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Preface 
 

To err is human, to forgive divine; 

but to include errors into your design is statistical. 

 

Leslie Kish 

 

 

This book is intended as an introduction to multilevel analysis for applied 

researchers. The term ‘multilevel’ refers to a hierarchical or nested data structure, 

usually people within organizational groups, but the nesting may also consist of 

repeated measures within people, or respondents within clusters as in cluster sampling. 

The expression multilevel model or multilevel analysis is used as a generic term for all 

models for nested data. This book presents two multilevel models: the multilevel 

regression model and a model for multilevel covariance structures. 

Multilevel modeling used to be only for specialists. However, in the past 

decade, multilevel analysis software has become available that is both powerful and 

relatively accessible for applied researchers. As a result, there is a surge of interest 

in multilevel analysis, as evidenced by the appearance of several reviews and 

monographs, applications in different fields ranging from psychology and sociology 

to medicine, and a thriving Internet discussion list with more than 1400 subscribers. 

 Despite it being an introduction, the book includes a discussion of many 

extensions and special applications. As an introduction, it should be useable in 

courses in a variety of fields, such as psychology, education, sociology and business. 

The various extensions and special applications should make it useful to researchers 

who work in applied or theoretical research, and to methodologists who have to 

consult with these researchers. The basic models and examples are discussed in non-

technical terms; the emphasis is on understanding the methodological and statistical 

issues involved in using these models. Some of the extensions and special 

applications contain discussions that are more technical, either because that is 

necessary for understanding what the model does, or as a helpful introduction to 

more advanced treatments in other texts. Thus, in addition to its role as an 

introduction, the book should be useful as a standard reference for a large variety of 

applications. It assumes that readers have a basic knowledge of social science 

statistics, including analysis of variance and multiple regression analysis. The 

section about multilevel structural equation models assumes a basic understanding 

of ordinary structural equation modeling. 

  ix 
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Introduction to Multilevel Analysis 

 

 

Social research regularly involves problems that investigate the relationship between 

individual and society. The general concept is that individuals interact with the social 

contexts to which they belong, meaning that individual persons are influenced by the 

social groups or contexts to which they belong, and that the properties of those groups 

are in turn influenced by the individuals who make up that group. Generally, the 

individuals and the social groups are conceptualized as a hierarchical system of 

individuals and groups, with individuals and groups defined at separate levels of this 

hierarchical system. Naturally, such systems can be observed at different hierarchical 

levels, and variables may be defined at each level. This leads to research into the 

interaction between variables characterizing individuals and variables characterizing 

groups, a kind of research that is now often referred to as ‘multilevel research’. 

 In multilevel research, the data structure in the population is hierarchical, and the 

sample data are viewed as a multistage sample from this hierarchical population. Thus, 

in educational research, the population consists of schools and pupils within these 

schools, and the sampling procedure proceeds in two stages: first, we take a sample of 

schools, and next we take a sample of pupils within each school. Of course, in real 

research one may have a convenience sample at either level, or one may decide not to 

sample pupils but to study all available pupils in the sample of schools. Nevertheless, 

one should keep firmly in mind that the central statistical model in multilevel analysis 

is one of successive sampling from each level of a hierarchical population. 

In this example, pupils are nested within schools. Other examples are cross-

national studies where the individuals are nested within their national units, 

organizational research with individuals nested within departments within 

organizations, family research with family members within families and 

methodological research into interviewer effects with respondents nested within 

interviewers. Less obvious applications of multilevel models are longitudinal research 

and growth curve research, where a series of several distinct observations are viewed as 

nested within individuals, and meta-analysis where the subjects are nested within 

different studies. For simplicity, this book describes the multilevel models mostly in 

terms of individuals nested within groups, but note that the models apply to a much 

larger class of analysis problems. 

 

1 
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In multilevel research, variables can be defined at any level of the hierarchy. Some of 

these variables may be measured directly at their ‘own’ natural level; for example, at 

the school level we may measure school size and denomination, and at the pupil level 

intelligence and school success. In addition, we may move variables from one level to 

another by aggregation or disaggregation. Aggregation means that the variables at a 

lower level are moved to a higher level, for instance, by assigning to the schools the 

school mean of the pupils' intelligence scores. Disaggregation means moving variables 

to a lower level, for instance by assigning to all pupils in the schools a variable that 

indicates the denomination of the school they belong to. Lazarsfeld and Menzel (1961) 

offer a typology to describe the relations between different types of variables, defined 

at different levels. A simplified scheme is presented below: 

 

 

Level:  1    2    3      et cetera 

_____________________________________________________________________ 

Variable global  ⇒ analytical 

type:  relational  ⇒ structural 

  contextual  ⇐ global  ⇒ analytical 

      relational  ⇒ structural 

      contextual  ⇐ global  ⇒ 

          relational  ⇒ 

          contextual  ⇐ 

_____________________________________________________________________ 

 

 

The lowest level (level 1) in this scheme is usually defined by the individuals. 

However, this is not always the case. Galtung (1969), for instance, defines roles within 

individuals as the lowest level, and in longitudinal designs, one can define repeated 

measures within individuals as the lowest level (Goldstein, 1986, 1989). 

 At each level in the hierarchy, we may have several types of variables. Global 

variables are variables that refer only to the level at which they are defined, without 

reference to other units or levels. A pupil's intelligence or gender would be a global 

variable at the pupil level. School size would be a global variable at the school level. 

Relational variables also belong to one single level, but they describe the relationships 

of a unit to the other units at the same level. Many sociometric indices, such as indices 

of popularity or the reciprocity of relationships, are relational variables. Analytical and 

structural variables are measured by referring to the sub-units at a lower level. 

Analytical variables are constructed from variables at a lower level, for example, in 

defining the school variable ‘mean intelligence’ as the mean intelligence of the pupils 

in that school. Using the mean of a lower-level variable as an explanatory variable at a 
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higher level is a customary procedure in multilevel analysis. Other functions may also 

be valuable. For instance, using the standard deviation of a lower-level variable as an 

explanatory variable at a higher level could be used to test hypotheses about the effect 

of group heterogeneity on the outcome variable. Structural variables refer to the 

distribution of relational variables at the lower level; many social network indices are 

of this type. It is clear that constructing an analytical or structural variable from the 

lower-level data involves aggregation (which is indicated in the scheme by ⇒); data 

on lower-level units are aggregated into data on a smaller number of higher-level units. 

Contextual variables, on the other hand, refer to the super-units; all units at the lower 

level receive the value of a variable for the super-unit to which they belong at the 

higher level. For instance, we can assign to all pupils in a school the school size, or the 

mean intelligence, as a pupil level variable. This is called disaggregation (indicated in 

the scheme by ⇐); data on higher-level units are disaggregated into data on a larger 

number of lower-level units. The resulting variable is called a contextual variable, 

because it refers to the higher-level context of the units we are investigating. 

 In order to analyze multilevel models, it is not important to assign each variable 

to its proper place in the scheme given above. The benefit of the scheme is conceptual; 

it makes clear to which level a measurement properly belongs. Historically, multilevel 

problems led to analysis approaches that moved all variables by aggregation or 

disaggregation to one single level of interest followed by an ordinary multiple 

regression, analysis of variance, or some other ‘standard’ analysis method. However, 

analyzing variables from different levels at one single common level is inadequate, 

because it leads to two distinct problems. 

 The first problem is statistical. If data are aggregated, the result is that different 

data values from many sub-units are combined into fewer values for fewer higher-level 

units. As a result, much information is lost, and the statistical analysis loses power. On 

the other hand, if data are disaggregated, the result is that a few data values from a 

small number of super-units are ‘blown up’ into many more values for a much larger 

number of sub-units. Ordinary statistical tests treat all these disaggregated data values 

as independent information from the much larger sample of sub-units. The proper 

sample size for these variables is of course the number of higher-level units. Using the 

larger number of disaggregated cases for the sample size leads to significance tests that 

reject the null-hypothesis far more often than the nominal alpha level suggests. In other 

words: investigators come up with many ‘significant’ results that are totally spurious. 

 The second problem encountered is conceptual. If the analyst is not very careful 

in the interpretation of the results, s/he may commit the fallacy of the wrong level, 

which consists of analyzing the data at one level, and formulating conclusions at 

another level. Probably the best-known fallacy is the ecological fallacy, which is 

interpreting aggregated data at the individual level. It is also know as the ‘Robinson 

effect’ after Robinson (1950). Robinson presents aggregated data describing the 
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relationship between the percentage of blacks and the illiteracy level in nine geographic 

regions in 1930. The ecological correlation, that is, the correlation between the 

aggregated variables at the region level is 0.95. In contrast, the individual-level 

correlation between these global variables is 0.20. Robinson concludes that in practice 

an ecological correlation is almost certainly not equal to its corresponding individual-

level correlation. For a statistical explanation why this happens, see Robinson (1950) or 

Kreft and de Leeuw (1987). This problem occurs also the other way around. 

Formulating inferences at a higher level based on analyses performed at a lower level is 

just as misleading. This fallacy is known as the atomistic fallacy. A related but 

different fallacy is known as ‘Simpson's Paradox’ (see Lindley & Novick, 1981). 

Simpson's paradox refers to the problem that completely erroneous conclusions may be 

drawn if grouped data, drawn from heterogeneous populations, are collapsed and 

analyzed as if they came from a single homogeneous population. An extensive 

typology of such fallacies is given by Alker (1969). When aggregated data are the only 

available data, King (1997) presents some procedures that make it possible to estimate 

the corresponding individual relationships without committing the ecological fallacy. 

