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Multilevel Coded Modulation for Unequal Error
Protection and Multistage Decoding—Part I:

Symmetric Constellations
Robert H. Morelos-Zaragoza, Senior Member, IEEE, Marc P. C. Fossorier, Member, IEEE, Shu Lin, Fellow, IEEE,

and Hideki Imai, Fellow, IEEE

Abstract—In this paper, theoretical upper bounds and computer
simulation results on the error performance of multilevel block
coded modulations for unequal error protection (UEP) and multi-
stage decoding are presented. The paper is divided into two parts.
In part I, symmetric constellations are considered, while in the se-
quel, asymmetric constellations are analyzed. It is shown that non-
standard signal set partitionings and multistage decoding provide
excellent UEP capabilities beyond those achievable with conven-
tional coded modulation. The coding scheme is designed in such a
way that the most important information bits have a lower error
rate than other information bits. The large effective error coef-
ficients, normally associated with standard mapping by set par-
titioning, are reduced by considering nonstandard partitionings
of the underlying signal set. The bits-to-signal mappings induced
by these partitionings allow the use of soft-decision decodings of
binary block codes. Moreover, parallel operation of some of the
staged decoders is possible, to achieve high data rate transmis-
sion, so that there is no error propagation between these decoders.
Hybrid partitionings are also considered that trade off increased
intraset distances in the last partition levels with larger effective
error coefficients in the middle partition levels. The error perfor-
mance of specific examples of multilevel codes over 8-PSK and
64-QAM signal sets are simulated and compared with theoretical
upper bounds on the error performance.

Index Terms—Coded modulation, multistage decoding, unequal
error protection.

I. INTRODUCTION

T HERE are many practical applications, such as satellite
broadcasting of digital high definition TV (HDTV) or

digital speech transmission, where high bandwidth-efficient
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digital transmission systems must be designed to provide a
gradual degradation of the received signal. It is proposed to
combine coding and modulation in such a way that the required
graceful degradation is achieved by error control coding. In this
paper, we restrict ourselves to transmission over an additive
white Gaussian noise (AWGN) channel.

Subsets of signal sequences, of increasing minimum squared
Euclidean distances (MSED’s), are associated with information
bits of increasing importance level (e.g., decreasing image defi-
nition). Code sequences in correspondence to the least important
part (e.g., the HDTV component) are clustered intoclouds[1].
Each coded signal sequence in correspondence to a most im-
portant message part (e.g., the basic definition TV component)
is associated with a cloud. The mapping of information bits to
coded signal sequences is made in such a way that the minimum
distance between coded signal sequences in different clouds
is larger than the minimum distance between coded signal se-
quences within a cloud. This is anunequal error protection
(UEP) coding scheme [2].

Nonstandard partitionings of signal sets for constructing
coded modulations with UEP were first proposed in [3] and
[4]. Also, nonstandard partitionings were considered to de-
sign good multilevel codes, based on rate and capacity ar-
guments, in [5]. Coded modulation approaches for theter-
restrial broadcastingof HDTV signals have been reported
in [3], [4], and [6]. All of them, however, deal with asym-
metric rectangular (M-QAM type) signal sets. A trellis coded
modulation (TCM) scheme for UEP using asymmetric 8-PSK
signal sets and nonstandard partitionings for satellite broad-
casting is reported in [7]. The nonstandard and hybrid par-
titionings introduced in subsequent sections of this part of
the paper have the advantage that conventional symmetric
signal sets are used. This may result in a simpler imple-
mentation of the modulators and demodulators and easier
synchronization. Asymmetric constellations are relegated to
part II.

In part I, we consider multilevel coded modulation [8] over
symmetric constellations with bits to signal mapping by set
partitioning using a rule such that at each partition level, all
the signal points within a subset are contained in disjoint half
planes. This results in a small number of nearest neighbor (NN)

0090–6778/00$10.00 © 2000 IEEE
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sequences as well as allowing the use of soft decision decoding
procedures designed for binary linear block codes with binary
transmission over an AWGN channel. This approach will be
referred to asblock partitioning.

A partitioning approach is introduced that constitutes a gen-
eralization of the block and Ungerboeck [9] partitioning rules.
This kind of partitioning is suitable for coded modulation with
a better average error performance with less levels of error pro-
tection. We call this ahybrid partitioningapproach, because the
higher partition levels are nonstandard, while at lower levels,
partitioning is performed using Ungerboeck’s rules [9], i.e., to
maximize the squared Euclidean distance (SED) between signal
points within a subset. We will show that a good tradeoff is ob-
tained between increasing the error coefficients in the middle
partition levels and improving the error performance of the sub-
sequent decoding stages.

The rest of the paper is organized as follows: In Section II,
we present multilevel coded modulation and a design principle
to achieve UEP. Theoretical analysis and computer simulations
of block partitionings of 8-PSK and 64-QAM modulations for
UEP are presented in Section III. A hybrid partitioning approach
is introduced, and theoretical and simulation results for 8-PSK
and 64-QAM modulations are presented in Section IV. Finally,
Section V presents conclusions of this work.

