(1 − β
τ ), where N = N (ℓ). The work for the

construction of the proposed AMLI preconditioners is also proportional to N . This can easily be seen

by observing that

• the matrices A(k), 0 ≤ k ≤ ℓ, have at most 11 nonzero entries per row,

• every two-level transformation J (k) is the identity for interior unknowns,

• in case of the FR splitting the remaining rows of J (k), which are given according to JE,22, see

(13), have 4 nonzero entries per row,
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• in case of the DA splitting the remaining rows of J (k) are given according to [JE,21, JE,22],
which results in 4 or at most 28 nonzeros per row,

• the costs for the elimination of the interior nodal unknowns is O(N (k)),

• the (global) product Ã(k) = J (k)A(k)J (k)T requires O(N (k)) operations,

• alternatively, the hierarchical basis matrix Ã(k) can be assembled from the local contributions

Ã
(k)
E = JEA

(k)
E JT

E , at total costs of O(N (k)) operations, which include the computation of all

local matrix products.

Clearly, the storage requirement for the preconditioner is O(N) as well.

6 Numerical results

We solve the model problem (1) using the preconditioned conjugate gradient (PCG) method combined

with the multiplicative variant of the multilevel preconditioner based on either DA or FR splitting.

6.1 Jump in coefficients aligned with coarse mesh

The computational domain is Ω = (0, 1)3 in the first example and both discretization variants, MP

and MV, are considered. The mesh size is varied in the range h = 1/8 to h = 1/128 resulting in

512 to 2 097 157 finite elements with 1 728 to 6 340 608 nodes, respectively. For any element e in Th

the matrix a(e) in (3) is defined by a(e) := α(e) · I , where the following situation of a jump in the

coefficient α = α(e) is considered:

α(e) =

{
1 in (I1 × I1 × I1)

⋃
(I2 × I2 × I1)

⋃
(I2 × I1 × I2)

⋃
(I1 × I2 × I2)

ε elsewhere

}
,

where I1 = (0, 0.5] and I2 = (0.5, 1), and ε = 10−3. All computations are performed on a Fujitsu

Siemens Primergy RX600 S3 workstation with four dual core Intel Xeon MP processors (3.4 GHz)

with 64 GB RAM. Table 2 summarizes the number of PCG iterations that reduce the residual norm

by a factor 108 when performing the V-cycle AMLI. In Table 3 we list the corresponding results for

the linear AMLI W-cycle employing the matrix polynomial Q1(t) = (1 − P2(t))/t = q0 + q1t for

stabilizing the condition number. In accordance with the analysis in [6, 7] we use the coefficients

q0 =
2√

1 − γ2
, q1 = − 1

1 − γ2
. (32)

It is notable that this choice, although theoretically founded for the situation of exact inversion of the

pivot block A11 only, still yields satisfying results in our case where we use an approximate inver-

sion of A11, i.e., an incomplete factorization based on a drop tolerance (ILU(tol)); We set the drop

tolerance tol to 10−3 in all the experiments presented in this paper.1 Finally, Table 4 summarizes the

results for the (variable-step) non-linear AMLI method stabilized by two inner generalized conjugate

gradient iterations at every intermediate level, cf., [8, 17, 21] (and using a direct solve on the coarsest

mesh with mesh size h−1 = 4, as in the other tests).

1During the computation of the triangular incomplete factors of a matrix M the entries smaller in magnitude than the

local drop tolerance (given by the product of the drop tolerance tol and the diagonal entry of the corresponding row i of M )

are dropped from the appropriate factor [23].
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Table 2: Linear AMLI V-cycle: number of PCG iterations

MP: h−1 8 16 32 64 128

DA: ε = 1 9 12 16 20 24

ε = 10−3 9 12 16 20 25

FR: ε = 1 8 11 14 18 22

ε = 10−3 8 11 14 18 22

MV: h−1 8 16 32 64 128

DA: ε = 1 12 17 22 29 38

ε = 10−3 12 17 22 30 39

FR: ε = 1 10 14 17 21 26

ε = 10−3 10 14 17 21 26

Table 3: Linear AMLI W-cycle: number of PCG iterations

MP: h−1 8 16 32 64 128

DA: ε = 1 9 10 10 10 10

ε = 10−3 9 10 10 10 10

FR: ε = 1 8 9 9 9 9

ε = 10−3 8 9 9 9 9

MV: h−1 8 16 32 64 128

DA: ε = 1 12 15 15 16 16

ε = 10−3 12 15 16 16 16

FR: ε = 1 10 12 12 12 12

ε = 10−3 10 12 12 12 12

Table 4: Non-linear AMLI W-cycle: number of (outer) GCG iterations

MP: h−1 8 16 32 64 128

DA: ε = 1 9 9 9 9 9

ε = 10−3 9 10 10 10 10

FR: ε = 1 8 9 9 9 9

ε = 10−3 8 9 9 9 9

MV: h−1 8 16 32 64 128

DA: ε = 1 12 12 12 12 12

ε = 10−3 12 12 12 12 12

FR: ε = 1 10 11 11 11 11

ε = 10−3 10 11 11 11 11

As the theory predicts the preconditioners are perfectly robust with respect to jump discontinu-

ities of the coefficients a(e) if they do not occur inside any element of the coarsest mesh partition.