 A more general way to look at multilevel data is to realize that there is not one 

‘proper’ level at which the data should be analyzed. Rather, all levels present in the 

data are important in their own way. This becomes clear when we investigate cross-

level hypotheses, or multilevel problems. A multilevel problem is a problem that 

concerns the relationships between variables that are measured at a number of different 

hierarchical levels. For example, a common question is how a number of individual 

and group variables influence one single individual outcome variable. Typically, some 

of the higher-level explanatory variables may be the aggregated group means of lower-

level individual variables. The goal of the analysis is to determine the direct effect of 

individual and group level explanatory variables, and to determine if the explanatory 

variables at the group level serve as moderators of individual-level relationships. If 

group level variables moderate lower-level relationships, this shows up as a statistical 

interaction between explanatory variables from different levels. In the past, such data 

were usually analyzed using conventional multiple regression analysis with one 

dependent variable at the lowest (individual) level and a collection of explanatory 

variables from all available levels (cf. Boyd & Iversen, 1979; Roberts & Burstein, 

1980; van den Eeden & Hüttner, 1982). Since this approach analyzes all available data 

at one single level, it suffers from all of the conceptual and statistical problems 

mentioned above. Much research has been directed at developing more appropriate 

analysis methods for this hierarchical regression model, and at clarifying the associated 

conceptual and statistical issues. 
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1.1. WHY DO WE NEED SPECIAL MULTILEVEL ANALYSIS 

TECHNIQUES? 

 

A multilevel problem concerns a population with a hierarchical structure. A sample 

from such a population can be described as a multistage sample: first, we take a sample 

of units from the higher level (e.g., schools), and next we sample the sub-units from the 

available units (e.g., we sample pupils from the schools). In such samples, the 

individual observations are in general not completely independent. For instance, pupils 

in the same school tend to be similar to each other, because of selection processes (for 

instance, some schools may attract pupils from higher social economic status (SES) 

levels, while others attract more lower SES pupils) and because of the common history 

the pupils share by going to the same school. As a result, the average correlation 

(expressed in the so-called intraclass correlation) between variables measured on 

pupils from the same school will be higher than the average correlation between 

variables measured on pupils from different schools. Standard statistical tests lean 

heavily on the assumption of independence of the observations. If this assumption is 

violated (and in multilevel data this is almost always the case) the estimates of the 

standard errors of conventional statistical tests are much too small, and this results in 

many spuriously ‘significant’ results. 

 The problem of dependencies between individual observations also occurs in 

survey research, if the sample is not taken at random but cluster sampling from 

geographical areas is used instead. For similar reasons as in the school example given 

above, respondents from the same geographical area will be more similar to each other 

than respondents from different geographical areas are. This leads again to estimates 

for standard errors that are too small and produce spurious ‘significant’ results. In 

survey research, this effect of cluster sampling is well known  (cf. Kish, 1965, 1987). It 

is called a ‘design effect’, and various methods are used to deal with it. A convenient 

correction procedure is to compute the standard errors by ordinary analysis methods, 

estimate the intraclass correlation between respondents within clusters, and finally 

employ a correction formula to the standard errors. A correction described by Kish 

(1965: p. 259) corrects the standard error using , where 

s.e.

( )( ). . . . 1 1eff cluss e s e n ρ= + −

eff is the effective standard error, nclus is the cluster size, and ρ is the intraclass 

correlation. The formula assumes equal group sizes, which is not always realistic. A 

variation of this formula computes the effective sample size in two-stage cluster 

sampling as ( )1 1eff clusn ρ= + −n n , where n is the total sample size and n

                                                          

eff is the 

effective sample size. Using this formula, we can simply calculate the effective sample 

size for different situations.
1
 For instance, suppose that we take a sample of 10 classes, 

 
1 The formulas given here apply to two-stage cluster sampling. Other sampling schemes, such as 

stratified sampling, require different formulas. See Kish (1965, 1987) for details. The symbol ρ (the 

Greek letter rho) was introduced by Kish (1965, p. 161) who called it roh for ‘rate of homogeneity’. 
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each with 20 pupils. This comes to a total sample size of 200, which is reasonable. Let 

us further suppose that we are interested in a variable, for which the intraclass 

correlation ρ is 0.10. This seems a rather low intraclass correlation. However, the 

effective sample size in this situation is 200/[1+(20-1)0.1]= 69.0, which is much less 

than the apparent total sample size of 200! Gulliford, Ukoumunne and Chin (1999) 

give an overview of estimates of the intraclass correlation to aid in the design of 

complex health surveys. Their data include variables on a range of lifestyle risk factors 

and health outcomes, for respondents clustered at the household, postal code, and 

health authority district levels. They report between-cluster variation at each of these 

levels, with intraclass correlations ranging from 0.0-0.3 at the household level, and 

being mostly smaller than 0.05 at the postal code level, and below 0.01 at the district 

level. Since the design effect depends on both the intraclass correlation and the cluster 

sample size, the large household intraclass correlations are partly compensated by the 

small household sizes. Conversely, the small intraclass correlations at the higher levels 

are offset by the usually large cluster sizes at these levels. Groves (1989) also discusses 

the effects of cluster sampling on the standard errors, and concludes that the intraclass 

correlation is usually small, but in combination with the usual cluster size still can lead 

to substantial design effects. 

 Some of the correction procedures developed for cluster and other complex 

samples are quite powerful (cf. Skinner, Holt & Smith, 1989). Actually, in principle 

these correction procedures could also be applied in analyzing multilevel data, by 

adjusting the standard errors of the statistical tests. However, in general the intraclass 

correlation and hence the effective N is different for different variables. In addition, in 

most multilevel problems we have not only clustering of individuals within groups, but 

we also have variables measured at all available levels. Combining variables from 

different levels in one statistical model is a different and more complicated problem 

than estimating and correcting for design effects. Multilevel models are designed to 

analyze variables from different levels simultaneously, using a statistical model that 

properly includes the various dependencies. 

 For example, an explicitly multilevel or contextual theory in education is the so-

called ‘frog pond’ theory, which refers to the idea that a specific individual frog may 

either be a small frog in a pond otherwise filled with large frogs, or a large frog in a 

pond otherwise filled with small frogs. Applied to education, this metaphor points out 

that the effect of an explanatory variable such as ‘intelligence’ on school career may 

depend on the average intelligence of the other pupils in the school. A moderately 

intelligent pupil in a highly intelligent context may become demotivated and thus 

become an underachiever, while the same pupil in a considerably less intelligent 

context may gain confidence and become an overachiever. Thus, the effect of an 

individual pupil's intelligence depends on the average intelligence of the other pupils. 

A popular approach in educational research to investigate ‘frog pond’ effects has been 
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to aggregate variables like the pupils’ IQ into group means, and then to disaggregate 

these group means again to the individual level. As a result, the data file contains both 

individual level (global) variables and higher-level (contextual) variables in the form of 

disaggregated group means. Cronbach (1976; cf. Cronbach & Webb, 1979) has 

suggested to express the individual scores as deviations from their respective group 

means, a procedure that has become known as centering on the group mean, or group 

mean centering. Centering on the group means makes very explicit that the individual 

scores should be interpreted relative to their group's mean. The example of the ‘frog 

pond’ theory and the corresponding practice of centering the predictor variables makes 

clear that combining and analyzing information from different levels within one 

statistical model is central to multilevel modeling. 

 

 

1.2. MULTILEVEL THEORIES 

 

Multilevel problems must be explained by multilevel theories, an area that seems 

underdeveloped compared to the advances made in the recently developed modeling 

and computing machinery (cf. Hüttner & van den Eeden, 1993). If there are effects of 

the social context on individuals, these effects must be mediated by intervening 

processes that depend on characteristics of the social context. Multilevel models so far 

require that the grouping criterion is clear, and that variables can be assigned 

unequivocally to their appropriate level. In reality, group boundaries are sometimes 

fuzzy and somewhat arbitrary, and the assignment of variables is not always obvious 

and simple. In multilevel problems, decisions about group membership and 

operationalizations involve a wide range of theoretical assumptions, and an equally 

wide range of specification problems for the auxiliary theory (Blalock, 1990). When 

the number of variables at the different levels is large, there is an enormous number of 

possible cross-level interactions. Ideally, a multilevel theory should specify which 

variables belong to which level, and which direct effects and cross-level interaction 

effects can be expected. Cross-level interaction effects between the individual and the 

context level require the specification of processes within individuals that cause those 

individuals to be differentially influenced by certain aspects of the context. Attempts to 

identify such processes have been made by, among others, Stinchcombe (1968), 

Erbring and Young (1979), and Chan (1998). The common core in these theories is that 

they all postulate one or more psychological processes that mediate between individual 

variables and group variables. Since a global explanation by ‘group telepathy’ is 

generally not acceptable, communication processes and the internal structure of groups 

become important concepts. These are often measured as a ‘structural variable’. In 

spite of their theoretical relevance, structural variables are infrequently used in 

multilevel research. Another theoretical area that has been largely neglected by 
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multilevel researchers is the influence of individuals on the group. This is already 

visible in Durkheim's concept of sociology as a science that focuses primarily on the 

constraints that a society can put on its members, and disregards the influence of 

individuals on their society. In multilevel modeling, the focus is on models where the 

outcome variable is at the lowest level. Models that investigate the influence of 

individual variables on group outcomes are scarce. For a review of this issue see 

DiPrete and Forristal (1994), an example is discussed by Alba and Logan (1992). 