II. M ULTILEVEL CODED MODULATION

A. Definitions

Imai and Hirakawa [8] proposed a technique for constructing
coded modulation schemes using binary block codes. For an

-level coded modulation, the codewords of binary block
codes are used to index code sequences of signal points in a

-ary modulation signal constellation. The resulting signal
sequences form a block modulation code (BCM) over the Eu-
clidean space. A fundamental issue in the design of a multilevel
coded modulation is the labeling of the signal set over which the
component codes operate. Such labeling determines theMSED
of the modulation code and, more generally, the distance struc-
ture of the set of coded sequences, as discussed below.

In what follows, Ungerboeck’s well-known standard map-
ping-by-set partitioning [9] is briefly overviewed. A -ary
modulation signal set is partitioned into levels. For

, at the th partition level, the signal set is divided
into two subsets and , such that theintraset SED,

, is maximized. Alabel bit is associated with the
subset choice at the th partition level. This partitioning
process results in alabeling of the signal points. Each signal
point in the set has a unique -bit label and is
denoted by . With thisstandard partitioning
of -ary modulation signal constellation, the intraset SED’s
are in nondecreasing order .

For , let denote an binary linear
block code of length , dimension , and minimum Hamming
distance . Also, let denote the number of codewords in

of weight . Let

...

be codewords in , respectively. Form the
following sequence:

Each component in is regarded as the label of
a signal in the -ary modulation signal set. Then

is a sequence of signal points in. The following collection of
signal sequences over:

forms an -level modulation code over the signal setor an
-level coded -ary modulation.
The rate, or spectral efficiency, of this coded modulation

system in bits/symbol is . It is
well known that the MSED of this system, denoted by ,
is given by [8]

B. Asymptotic UEP Design Principle

In order to achieve UEP, the following design guideline for
-level coded -ary modulation is proposed [10].
For , the binary codes are selected in such a

way that the following inequalities are satisfied:

(1)

For , let be the codeword of
in correspondence to a -bit message vector , and let

and denote coded -ary modulation
signal sequences in corresponding to message vectors

and ,
respectively. TheEuclidean separations[11] and [12] between
coded sequences at theth partition level, for ,
are defined as

It follows from (1) that ,
. For transmission over an AWGN channel, the set of

inequalities (1) results in message vectors with decreasing error
protection levels.

The above principle is useful in specifying the asymptotic
error performance of a coded modulation with UEP. However,
as also shown in [5], design criteria based on intraset MSED’s
are inappropriate for multistage decoding of multilevel coded
modulations, at low to medium signal-to-noise ratios (SNR’s),
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Fig. 1. Simulation results of a coded 8-PSK modulation with Ungerboeck
mapping.

because of the large number of NN sequences in the first de-
coding stages. As an example, Fig. 1 shows simulation results on
the performance of a three-level coded 8-PSK modulation with
the (64,18,22), (64,57,4), and (64,63,2) extended BCH codes
(ex-BCH codes) as component codes, , respec-
tively. In this figure as in the rest of the paper, the signal constel-
lation considered is normalized to unit energy. The Euclidean
separations are , , for 18 and 120 in-
formation bits, respectively (asymptotic coding gains of 8.1 and
6 dB, respectively). The adverse effects of the number of NN
(or error coefficient) in the first decoding stage are such that
the coding gains are greatly reduced. With multistage decoding,
the number of NN associated with the first stage is [13].
Hence by increasing , in order to obtain UEP capabilities, we
further increase the number of NN associated with the first de-
coding stage. Errors in the first stage propagate to the second
and third stages, and any UEP capabilities are lost, as shown
in Fig. 1 for bit-error rate (BER) greater than 10. It will be
shown that the partitionings presented in the next sections re-
duce the effective error coefficients associated with multistage
decoding and Ungerboeck partitioning rules. Note finally that
in order to achieve a larger effective coding gain (say, at least
7 dB at the BER 10 ) with the Ungerboeck set partitioning,
very powerful codes are needed for both BCM and TCM. The
decoding of such codes becomes too complex for practical ap-
plications.

III. B LOCK PARTITIONING

In this section, a partitioning strategy is presented that reduces
the number of NN at every partition level. At theth partition
level, the signal points within each subset are contained
in disjoint planes of the two-dimensional Euclidean space. As
a result, only a small number of signal points, those located
near the decision boundary, will have neighbors at minimum
distance. On the average, assuming equiprobable signaling, the
number of NN associated with theth level will be much less
than with Ungerboeck partitioning. On the other hand, the price
to pay is a constant minimum intraset distance at each level of
the partition.

(a)

(b)

(c)

Fig. 2. An 8-PSK constellation with block partitioning: (a) labeling, (b)
X-coordinate projections, and (c) decoder structure.

TABLE I
PREPROCESSING OFRECEIVED SIGNALS FOR

THIRD-STAGE DECODING IN THREE-LEVEL CODED

8-PSK MODULATION WITH BLOCK PARTITIONING

A. Three-Level Coded 8-PSK Modulation with UEP Using
Block Partitioning

The block partitioning shown in Fig. 2(a) is used to construct
three-level coded 8-PSK modulation schemes with UEP. Note
that this partitioning also corresponds to Gray mapping. In the
figure, the color black is used to represent signal points whose
label is of the form , with . Similarly, the
color white is used for points with labels . A circle indi-
cates that the label is of the form , , while
a square is used to represent signal points with labels .