The results slightly favor the FR approach, and, they illustrate well the optimal complexity of the

iterative solvers, when using a W-cycle (linear or non-linear), for both of the splittings and for both

discretization variants.

6.2 Random distribution of jump in coefficients

The remaining experiments deal with examples where the coefficient functions are rough in the sense

that their variations (jumps) need to be resolved on the finest mesh. In these tests we use the FR

basis transformation in combination with the non-linear AMLI W-cycle method, i.e., two inner GCG

iterations at all coarse levels (except the coarsest one). The number of outer iterations that we report in

Table 5 reduce the residual by a factor 106. Here, the coefficient α(e) is constant elementwise only; It

is initialized randomly, taking either of the values 1 or ε, where 1 occurs with some fixed probability p.

By comparing the results shown in Tables 4 and 5, we observe that in general, the solver is not robust

with respect to jump discontinuities (aligned with the finest mesh partition). However, for a fixed

value of ε the solution process still remains of optimal order of computational complexity, no matter

how large the jumps are. We want to emphasize this advantage of the non-linear AMLI over the linear

algorithm, which does not achieve a stabilization of the condition number (and thus no longer results
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Table 5: Non-linear AMLI W-cycle: GCG iterations for problem with random coefficients

p = 1/2

FR-MV: h−1 8 16 32 64 128

ε = 10−1 9 9 9 9 9

ε = 10−2 21 22 22 21 21

ε = 10−3 42 59 58 56 54

p = 1/10

FR-MV: h−1 8 16 32 64 128

ε = 10−1 9 9 9 9 9

ε = 10−2 17 22 22 22 22

ε = 10−3 29 60 55 50 50

in an optimal-order method) for problems with large coefficient jumps that can only be resolved on

the finest mesh.

6.3 An example related to the microstructure of human bones

Finally we consider another similar problem but with a real-life background. Here the distribution of

large and small coefficients corresponds to the distribution of the solid and the liquid phase of a human

lumbar vertebral body L3. The voxel size in each direction (in-slice pixel size and distance from slice

to slice) is 37 µm. The data is extracted from a micro-CT scan.2 In order to save memory (and CPU

(a) 128 slices (1283 voxels) (b) 256 slices (2563 voxels)

Figure 5: Cube extracted from lumbar vertebral body.

time) the number of orthogonal search directions in the GCG algorithm at the fine-grid level is reduced

to 10 (instead of 20 which we used in the previous examples). Again, the relative residual is 10−6. In

Table 6 we list the CPU time for the setup and for the solution of the linear system with the non-linear

2Bone 3D Project Team (ESA MAP Project AO-99-030, ESTEC Contract #14592/00/NL/SH): Vertebral Body Data Set

ESA29-99-L3, http://bone3d.zib.de/data/2005/ESA29-99-L3/
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AMLI method based on the FR approach. Table 7 summarizes the corresponding number of W-cycle

iterations. Both discretization variants, MP and MV, are considered. The number of outer iterations

to achieve the same relative residual only slightly increases when comparing the random coefficient

distribution to that of the bone structure. In fact, this increase is due to the reduction of orthogonal

search directions in the GCG algorithm (at the fine-grid level) from 20 to 10. The total solution time

reported in Table 6 indicates the optimal complexity of the method. Though the CPU time for solving

the largest problem (h−1 = 256) is in the range of two (ε = 10−1) to six (ε = 10−3) thousand seconds

this seems to be acceptable in view of the huge number of degrees of freedom (50 528 256 DOF) and

in view of the fact that we used a serial code.