 

 

1.3. MODELS DESCRIBED IN THIS BOOK 

 

This book treats two classes of multilevel models: multilevel regression models, and 

multilevel models for covariance structures. 

 

Multilevel regression models are essentially a multilevel version of the familiar 

multiple regression model. As Cohen and Cohen (1983), Pedhazur (1997) and others 

have shown, the multiple regression model is very versatile. Using dummy coding for 

categorical variables, it can be used to analyze analysis of variance (ANOVA)-type of 

models as well as the more usual multiple regression models. Since the multilevel 

regression model is an extension of the classical multiple regression model, it too can 

be used in a wide variety of research problems. It has been used extensively in 

educational research (cf. the special issues of the International Journal of Educational 

Research, 1990 and the Journal of Educational and Behavioral Statistics in 1995). 

Other applications have been in the analysis of longitudinal and growth data (cf. Bryk 

& Raudenbush, 1987; Goldstein, 1989; DiPrete & Grusky, 1990; Goldstein, Healy & 

Rasbash, 1994), the analysis of interview survey data (Hox, de Leeuw & Kreft, 1991; 

Hox, 1994a; O’Muirchartaigh & Campanelli, 1999; Pickery & Loosveldt, 1998), data 

from surveys with complex sampling schemes with respondents nested within 

sampling units (Goldstein & Silver, 1989; Snijders, 2001), and data from factorial 

surveys and facet designs (Hox, Kreft & Hermkens, 1991; Hox & Lagerweij, 1993). 

Raudenbush and Bryk have introduced multilevel regression models in meta-analysis 

(cf. Raudenbush & Bryk, 1985, 1987; Hox & de Leeuw, 1994; Raudenbush, 1994). 

Multilevel regression models for binary and other non-normal data have been described 

by Wong and Mason (1985), Longford (1988), Mislevy and Bock (1989) and 

Goldstein (1991). 

Chapter Two of this book contains a basic introduction to the multilevel 

regression model, also known as the hierarchical linear model, or the random 

coefficient model. Chapters Three and Four discuss estimation procedures, and a 

number of important methodological and statistical issues. It also discusses some 
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technical issues that are not specific to multilevel regression analysis, such as coding 

categorical explanatory variables and interpreting interactions. 

Chapter Five introduces the multilevel regression model for longitudinal data. 

The model is a straightforward extension of the standard multilevel regression 

model, but there are some specific complications, such as autocorrelated errors, 

which will be discussed. 

 Chapter Six treats the logistic model for dichotomous data and proportions. 

When the response (dependent) variable is dichotomous or a proportion, standard 

regression models should not be used. This chapter discusses the multilevel version 

of the logistic regression model. 

 Chapter Seven discusses cross-classified models. Some data are multilevel in 

nature, but do not have a neat hierarchical structure. Examples are longitudinal 

school research data, where pupils are nested within schools, but may switch to a 

different school in later measurements, and sociometric choice data. Multilevel 

models for such cross-classified data can be formulated, and estimated with standard 

software provided that it can handle restrictions on estimated parameters. 

 Chapter Eight describes a variant of the multilevel regression model that can 

be used in meta-analysis. It resembles the weighted regression model often 

recommended for meta-analysis. Using standard regression procedures, it is a 

flexible analysis tool. 

 Chapter Nine discusses multilevel regression models for multivariate 

outcomes. These can also be used to estimate models that resemble confirmative 

factor analysis, and to assess the reliability of multilevel measurements. A different 

approach to multilevel confirmative factor analysis is treated in chapter Eleven. 

 Chapter Ten deals with the sample size needed for multilevel modeling, and 

the problem of estimating the power of an analysis given a specific sample size. An 

obvious complication in multilevel power analysis is that there are different sample 

sizes at the distinct levels, which should be taken into account. 

 Chapter Eleven treats some advanced methods of estimation and assessing 

significance. It discusses the profile likelihood method, robust standard errors for 

establishing confidence intervals, and multilevel bootstrap methods for estimating 

bias-corrected point-estimates and confidence intervals. This chapter also contains 

an introduction into Bayesian (MCMC) methods for estimation and inference. 

 Multilevel models for covariance structures, or multilevel structural equation 

models (SEM), are a powerful tool for the analysis of multilevel data. Much 

fundamental work has been done on multilevel factor and path analysis (cf. Goldstein 

& McDonald, 1988; Muthén, 1989, 1990; McDonald & Goldstein, 1989). There is also 

a growing number of applications, for instance Härnqvist, Gustafsson, Muthén, and 

Nelson (1994), and Hox (1993). These applications require only conventional software 

for structural equation modeling (e.g., Amos, Eqs, Lisrel) with unusual setups. 
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Specialized software to analyze multilevel structural equation models is available as 

well (Mplus, Muthén & Muthén, 1998). The general statistical model for multilevel 

covariance structure analysis is quite complicated. Chapter Twelve in this book 

describes a simplified statistical model proposed by Muthén (1990, 1994), and explains 

how multilevel confirmatory factor models can be estimated with either conventional 

SEM software or using specialized programs like Mplus. It also describes a direct 

estimation approach, and deals with issues of calculating standardized coefficients 

and goodness-of-fit indices in multilevel structural models. Chapter Thirteen extends 

this to path models. Chapter Fourteen describes structural models for latent curve 

analysis. This is a SEM approach to analyzing longitudinal data, which is very similar 

to the multilevel regression models treated in Chapter Five. 

This book is intended as an introduction to the world of multilevel analysis. 

Most of the chapters on multilevel regression analysis should be readable for social 

scientists who have a good general knowledge of analysis of variance and classical 

multiple regression analysis. Some of these chapters contain material that is more 

difficult, but this is generally a discussion of specialized problems, which can be 

skipped at first reading. An example is the chapter on longitudinal models, which 

contains a prolonged discussion of techniques to model specific structures for the 

covariances between adjacent time points. This discussion is not needed to 

understand the essentials of multilevel analysis of longitudinal data, but it may 

become important when one is actually analyzing such data. The chapters on 

multilevel structure equation modeling obviously require a strong background in 

multivariate statistics and some background in structural equation modeling, 

equivalent to, for example, the material covered in Tabachnick and Fidell’s (1996) 

book. Conversely, in addition to an adequate background in structural equation 

modeling, the chapters on multilevel structural equation modeling do not require 

knowledge of advanced mathematical statistics. In all these cases, I have tried to 

keep the discussion of the more advanced statistical techniques theoretically sound, 

but non-technical. 

 Many of the techniques and their specific software implementations discussed in 

this book are the subject of active statistical and methodological research. In other 

words: both the statistical techniques and the software tools are evolving rapidly. As a 

result, increasing numbers of researchers will apply increasingly advanced models to 

their data. Of course, researchers still need to understand the models and techniques that 

they use. Therefore, in addition to being an introduction to multilevel analysis, this 

book aims to let the reader become acquainted with some advanced modeling 

techniques that might be used, such as bootstrapping and Bayesian estimation 

methods. At the time of writing, these are specialist tools, and certainly not part of the 

standard analysis toolkit. But they are developing rapidly, and are likely to become 

more popular in applied research as well. 



 

 

 

2 
 

 

The Basic Two-Level Regression Model: 
Introduction 

 

 

The multilevel regression model has become known in the research literature under a 

variety of names, such as ‘random coefficient model’ (de Leeuw & Kreft, 1986; 

Longford, 1993), ‘variance component model’ (Longford, 1987), and ‘hierarchical 

linear model’ (Raudenbush & Bryk, 1986, 1988). Statically oriented publications tend 

to refer to this model as a mixed-effects or mixed model (Littell, Milliken, Stroup & 

Wolfinger, 1996). The models described in these publications are not exactly the same, 

but they are highly similar, and I will refer to them collectively as ‘multilevel regression 

models’. They all assume that there is a hierarchical data set, with one single outcome 

or response variable that is measured at the lowest level, and explanatory variables at all 

existing levels. Conceptually, it is useful to view the multilevel regression model as a 

hierarchical system of regression equations. In this chapter, I will explain the multilevel 

regression model for two-level data. Regression models with more than two levels are 

used in later chapters. 

 

 

2.1 EXAMPLE 

 

Assume that we have data from J classes, with a different number of pupils nj in each 

class. On the pupil level, we have the outcome variable ‘popularity’ (Y), measured by a 

self-rating scale that ranges from 0 (very unpopular) to 10 (very popular). We have one 

explanatory variable gender (X: 0=boy, 1=girl) on the pupil level, and one class level 

explanatory variable teacher experience (Z: in years). We have data from 2000 pupils 

from 100 classes, so the average class size is 20 pupils. The data are described in the 

Appendix. 

 To analyze these data, we can set up separate regression equations in each class 

to predict the outcome variable Y by the explanatory variable X as follows: 

 

  (2.1) 0 1ij j j ij ijY Xβ β= + + e

 

Using variable labels instead of algebraic symbols, the equation reads: 
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0 j

                                                

  (2.2) 0 1ij j j ij ijpopularity gender eβ β= + +

 

In this regression equation, β0j is the usual intercept, β1j is the usual regression 

coefficient (regression slope) for the explanatory variable gender, and eij is the usual 

residual error term. The subscript j is for the classes (j=1…J) and the subscript i is for 

individual pupils (i=1…nj). The difference with the usual regression model is that we 

assume that each class has a different intercept coefficient β0j, and a different slope 

coefficient β1j. This is indicated in equations (2.1) and (2.2) by attaching a subscript j to 

the regression coefficients. The residual errors eij are assumed to have a mean of zero, 

and a variance to be estimated. Most multilevel software assumes that the variance of 

the residual errors is the same in all classes. Different authors (cf. Bryk & Raudenbush, 

1992; Goldstein, 1995) use different systems of notation. This book uses  to denote 

the variance of the lowest level residual errors.

2

eσ
1
 

 Since the intercept and slope coefficients are assumed to vary across the classes, 

they are often referred to as random coefficients.
2
 In our example, the specific value for 

the intercept and the slope coefficient for the pupil variable ‘gender’ are a class 

characteristic. In general, a class with a high intercept is predicted to have more popular 

pupils than a class with a low value for the intercept. Similarly, differences in the slope 

coefficient for gender indicate that the relationship between the pupils’ gender and their 

predicted popularity is not the same in all classes. Some classes have a high value for 

the slope coefficient of gender; in these classes, the difference between boys and girls is 

relatively large. Other classes have a low value for the slope coefficient of gender; in 

these classes, gender has a small effect on the popularity, which means that the 

difference between boys and girls is small. 

 Across all classes, the regression coefficients βj have a distribution with some 

mean and variance. The next step in the hierarchical regression model is to explain the 

variation of the regression coefficients β0j and β1j by introducing explanatory variables 

at the class level, as follows: 

 

  (2.3) 0 00 01j jZ uβ γ γ= + +

 

 
1
 At the end of this chapter, a section explains the difference between some commonly used notation 

systems. Models that are more complicated sometimes need a more complicated notation system, which is 

introduced in the relevant chapters. 
2
 Of course, we hope to be able to explain at least some of the variation by introducing higher-level 

variables. Generally, we will not be able to explain all the variation, and there will be some unexplained 

residual variation. Hence the name ‘random coefficient model’: the regression coefficients (intercept and 

slopes) have some amount of (residual) random variation between groups. The name ‘variance 

component model’ refers to the statistical problem of estimating the amount of random variation. 
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1 j

e

and 

 

  (2.4)  1 10 11j jZ uβ γ γ= + +

 

Equation (2.3) predicts the average popularity in a class (the intercept β0j) by the 

teacher’s experience (Z). Thus, if γ01 is positive, the average popularity is higher in 

classes with a more experienced teacher. Conversely, if γ01 is negative, the average 

popularity is lower in classes with a more experienced teacher. The interpretation of 

equation (2.4) is a bit more complicated. Equation (2.4) states that the relationship, as 

expressed by the slope coefficient β1j, between the popularity (Y) and the gender (X) of 

the pupil, depends upon the amount of experience of the teacher (Z). If γ11 is positive, 

the gender effect on popularity is larger with experienced teachers. Conversely, if γ11 is 

negative, the gender effect on popularity is smaller with experienced teachers. Thus, the 

amount of experience of the teacher acts as a moderator variable for the relationship 

between popularity and gender; this relationship varies according to the value of the 

moderator variable. 

 The u-terms u0j and u1j in equations (2.3) and (2.4) are (random) residual error 

terms at the class level. These residual errors uj are assumed to have a mean of zero, and 

to be independent from the residual errors eij at the individual (pupil) level. The 

variance of the residual errors u0j is specified as , and the variance of the residual 

errors u

0

2

uσ

1j is specified as . The covariance between the residual error terms u
1

2

uσ 0j and u1j 

is , which is generally not assumed to be zero.  
01uσ

 Note that in equations (2.3) and (2.4) the regression coefficients γ are not 

assumed to vary across classes. They therefore have no subscript j to indicate to 

which class they belong. Because they apply to all classes, they are referred to as 

fixed coefficients. All between-class variation left in the β coefficients, after 

predicting these with the class variable Zj, is assumed to be residual error variation. 

This is captured by the residual error terms uj, which do have subscripts j to indicate 

to which class they belong. 

 Our model with one pupil level and one class level explanatory variable can be 

written as a single complex regression equation by substituting equations (2.3) and 

(2.4) into equation (2.1). Rearranging terms gives: 

 

  (2.5) 00 10 01 11 1 0ij ij j ij j j ij j ijY X Z X Z u X uγ γ γ γ= + + + + + +

 

Using variable labels instead of algebraic symbols, we have 

 

popularityij = γ00+ γ10 genderij + γ01 experiencej + γ11 experiencej ×genderij 

    + u1j genderij + u0j+ eij 
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The segment [γ00 + γ10 X ij + γ01 Zj + γ11 ZjX ij] in equation (2.5) contains the fixed 

coefficients. It is often called the fixed (or deterministic) part of the model. The 

segment [u0j + u1j X ij + eij] in equation (2.5) contains the random error terms, and it 

is often called the random (or stochastic) part of the model. The term ZjX ij is an 

interaction term that appears in the model as a consequence of modeling the varying 

regression slope β1j of pupil level variable X ij with the class level variable Zj. Thus, 

the moderator effect of Z on the relationship between the dependent variable Y  and 

the predictor X , is expressed in the single equation version of the model as a cross-

level interaction. The interpretation of interaction terms in multiple regression 

analysis is complex, and this is treated in more detail in Chapter Three. In general, 

the point made in Chapter Three is that the substantive interpretation of the 

coefficients in models with interactions is much simpler if the variables making up 

the interaction are expressed as deviations from their respective means. 

 Note that the random error term u1j is connected to X ij. Since the explanatory 

variable X ij and the error term u1j are multiplied, the resulting total error will be 

different for different values of X ij, a situation that in ordinary multiple regression 

analysis is called ‘heteroscedasticity’. The usual multiple regression model assumes 

‘homoscedasticity’, which means that the variance of the residual errors is 

independent of the values of the explanatory variables. If this assumption is not true, 

ordinary multiple regression does not work very well. This is another reason why 

analyzing multilevel data with ordinary multiple regression techniques does not work 

well. 

 As explained in the introduction in Chapter One, multilevel models are needed 

because with grouped data observations from the same group are generally more 

similar than the observations from different groups, which violates the assumption 

of independence of all observations. The amount of dependence can be expressed as 

a correlation coefficient: the intraclass correlation. The methodological literature 

contains a number of different formulas to estimate the intraclass correlation ρ. For 

example, if we use one-way analysis of variance with the grouping variable as 

independent variable to test the group effect on our outcome variable, the intraclass 

correlation is given by ρ = [MS(A)-MS(error)]/[MS(A)+(n-1)xMS(error)], where n 

is the common group size. Shrout and Fleiss (1979) give an overview of formulas 

for the intraclass correlation for a variety of research designs. 

 If we have simple hierarchical data, the multilevel regression model can also 

be used to produce an estimate of the intraclass correlation. The model used for this 

purpose is a model that contains no explanatory variables at all, the so-called 

intercept-only model. The intercept-only model is derived from equations (2.1) and 

(2.3) as follows. If there are no explanatory variables X  at the lowest level, equation 

(2.1) reduces to 
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 Yij = β0j + eij  (2.6) 

 

Likewise, if there are no explanatory variables Z at the highest level, equation (2.2) 

reduces to 

 

 β0j = γ00 + u0j (2.7) 

 

We find the single equation model by substituting (2.7) into (2.6): 

 

 Yij = γ00 + u0j + eij (2.8) 

 

We could also have found equation (2.8) by removing all terms that contain an X or Z 

variable equation (2.5). The intercept-only model of equation (2.8) does not explain any 

variance in Y. It only decomposes the variance into two independent components: , 

which is the variance of the lowest-level errors e

2

eσ

ij, and , which is the variance of the 

highest-level errors u

2

0uσ

0j. Using this model, we can define the intraclass correlation ρ by 

the equation 

 

 
0

0

2

2

u

u e

σ
ρ

σ σ
=

+ 2

                                                

 (2.9) 

 

The intraclass correlation ρ indicates the proportion of the variance explained by the 

grouping structure in the population. Equation (2.9) simply states that the intraclass 

correlation is the proportion of group level variance compared to the total variance.
1
 

The intraclass correlation ρ can also be interpreted as the expected correlation between 

two randomly chosen units that are in the same group. 

 

 

2.2 AN EXTENDED EXAMPLE 

 

Ordinary multiple regression analysis uses an estimation technique called Ordinary 

Least Squares, abbreviated as OLS. The statistical theory behind the multilevel 

regression model is more complex, however. Based on observed data, we want to 

estimate the parameters of the multilevel regression model: the regression coefficients 

and the variance components. The usual estimators in multilevel regression analysis are 

 
1
 Note that the intraclass correlation is an estimate of the proportion of explained variance in the 

population. The proportion of explained variance in the sample is given by the correlation ratio η² (eta-

squared, cf. Tabachnick & Fidell, 1996, p. 335): η²=SS(A)/SS(Total). 
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Maximum Likelihood (ML) estimators. Maximum Likelihood estimators estimate the 

parameters of a model by providing estimated values for the population parameters that 

maximize the so-called Likelihood Function: the function that describes the probability 

of observing the sample data, given the specific values of the parameter estimates. 

Simply put, ML estimates are those parameter estimates that maximize the probability 

of finding the sample data that we have actually found. For an accessible introduction to 

maximum likelihood methods see Eliason (1993). 