Table 6: CPU time (variant FR)

MP

setup time

h−1 16 32 64 128 256

ε = 10−1 0.21 2.00 17.4 146.7 1259

ε = 10−2 0.22 1.97 17.1 144.5 1237

ε = 10−3 0.22 1.95 17.0 144.0 1230

solution time

h−1 16 32 64 128 256

ε = 10−1 0.04 0.63 6.8 68.4 700

ε = 10−2 0.12 1.42 16.1 162.1 1662

ε = 10−3 0.36 4.44 44.5 449.8 4487

MV

setup time

h−1 16 32 64 128 256

ε = 10−1 0.23 2.13 18.6 157.2 1386

ε = 10−2 0.22 2.08 18.3 154.4 1361

ε = 10−3 0.22 2.06 18.1 153.4 1337

solution time

h−1 16 32 64 128 256

ε = 10−1 0.05 0.66 7.0 70.8 757

ε = 10−2 0.12 1.49 16.7 167.9 1779

ε = 10−3 0.34 4.30 45.8 465.8 4818

Table 7: Non-linear AMLI W-cycle: GCG iterations (variant FR) for bone structure

MP

h−1 16 32 64 128 256

ε = 10−1 8 9 9 9 9

ε = 10−2 22 21 22 23 22

ε = 10−3 73 66 61 61 61

MV

h−1 16 32 64 128 256

ε = 10−1 9 9 9 9 9

ε = 10−2 21 21 22 22 22

ε = 10−3 67 61 61 61 61
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The amount of fill-in occurring in the ILU(tol) factorization that is used for the inexact solves with

the pivot blocks A11 is shown in Table 8; the fill-in quotient appearing in this table is obtained from

dividing the number of nonzero entries in the incomplete factor L (or U ) by the number of nonzero

entries in the lower (or upper) triangular part of A11, i.e., this quotient equals one for an ILU(0)

factorization.

Table 8: ILU(tol) max. fill-in quotient (rel. to ILU(0)) for tol = 10−3

MP

h−1 16 32 64 128 256

ε = 10−1 2.01 2.10 2.15 2.17 2.18

ε = 10−2 1.96 2.05 2.10 2.12 2.15

ε = 10−3 1.94 2.04 2.10 2.12 2.14

MV

h−1 16 32 64 128 256

ε = 10−1 2.36 2.56 2.70 2.76 2.81

ε = 10−2 2.26 2.45 2.60 2.65 2.70

ε = 10−3 2.23 2.42 2.55 2.60 2.65

A speedup potential is the use of a cheaper approximate inverse of the pivot blocks. As we see

from Table 8 the computation and each application of the ILU(tol) preconditioner (with tol = 10−3)

has about two to three times the operation count as compared to the ILU(0) preconditioner (which can

be used in case of smooth coefficients only).

Finally we want to remark that the FR splitting has the favorable property to improve the angle

between the induced FE subspaces when applied recursively. The maximum of the local γ2
E,max over

all macro elements is shown in Table 9 on the first five subsequent levels. At least to some extent,

Table 9: Multilevel behavior of γ2
E,max for FR approach

MP

h−1 = 128 ℓ ℓ− 1 ℓ− 2 ℓ− 3 ℓ− 4

ε = 10−1 0.84775 0.82695 0.80832 0.77615 0.65715

ε = 10−2 0.98275 0.97812 0.97557 0.96826 0.91927

ε = 10−3 0.99825 0.99775 0.99748 0.99665 0.99038

MV

h−1 = 128 ℓ ℓ− 1 ℓ− 2 ℓ− 3 ℓ− 4

ε = 10−1 0.88270 0.83248 0.80981 0.77636 0.65708

ε = 10−2 0.98684 0.97910 0.97565 0.96838 0.92088

ε = 10−3 0.99867 0.99785 0.99749 0.99667 0.99079

this makes the optimality of the method plausible also in case of non-smooth coefficients. However, a

deeper understanding will require further theoretical investigations.
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7 Concluding remarks

In this paper, we presented a general setting of hierarchical splittings of the Rannacher-Turek non-

conforming FEM spaces. New estimates for the constant in the strengthened CBS inequality are

derived for the considered model problem.

Let us summarize the following important issues. The DA algorithm allows for a direct extension

of the γ estimate to the multi-level case if the condition (ii) holds. The derived local bounds are close

to their counterparts in the 2D case, cf. [15]. In particular, they secure the possibility of stabilizing

the condition number by second degree polynomials (2-fold W-cycles) when using the multiplicative

and by third degree polynomials (3-fold W-cycles) when using the additive variant of the multilevel

method. However, in general, it is hard to say anything about the existence of a DA splitting satisfying

condition (ii). For the FR algorithm, the theoretically derived estimates of the CBS constant γ are

not directly applicable to the multilevel case but the recursively computed γ-s show a very promising

behavior which could be advantageous from a practical point of view. Moreover, as it has recently

been shown by two of the authors, the FR splitting always yields a larger angle between the subspaces

(a smaller γ) than the DA splitting, when applied to one and the same stiffness matrix; It has even

been shown that the FR splitting is the best splitting based on differences and aggregates in the sense

of minimizing the related CBS constant, see [18]. The numerical tests fully confirm the theoretical

estimates. Moreover, they indicate some self-stabilization of the FR algorithm and the non-linear

AMLI which is especially important for the case of strong coefficient jumps that are not aligned with

the coarse(st) mesh partition.
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