 Maximum Likelihood estimation includes procedures to generate standard errors 

for most of the parameter estimates. These can be used in significance testing, by 

computing the test statistic Z: Z=parameter/(st.error param.). This statistic is referred 

to the standard normal distribution, to establish a p-value for the null-hypothesis that the 

population value of that parameter is zero. The Maximum Likelihood procedure also 

produces a statistic called the deviance, which indicates how well the model fits the 

data. In general, models with a lower deviance fit better than models with a higher 

deviance. If two models are nested, meaning that a specific model can be derived from 

a more general model by removing parameters from that general model, the deviances 

of the two models can be used to compare their fit statistically. For nested models, the 

difference in deviance has a chi-square distribution with degrees of freedom equal to 

the difference in the number of parameters that are estimated in the two models. The 

deviance test can be used to perform a formal chi-square test, in order to test whether 

the more general model fits significantly better than the simpler model. The chi-square 

test of the deviances can also be used to good effect to explore the importance of a set 

of random effects, by comparing a model that contains these effects against a model 

that excludes them. If the models to be compared are not nested models, the principle 

that models should be as simple as possible (theories and models should be 

parsimonious) indicates that we should generally keep the simpler model. 

 The intercept-only model is useful as a null-model that serves as a benchmark 

with which other models are compared. For our example data, the intercept-only model 

is written as  

 

 Yij = γ00 + u0j + eij 

 

The model that includes pupil gender and teacher experience, but not the cross-level 

interaction between those two, is written as 

 

 Yij = γ00 + γ10 Xij + γ01 Zj + u1j Xij + u0j + eij 

 

or, using variable names instead of algebraic symbols, 

 

 popularityij = γ00 + γ10 genderij + γ01 experiencej + u1j genderij + u0j + eij 
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Table 2.1  Intercept-only and model with pupil gender and teacher experience 

Model: M0: intercept-only M1: + pup. gender and t. exp. 

Fixed part 

Predictor 

 

coefficient standard error 

 

coefficient standard error 

intercept 5.31  0.10 3.34  0.16 

pupil gender  0.84  0.06 

teacher exp.  0.11  0.01 

Random part   

σ2
e 0.64  0.02 0.39  0.01 

σ2
u0 0.87  0.13 0.40  0.06 

σ2
u1  0.27  0.05 

σu01  0.02  0.04 

Deviance 5112.7 4261.2 

 

 

Table 2.1 presents the parameter estimates and standard errors for both models.
1
 In this 

table, the intercept-only model estimates the intercept as 5.31, which is simply the 

average popularity across all schools and pupils. The variance of the pupil level residual 

errors, symbolized by , is estimated as 0.64. The variance of the class level residual 

errors, symbolized by , is estimated as 0.87. All parameter estimates are much 

larger than the corresponding standard errors, and calculation of the Z-test shows that 

they are all significant at p <0.005. The intraclass correlation, calculated by equation 

(2.9) ρ=σ²

2

eσ
2

uσ 0

u0/(σ²u0+σ²e), is 0.87/1.52, which equals 0.58. Thus, 58% of the variance of 

the popularity scores is at the group level, which is very high. Since the intercept-only 

model contains no explanatory variables, the residual variances represent unexplained 

error variance. The deviance reported in Table 2.1 is a measure of model misfit; when 

we add explanatory variables to the model, the deviance is expected to go down. 

 The second model includes pupil gender and teacher experience as explanatory 

variables. The regression coefficients for both variables are significant. The regression 

coefficient for pupil gender is 0.84. Since pupil gender is coded 0=boy, 1=girl, this 

means that on average the girls score 0.84 points higher on the popularity measure. The 

regression coefficient for teacher experience is 0.11, which means that for each year of 

experience of the teacher, the average popularity score of the class goes up with 0.11 

points. This does not seem very much, but the teacher experience in our example data 

ranges from 2 to 25 years, so the predicted difference between the least experienced and 

                                                 
1
 For reasons to be explained later, different options that can be chosen for the details of the 

Maximum Likelihood procedure may result in slightly different estimates. So, if you re-analyze the 

example data from this book, your results may differ slightly from the results given here. However, 

these differences should never be so large that you would draw entirely different conclusions. 
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the most experienced teacher is (25-2=) 23×0.11=2.53 points on the popularity 

measure. We can use the standard errors of the regression coefficients reported in Table 

2.1 to construct a 95% confidence interval. For the regression coefficient of pupil 

gender, the 95% confidence interval runs from 0.72 to 0.96, and the 95% confidence 

interval for the regression coefficient of teacher experience runs from 0.09 to 0.13. 

 The model with the explanatory variables includes a variance component for the 

regression coefficient of pupil gender, symbolized by  in Table 2.1. The variance of 

the regression coefficients for pupil gender across classes is estimated as 0.27, with a 

standard error of 0.05. The covariance between the regression coefficient for pupil 

gender and the intercept is very small and obviously not significant. 

2

1uσ

 The significant and quite large variance of the regression slopes for pupil gender 

implies that we should not interpret the estimated value of 0.84 without considering this 

variation. In an ordinary regression model, without multilevel structure, the value of 

0.84 means that girls are expected to differ from boys by 0.84 points, for all pupils in all 

classes. In our multilevel model, the regression coefficient for pupil gender varies 

across the classes, and the value of 0.84 is just the expected value across all classes. In 

multilevel regression analysis, the varying regression coefficients are assumed to follow 

a normal distribution. The variance of this distribution is in our example estimated as 

0.27. Interpretation of this variation is easier when we consider the standard deviation, 

which is the square root of the variance or 0.52 in our example data. A useful 

characteristic of the standard deviation is that with normally distributed observations 

about 67% of the observations lie between one standard deviation below and above the 

mean, and about 95% of the observations lie between two standard deviations below 

and above the mean. If we apply this to the regression coefficients for pupil gender, we 

conclude that about 67% of the regression coefficients are expected to lie between 

(0.84-0.52=) 0.32 and (0.84+0.52=) 1.36, and about 95% are expected to lie between 

(0.84-1.04=) –0.20 and (0.84+1.04=) 1.88. Using the more precise value of Z.975=1.96 

we calculate the limits of the 95% interval as –0.18 and 1.86. We can also use the 

standard normal distribution to estimate the percentage of regression coefficients that 

are negative. As it turns out, even if the mean regression coefficient for pupil gender is 

0.84, about 5% of the classes are expected to have a regression coefficient that is 

actually negative. Note that the 95% interval computed here is totally different from the 

95% confidence interval for the regression coefficient of pupil gender, which runs from 

0.72 to 0.96. The 95% confidence interval applies to γ10, the mean value of the 

regression coefficients across the classes. The 95% interval calculated here is the 95% 

predictive interval, which expresses that 95% of the regression coefficients of the 

variable ‘pupil gender’ in the classes are predicted to lie between –0.20 and 1.88. 
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 Given the large and significant variance of the regression coefficient of pupil 

gender across the classes it is attractive to attempt to predict its variation using class 

level variables. We have one class level variable: teacher experience. The individual 

level regression equation for this example, using variable labels instead of symbols, is 

given by equation (2.2), which is repeated below: 

 

 popularityij = β0j + β1j genderij + eij (2.2, repeated) 

 

The regression equations predicting β0j, the intercept in class j, and β1j, the regression 

slope of pupil gender in class j, are given by equation (2.3) and (2.4), which are 

rewritten below using variable labels 

 

 β0j = γ00 + γ01 t.expj + u0j (2.10) 

 

 β1j = γ10 + γ11 t.expj + u1j (2.11) 

 

By substituting (2.10) and (2.11) into (2.2) we get 

 

 popularityij = γ00 + γ10 genderij + γ01 t.expj + γ11 genderij× t.expj  

    + u1j genderij + u0j + eij   (2.12) 

 

The algebraic manipulations of the equations above make clear that to explain the 

variance of the regression coefficients β1j, we need to introduce an interaction term in 

the model. This interaction, between the variables pupil gender and teacher experience, 

is a cross-level interaction, because it involves explanatory variables from different 

levels. Table 2.2 presents the estimates from a model with this cross-level interaction. 

For comparison, the estimates for the model without this interaction are also included in 

Table 2.2. 

 The estimates for the fixed coefficients in Table 2.2 are similar for both models, 

except the regression slope for pupil gender, which is considerably larger in the cross-

level model. The interpretation remains the same: girls are more popular than boys are. 

The regression coefficient for the cross-level interaction is –0.03, which is small but 

significant. This interaction is formed by multiplying the scores for the variables ‘pupil 

gender’ and ‘teacher experience,’ and the negative value means that with experienced 

teachers, the advantage of being a girl is smaller than expected from the direct effects 

only. Thus, the difference between boys and girls is smaller with more experienced 

teachers. 
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Table 2.2 Results pupil gender and teacher experience, cross-level interaction 

Model: M1: + pup. gender and t. exp. M2: + cross-level interaction 

Fixed part 

Predictor 

 

coefficient standard error 

 

coefficient standard error 

intercept 3.34  0.16 3.31  0.16 

pupil gender 0.84  0.06 1.33  0.13 

teacher exp. 0.11  0.01 0.11  0.01 

pup. gender × 

teacher exp. 

  

-.03  0.01 

Random part   

σ2
e 0.39  0.01 0.39  0.01 

σ2
u0 0.40  0.06 0.40  0.06 

σ2
u1 0.27  0.05 0.22  0.04 

σu01 0.02  0.04 0.02  0.04 

Deviance 4261.2 4245.9 

 

 

Comparison of the other results between the two models shows that the variance 

component for pupil gender goes down from 0.27 in the direct effects model to 0.22 in 

the cross-level model. Apparently, the cross-level model explains some of the variation 

of the slopes for pupil gender. The deviance also goes down, which indicates that the 

model fits better than the previous model. 

 The coefficients in Tables 2.1 and 2.2 are all unstandardized regression 

coefficients. To interpret them properly, we must take the scale of the explanatory 

variables into account. In multiple regression analysis, and structural equation models, 

for that matter, the regression coefficients are often standardized because that facilitates 

the interpretation when one wants to compare the effects of different variables within 

one sample. Only if the goal of the analysis is to compare parameter estimates from 

different samples to each other, should one always use unstandardized coefficients. To 

standardize the regression coefficients, as presented in Table 2.1 or Table 2.2, one could 

standardize all variables before putting them into the multilevel analysis. However, this 

would in general also change the estimates of the variance components. This may not 

be a bad thing in itself, because standardized variables are also centered on their overall 

mean. Centering explanatory variables has some distinct advantages, which are 

discussed in Chapter Four. Even so, it is also possible to derive the standardized 

regression coefficients from the unstandardized coefficients: 
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   (unstandardized coeff.) × (stand. dev. explanatory var.) 

Standardized coefficient =  
__________________________________________________________________

 

   stand. dev. outcome variable 

   (2.13) 

 

In our example data, the standard deviations are: 1.23 for popularity, 0.50 for gender, 

and 6.55 for teacher experience. Table 2.3 presents the unstandardized and standardized 

coefficients for the second model in Table 2.1. It also presents the estimates that we 

obtain if we first standardize all variables, and then carry out the analysis 

. 

 

Table 2.3  Comparing unstandardized and standardized estimates 

Model: Standardization after estimation Using standardized variables 

Fixed part 

Predictor 

unstandardized standardized 

coefficient s.e. coefficient 

 

coefficient s.e. 

intercept 3.34  0.16 - -  - 

pupil gender 0.84  0.06 0.34 0.34  0.02 

teacher exp. 0.11  0.01 0.59 0.58  0.05 

Random part   

σ2
e 0.39  0.01 0.26  0.01 

σ2
u0 0.40  0.06 0.32  0.05 

σ2
u1 0.27  0.05 0.05  0.01 

σu01 0.02  0.04 0.05  70.02 

Deviance 4261.2 3446.5 

 

 

 

Table 2.3 shows that the standardized regression coefficients are almost the same as the 

coefficients estimated for standardized variables. The small differences in Table 2.3 are 

simply rounding errors. However, if we use standardized variables in our analysis, we 

find very different variance components. This is not only the effect of scaling the 

variables differently, which becomes clear if we realize that the covariance between the 

slope for pupil gender and the intercept is significant for the standardized variables. 

This kind of difference in results is general. The fixed part of the multilevel regression 

model is invariant for linear transformations, just as the regression coefficients in the 

ordinary single-level regression model. This means that if we change the scale of our 

explanatory variables, the regression coefficients and the corresponding standard errors 

change by the same multiplication factor, and all associated p-values remain exactly the 

same. However, the random part of the multilevel regression model is not invariant for 
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linear transformations. The estimates of the variance components in the random part 

can and do change, sometimes dramatically. This is discussed in more detail in section 

4.2 in Chapter Four. The conclusion to be drawn here is that, if we have a complicated 

random part, including random components for regression slopes, we should think 

carefully about the scale of our explanatory variables. If our only goal is to present 

standardized coefficients in addition to the unstandardized coefficients, applying 

equation (2.13) is safer than transforming our variables. On the other hand, we may 

estimate the unstandardized results, including the random part and the deviance, and 

then re-analyze the data using standardized variables, merely using this analysis as a 

computational trick to obtain the standardized regression coefficients without having to 

do hand calculations. 

 

 

2.3 INSPECTING RESIDUALS 

 

Inspection of residuals is a standard tool in multiple regression analysis to examine 

whether assumptions of normality and linearity are met (cf. Stevens, 1996; Tabachnick 

& Fidell, 1996). Multilevel regression analysis also assumes normality and linearity, 

and inspection of the residuals can be used for the same goal. There is one important 

difference from ordinary regression analysis; we have more than one residual, in fact, 

we have residuals for each random effect in the model. Consequently, many different 

residuals plots can be made. 

 

2.3.1 Examples of Residuals Plots 

 

The equation below represents the one-equation version of the direct effects model for 

our example data. This is the multilevel model without the cross-level interaction. 

 

 popularityij = γ00 + γ10 genderij + γ01 experiencej + u1j genderij + u0j + eij 

 

In this model, we have three residual error terms: eij, u0j, and u1j. The eij are the residual 

prediction errors at the individual level, similar to the prediction errors in ordinary 

single-level multiple regression. A simple boxplot of these residuals will enable us to 

identify extreme outliers. An assumption that is usually made in multilevel regression 

analysis is that the variance of the residual errors is the same in all groups. This can be 

assessed by computing a one-way analysis of variance of the groups on the absolute 

values of the residuals, which is the equivalent of Levene’s test for equality of variances 

in Analysis of Variance (Stevens, 1996). Bryk and Raudenbush (1992) describe a chi-

square test that can be used for the same purpose, which is an option in the program 

HLM (Raudenbush, Bryk, Cheong, & Congdon, 2000). 
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 The u0j are the residual prediction errors at the group level, which can be used in 

ways analogous to the analysis of the individual level residuals eij. The u1j are the 

residuals of the regression slopes across the groups. By plotting the regression slopes 

for the various groups, we get a visual impression of how much the regression slopes 

actually differ, and we may also be able to identify groups which have a regression 

slope that is wildly different from the others. 

 To test the normality assumption, we can plot standardized residuals against their 

normal scores. If the residuals have a normal distribution, the plot should show a 

straight diagonal line. Figure 2.1 is a scatterplot of the standardized level-1 residuals 

(denoted by ‘const’ in the graph) against their normal scores. The graph indicates close 

conformity to normality, and no extreme outliers. Similar plots can be made for the 

level-2 residuals. 

 

 

 
  

Figure 2.1. Plot of level 1 standardized residuals against normal scores 

 

 

We obtain a different plot, if we plot the residuals against the predicted values of the 

outcome variable popularity, using the fixed part of the multilevel regression model for 

the prediction. Such a scatter plot of the residuals against the predicted values provides 

information about possible failure of normality, nonlinearity, and heteroscedasticity. If 

these assumptions are met, the plotted points should be evenly divided above and below 

their mean value of zero, with no strong structure (cf. Tabachnick & Fidell, 1996, p. 

137). Figure 2.2 shows this scatter plot. For our example data, the scatter plot in Figure 

2.2 does not indicate strong violations of the assumptions. 
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Figure 2.2.  Level 1 standardized residuals plotted against predicted popularity 

 

 
 

Figure 2.3.  Level 2 residuals plotted against predicted popularity 
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Similar scatter plots can be made for the second level residuals for the intercept and the 

slope of the explanatory variable pupil gender. As an illustration, Figure 2.3 shows the 

scatterplots of the level-2 residuals around the average intercept (denoted ‘const’ in the 

graph) and around the average slope of pupil gender against the predicted values of the 

outcome variable popularity. 

 The spread of the plotted points for pupil gender (denoted ‘sex’ in the plot) 

around their mean value of 0.0 suggests some degree of heterogeneity for the residuals 

around the slope of pupil gender. In our case, this heterogeneity is caused by a 

misspecification of the model, which is the result of omitting the cross-level interaction 

to explain the variance of the regression slopes of pupil gender. 

 An interesting plot that can be made using the level-2 residuals, is a plot of the 

residuals against their rank order, with an added error bar. In Figure 2.4, an error bar 

surrounds each point estimate, and the classes are sorted in rank order of the residuals. 

The error bars represent the confidence interval around the individual estimate, 

constructed by multiplying its standard error by 1.39. This results in confidence 

intervals that have the property that two classes have significantly different residuals (at 

the 5% level), if their error bars do not overlap (Goldstein, 1995). 

 

 

 
 

Figure 2.4.  Error bar plot of level 2 residuals 
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In our example, we see large differences between the classes. A logical next step would 

be to identify the classes at the extremes of the rank order, and to seek for a post hoc 

interpretation of what makes these classes different. For a discussion of the construction 

and use of these error bars see Goldstein and Healy (1995) and Goldstein and 

Spiegelhalter (1996). 

 Examining residuals in multivariate models presents us with a problem. For 

instance, the residuals should show a nice normal distribution, which implies absence of 

extreme outliers. However, this applies to the residuals after including all important 

explanatory variables and relevant parameters in the model. If we analyze a sequence of 

models, we have a series of different residuals for each model, and scrutinizing them all 

at each step is not always practical. On the other hand, our decision to include a specific 

variable or parameter in our model might well be influenced by a violation of some 

assumption. Although there is no perfect solution to this dilemma, a reasonable 

approach is to examine the two residual terms in the intercept-only model, to find out if 

there are gross violations of the assumptions of the model. If there are, we should 

accommodate them, for instance by applying a normalizing transformation, by deleting 

certain individuals or groups from our data set, or by including a dummy variable that 

indicates a specific outlying individual or group. When we have determined our final 

model, we should make a more thorough examination of the various residuals. If we 

detect gross violations of assumptions, these should again be accommodated, and the 

model should be estimated again. Of course, after accommodating an extreme outlier, 

we might find that we should now change our model again. Procedures for model 

exploration and detection of violations in ordinary multiple regression are discussed, for 

instance, in Tabachnick and Fidell (1996) or Stevens (1996). In multilevel regression, 

the same procedures apply, but the analyses are more complicated because we have to 

examine more than one set of residuals, and must distinguish between multiple levels. 

 As mentioned in the beginning of this section, graphs can be useful in detecting 

outliers and nonlinear relations. However, an observation may have an undue effect on 

the outcome of a regression analysis without being an obvious outlier. Figure 2.5, a 

scatter plot of the so-called Anscombe data (Anscombe, 1973), illustrates this point. 

There is one data point in Figure 2.5, which by itself almost totally determines the 

regression line. Without this one observation, the regression line would be very 

different. Yet, it does not show up as an obvious outlier.  
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Figure 2.5.  Regression line determined by one single observation 

 

 

In ordinary regression analysis, various measures have been proposed to indicate the 

influence of individual observations on the outcome (cf. Tabachnick & Fidell, 1996). In 

general, such influence or leverage measures are based on a comparison of the 

estimates when a specific observation is included in the data or not. Langford and 

Lewis (1998) discuss extensions of these influence measures for the multilevel 

regression model. Since most of these measures are based on comparison of estimates 

with and without a specific observation, it is difficult to calculate them by hand. 

However, if the software offers the option to calculate influence measures, it is 

advisable to do so. If a unit (individual or group) has a large value for the influence 

measure, that specific unit has a large influence on the values of the regression 

coefficients. It is useful to inspect cases with extreme influence values for possible 

violations of assumptions, or even data errors. 

 

2.3.2 Examining Slope Variation: OLS and Shrinkage Estimators 

 

The residuals can be added to the average values of the intercept and slope, to produce 

predictions of the intercepts and slopes in different groups. These can also be plotted. 
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Figure 2.6.  Plot of the 100 class regression slopes for pupil gender 

 

 

For example, Figure 2.6 plots the 100 regression slopes for the explanatory variable 

pupil gender in the 100 classes. It is clear that for most classes the effect is positive: 

girls are more popular than boys are. It is also clear that in some classes the relationship 

is the opposite: boys are more popular than girls are. Most of the regression slopes are 

not very different from the others, although there is one slope that appears to be much 

steeper than the others are. It could be useful to examine the data for that one class in 

more detail, to find out if there is a reason for this steeper slope. 

 The predicted intercepts and slopes for the 100 classes are not identical to the 

values we would obtain, if we carry out 100 separate ordinary regression analyses in 

each of the 100 classes, using standard Ordinary Least Squares (OLS) techniques. If we 

would compare the results from 100 separate OLS regression analyses to the values 

obtained from a multilevel regression analysis, we would find that the results from the 

separate analyses are more variable. This is because the multilevel estimates of the 

regression coefficients of the 100 classes are weighted. They are so-called Empirical 

Bayes (EB) or shrinkage estimates; a weighted average of the specific OLS estimate in 

each class and the overall regression coefficient, estimated for all similar classes. 
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00

 As a result, the regression coefficients are shrunk back towards the mean 

coefficient for the whole data set. The shrinkage weight depends on the reliability of the 

estimated coefficient. Coefficients that are estimated with small accuracy shrink more 

than very accurately estimated coefficients. Accuracy of estimation depends on two 

factors: the group sample size, and the distance between the group-based estimate and 

the overall estimate. Estimates in small groups are less reliable, and shrink more than 

estimates from large groups. Other things being equal, estimates that are very far from 

the overall estimate are assumed less reliable, and they shrink more than estimates that 

are close to the overall average. The statistical method used is called empirical Bayes 

estimation. Due to this shrinkage effect, empirical Bayes estimators are biased. 

However, they are often more precise, a property that is often more useful than being 

unbiased (cf. Kendall, 1959). 

 For instance, in an intercept-only model the equation to form the empirical Bayes 

estimate of the intercept is given in the equation 

 

  (2.14) ( )EB OLS

0 0
ˆ ˆ 1j j j jβ λ β λ γ= + −

 

where λj is the reliability of the OLS estimate as an estimate of β
OLS

0jβ oj, which is 

given by the equation ( )
0 0

2 2 2

j u u e jnλ σ σ σ= +  (Bryk & Raudenbush, 1992, p. 39), 

and γ00 is the overall intercept. The reliability λj is close to 1.0 when the group sizes 

are large and/or the variability of the intercepts across groups is large. In these cases, 

the overall estimate γ00 is not a good indicator of each group’s intercept. If the group 

sizes are small and have only small variation across groups, the reliability λj is close 

to 0.0, and more weight is put on the overall estimate γ00. Equation (2.14) makes 

clear that, since the OLS estimates are unbiased, the empirical Bayes 

estimates must be biased towards the overall estimate β
EB

0jβ 00. They are shrunken 

towards the average value γ00. For that reason, the empirical Bayes estimators are 

also referred to as shrinkage estimators. Although the empirical Bayes or shrinkage 

estimators are biased, they are also in general closer to the (unknown) values of βoj 

(Bryk & Raudenbush, 1992, p. 40). If the regression model includes a group level 

model, the shrinkage estimators are conditional on the group level model. The 

advantages of shrinkage estimators remain, provided the group-level model is well 

specified (Bryk & Raudenbush, 1992, p. 80). This is especially important if the 

estimated coefficients are used to describe specific groups. For instance, we can use 

estimates for the intercepts of the schools to rank order them on their average 

outcome. If this is used as an indicator of the quality of schools, the shrinkage 

estimators introduce a bias, because high scoring schools will be presented too 

negatively, and low scoring schools will be presented too positively. This is offset 

by the advantage of having a smaller standard error (Carlin & Louis, 1996; Lindley 
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& Smith, 1972). Bryk and Raudenbush discuss this problem in an example involving 

the effectiveness of organizations (Bryk & Raudenbush, 1992, chapter 5); see also 

the cautionary points made by Raudenbush and Willms (1991) and Snijders and 

Bosker (1999, pp. 58-63). All stress that the higher precision of the Empirical Bayes 

residuals is bought at the expense of a certain bias. The bias is largest when we 

inspect groups that are both small and far removed from the overall mean. In such 

cases, inspecting residuals should be supplemented with other procedures, such as 

comparing error bars for all schools (Goldstein & Healy, 1995). Error bars are 

illustrated in this chapter in Figure 2.4. 

 

 

2.4 THREE- AND MORE-LEVEL REGRESSION MODELS 

 

2.4.1 Multiple-level Models 

 

In principle, the extension of the two-level regression model to three and more levels is 

straightforward. There is an outcome variable at the first, the lowest level. In addition, 

there may be explanatory variables at all higher levels. The problem is that three- and 

more-level models can become complicated very fast. In addition to the usual fixed 

regression coefficients, we must entertain the possibility that regression coefficients for 

first-level explanatory variables may vary across units of both the second and the third 

level. Regression coefficients for second-level explanatory variables may vary across 

units of the third level. To explain such variation, we must include cross-level 

interactions in the model. Regression slopes for the cross-level interaction between 

first-level and second-level variables may themselves vary across third-level units. To 

explain such variation, we need a second-order interaction involving variables at all 

three levels. 

 The equations for such models are complicated, especially when we do not use 

the more compact summation notation but write out the complete single equation-

version of the model in an algebraic format (for a note on notation see section 2.5). 

 The resulting models are not only difficult to follow from a conceptual point of 

view, they may also be difficult to estimate in practice. The number of estimated 

parameters is considerable, and at the same time the highest level sample size tends to 

become relatively smaller. As DiPrete and Forristal (1994, p. 349) put it, the 

imagination of the researchers “…can easily outrun the capacity of the data, the 

computer, and current optimization techniques to provide robust estimates.” 

 Having said that, three- and more-level models have their place in multilevel 

analysis. Intuitively, three-level structures such as pupils in classes in schools, or 

respondents nested within households, nested within regions, appear to be both 

conceptually and empirically manageable. If the lowest level is repeated measures over 
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time, having repeated measures on pupils nested within schools again does not appear 

to be overly difficult. In such cases, the solution for the conceptual and statistical 

problems mentioned is to keep models reasonably small. Especially specification of the 

higher-level variances and covariances should be driven by theoretical considerations. 

A higher-level variance for a specific regression coefficient implies that this regression 

coefficient is assumed to vary across units at that level. A higher-level covariance 

between two specific regression coefficients implies that these regression coefficients 

are assumed to covary across units at that level. Especially when models become large 

and complicated, it is advisable to avoid higher-order interactions, and to include in the 

random part only those elements for which there is strong theoretical or empirical 

justification. This implies that an exhaustive search for second-order and higher-order 

interactions is not a good idea. In general, we should seek for higher-order interactions 

only if there is strong theoretical justification for their importance, or if an unusually 

large variance component for a regression slope calls for explanation. For the random 

part of the model, there are usually more convincing theoretical reasons for the higher-

level variance components than for the covariance components. Especially if the 

covariances are small and insignificant, analysts sometimes do not include all possible 

covariances in the model. This is defensible, with some exceptions. First, it is 

recommended that the covariances between the intercept and the random slopes are 

always included. Second, it is recommended to include covariances corresponding to 

slopes of dummy-variables belonging to the same categorical variable, and for variables 

that are involved in an interaction or belong to the same polynomial expression 

(Longford, 1990, p. 79-80). 

 

2.4.2 Intraclass-correlations in three-level models 

 

In a two-level model, the intraclass correlation is calculated in the intercept-only model 

using equation (2.9), which is repeated below: 

 

 
0

0

2

2

u

u e

σ
ρ

σ σ
=

+ 2  (2.9, repeated) 

 

The intraclass correlation is an indication of the proportion of variance at the second 

level, and it can also be interpreted as the expected correlation between two randomly 

chosen individuals within the same group. 

 If we have a three-level model, for instance pupils nested within classes, nested 

within schools, there are several ways to calculate the intraclass correlation. First, we 

estimate an intercept-only model for the three-level data, for which the single-equation 

model can be written as follows: 
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 Yijk = γ000 + v0k + u0jk + eijk (2.15) 

 

The variances at the first, second, and third level are respectively , , and . 

The first method (cf. Davis & Scott, 1995) defines the intraclass correlations at the class 

and school level as 
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 (2.16) 

and 
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The second method (cf. Siddiqui, Hedeker, Flay & Hu, 1996) defines the intraclass 

correlations at the class and school level as 
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and 
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Actually, both methods are correct (Algina, 2000). The first method identifies the 

proportion of variance at the class and school level. This should be used if we are 

interested in a decomposition of the variance across the available levels, or if we are 

interested in how much variance is explained at each level (a topic discussed in section 

4.4). The second method represents an estimate of the expected correlation between two 

randomly chosen elements in the same group. So ρclass as calculated in equation (2.18) 

is the expected correlation between two pupils within the same class, and it correctly 

takes into account that two pupils who are in the same class must also be in the same 

school. For this reason, the variance components for classes and schools must both be 

in the numerator of equation (2.18). If the two sets of estimates are different, which may 

happen if the amount of variance at the school level is large, there is no contradiction 

involved. Both sets of equations express two different aspects of the data, which happen 

to coincide when there are only two levels. 
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2.5 A NOTE ABOUT NOTATION AND SOFTWARE 

 

2.5.1 Notation 

 

In general, there will be more than one explanatory variable at the lowest level and 

more than one explanatory variable at the highest level. Assume that we have P 

explanatory variables X at the lowest level, indicated by the subscript p (p=1…P). 

Likewise, we have Q explanatory variables Z at the highest level, indicated by the 

subscript q (q=1…Q). Then, equation (2.5) becomes the more general equation: 

 

 Yij = γ00 + γp0 Xpij + γ0q Zqj + γpq ZqjXpij + upj Xpij + u0j + eij (2.20) 

 

Using summation notation, we can express the same equation as 

 

  (2.21) 00 0 0 0ij p pij q qj pq pij qj pj pij j ij

p q p q p

Y X Z X Z u X uγ γ γ γ= + + + + + +∑ ∑ ∑∑ ∑
 

The errors at the lowest level eij are assumed to have a normal distribution with a mean 

of zero and a common variance σe² in all groups. The u-terms u0j and upj are the residual 

error terms at the highest level. They are assumed to be independent from the errors eij 

at the individual level, and to have a multivariate normal distribution with means of 

zero. The variance of the residual errors u0j is the variance of the intercepts between the 

groups; it is symbolized by 
0

2

uσ . The variances of the residual errors upj are the 

variances of the slopes between the groups; they are symbolized by . The 

covariances between the residual error terms  are generally not assumed to be 

zero; they are collected in the higher level variance/covariance matrix Ω.

2

puσ

'ppuσ
1
 

 Note that in equation (2.15), γ00, the regression coefficient for the intercept, is not 

associated with an explanatory variable. We can expand the equation by providing an 

explanatory variable that is a constant equal to one for all observed units. This yields 

the equation 

 

 Yij = γp0 Xpij + γpq ZqjXpij + upj Xpij + eij (2.22) 

 

where X0ij=1, and p=0…P. Equation (2.22) makes clear that the intercept is a regression 

coefficient, just like the other regression coefficients in the equation. Some multilevel 

software, for instance HLM (Raudenbush, Bryk, Cheongh & Congdon, 2000) puts the 

 
1
 We may attach a subscript to Ω  to indicate to which level it belongs. As long as there is no risk of 

confusion, the simpler notation without the subscript is used. 
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intercept variable X0=1 in the regression equation by default. Other multilevel software, 

for instance MLwiN (Goldstein et al., 1998), requires that the analyst includes a 

variable in the data set that equals one in all cases, which must be added explicitly to 

the regression equation. In some cases, being able to eliminate the intercept term from 

the regression equation is a convenient feature. 

 Equation (2.22) can be made very general if we let X be the matrix of all 

explanatory variables in the fixed part, symbolize the residual errors at all levels by u
(l) 

with l denoting the level, and associate all error components with predictor variables Z, 

which may or may not be equal to the X. This produces the very general matrix formula 

Y=Xβ+Z
(l)u

(l) (cf. Goldstein, 1995, appendix 2.1). Since this book is more about 

applications than about mathematical statistics, it generally uses the algebraic notation, 

except when multivariate procedures such as structural equation modeling are 

discussed. 

 The notation used in this book is close to the notation used by Goldstein (1987, 

1995), Hox (1995), and Kreft and de Leeuw (1998). The most important difference is 

that these authors indicate the higher-level variance by σ00 instead of our . The logic 

is that, if σ
0

2

uσ

01 indicates the covariance between variables 0 and 1, then σ00 is the 

covariance of variable 0 with itself, which is its variance. Bryk and Raudenbush (1992), 

and Snijders and Bosker (1999) use a different notation; they denote the lowest level 

error terms by rij, and the higher-level error terms by uj. The lowest level variance is σ2
 

in their notation. The higher-level variances and covariances are indicated by the Greek 

letter tau; for instance, the intercept variance is given by τ00. The τpp are collected in the 

matrix TAU, symbolized as Τ. The HLM program and manual in part use a different 

notation, for instance when discussing longitudinal and three-level models. 

 

2.5.2 Software 

 

Multilevel models can be formulated in two ways: (1) by presenting separate equations 

for each of the levels, and (2) by combining all equations by substitution into a single 

model-equation. The software HLM (Raudenbush et al., 2000) requires specification of 

the separate equations at each available level. Most other software (e.g., MLwiN; 

Rasbash et al., 2000), SAS Proc Mixed (Littell et al., 1996)) uses the single equation 

representation. Both representations have their advantages and disadvantages. The 

separate-equation representation has the advantage that it is always clear how the model 

is built up. The disadvantage is that it hides from view that modeling regression slopes 

by other variables results in adding an interaction to the model. As will be explained in 

Chapter Four, estimating and interpreting interactions correctly requires careful 

thinking. On the other hand, while the single-equation representation makes the 

existence of interactions obvious, it conceals the role of the complicated error 

components that are created by modeling varying slopes. In practice, to keep track of 
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the model, it is recommended to start by writing the separate equations for the separate 

levels, and to use substitution to arrive at the single-equation representation. 

 To take a quote from Singer’s excellent introduction to using SAS Proc Mixed 

for multilevel modeling (Singer, 1998, p. 350): “Statistical software does not a 

statistician make. That said, without software, few statisticians and even fewer 

empirical researchers would fit the kinds of sophisticated models being promulgated 

today.” Indeed, software does not make a statistician, but the advent of powerful and 

user-friendly software for multilevel modeling has had a large impact in research fields 

as diverse as education, organizational research, demography, epidemiology, and 

medicine. This book focuses on the conceptual and statistical issues that arise in 

multilevel modeling of complex data structures. It assumes that researchers who apply 

these techniques have access to and familiarity with some software that can estimate 

these models. Software is mentioned in various places, especially when a technique is 

discussed that is only available in a specific program. In addition to the relevant 

program manuals, several software programs have been discussed in introductory 

articles. Using SAS Proc Mixed for multilevel and longitudinal data is discussed by 

Singer (1998). Both Arnold (1992), and Heck and Thomas (2000) discuss multilevel 

modeling using HLM as the software tool. Sullivan, Dukes and Losina (1999) discus 

HLM and SAS Proc Mixed. Hox (1995) applies the programs HLM, MLn and Varcl to 

the same data set, to highlight their similarities and differences. Kreft, de Leeuw and 

van der Leeden (1994) compare the programs BMDP-5V, Genmod, HLM, ML3 (a 

precursor to MLn/MLwiN) and Varcl on a variety of criteria, ranging from user-

interface to statistical methods implemented. The multilevel procedure in SPSS s 

relatively new, and has not appeared in any published comparisons. 

  Since statistical software evolves rapidly, with new versions of the software 

coming out much faster than new editions of general handbooks such as this, I do not 

discuss software setups or output in detail. As a result, this book is more about the 

possibilities offered by the various techniques than about the specifics of how these 

things can be done in a specific software package. The various techniques are explained 

using analyses on small but realistic data sets, with examples of how the results could be 

presented and discussed. At the same time, if the analysis requires that the software used 

have some specific capacities, these are pointed out. This should enable interested 

readers to determine whether their software meets these requirements, and assist them in 

working out the software setups for their favorite package. 

 The data used in the various examples are described in the appendix, and are 

available through the Internet. 