It can be seen from Fig. 2(a) that in order to determine the
value of the first label bit , only the -coordinate is suffi-
cient. If a signal point is on the left half plane ( ), then it
corresponds to , otherwise, it corresponds to . In
the same way, the -coordinate suffices to determine the value
of the second label bit . If a signal point lies in the upper half
plane ( ), then , otherwise . This is an im-
portant property of this block partitioning. It means that in a
three-level coded 8-PSK modulation scheme using this parti-
tioning, the first and second levels areindependent. This in turn
implies that the first and second level decoders can beimple-
mented in parallel.

In the first and second decoding stages, the decision variable
is just the projection of the received signal sequence onto the
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or axis, respectively. Fig. 2(c) shows a block diagram of
a multistage decoder for a three-level coded 8-PSK modulation
with block partitioning. The decoders for the first and second
stages operate independently on the in-phase and quadrature
component of the received signal sequencesand , respec-
tively. Once decisions are made as to the estimates of the corre-
sponding codewords and , they are passed on to the third
decoding stage. Let be the de-
coded codeword at theth stage, . Before the third-stage
decoding, each two-dimensional coordinate of the re-
ceived signal is projected onto a one-dimensional
coordinate , . The values are the decision vari-
ables used by the decoder of . The projection depends on
the decoded quadrant, which is indexed by the pair ,

, as shown in Table I. It corresponds to a scaled rota-
tion of by . Therotated sequence
is then decoded using a soft-decision procedure for component
code . The independence between the first and second levels
also results inno error propagationfrom the first decoding stage
to the second. For Ungerboeck partitionings, the opposite is al-
ways true.

1) Error Performance: In analyzing the error performance
of the th decoding stage it will be assumed, without loss of
generality, that the all-zero sequence is transmitted in theth
level. Note that this assumption is different from assuming that
the all-zero codeword is transmitted at all levels, which is not
correct with the partitionings considered in this paper. Also,
for multistage decoding, all sequences are possible and equally
likely in the subsequent stages.

With reference to Fig. 2(a), we observe that the projections
of the four possible signals in the left half plane can take one
of two values: or

, as shown in Fig. 2(b). Since messages are equally
likely, the probability of a signal point having coordinate

(or ) is equal to 1/2.
A block error event will occur at the first stage when-

ever a codeword of nonzero weight is decoded. Let
, denote the components

of a coded sequence such that , and let denote the
Hamming weight of an incorrectly decoded codeword in
the first level code . The two corresponding decision regions
occupy a -dimensional space separated by the decision
hyperplane . With respect to , an
error event occurs when a signal vector with-coordinates

(2)

, is corrupted by AWGN noise and moves to the
decision region specified by . The
probability of an erroneous decoding into at the first stage is
given by

(3)

For the nonzero positions of , the all-zero codeword can
be mapped into components with -coordinate
and components with -coordinate , for

. For multistage decoding, all possible
points corresponding to a given value ofare valid se-

quences. It is shown in Appendix A (for ) that the
smallest SED from the corresponding point to the hyper-
plane is

(4)

Hence, with respect to the codeword, and for a given values
of in , it follows that

(5)

where

and is the energy-per-bit-to-noise ratio. For all the code
sequences associated with the codewordof weight in the
first level code, and due to the symmetry of the decision hyper-
plane, the union bound yields the following expression for the
probability of a block error:

(6)

Finally, when assuming a systematic encoding, the union bound
on the bit-error probability of the first decoding stage can be
written as [14]

(7)

The bound (7) can be compared with a similar one for the
Ungerboeck’s partitioning (UG) strategy

(8)

From (7) and (8), we observe that while Ungerboeck’s parti-
tioning increases exponentially the effect of NN sequences, by
a factor of , the block partitioning has for an
error coefficient term , whichdecreases exponentiallywith
the distances of the first-level component code. As a result, for
practical values of , the block partitioning may yield, at
the first stage, a real coding gaineven greater than the asymp-
totic coding gain. This is a very desirable feature of a coded
modulation with UEP.

Due to the independence and symmetry between the first and
second stages, the probability of a bit error in the second de-
coding stage is also upper bounded by (7). On the other hand,
the error performance of the third stage of a three-level coded
8-PSK modulation depends on that of the previous two stages.
However, for the block partitioning for UEP, the first level codes
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Fig. 3. Simulation results of a three-level coded 8-PSK modulation with block
partitioning.

are the most powerful, and the effect of errors from the first de-
coding stages can be neglected. Under this assumption, a good
approximation is obtained by assuming that decoding decisions
in the first and the second decoding stages are correct. From
a conventional union bound argument for binary linear block
codes [14], it follows that:

(9)

2) Simulation Results:A three-level 8-PSK modulation for
UEP was selected as an example with (64, 18, 22), (64, 45,
8), and (64, 63, 2) ex-BCH codes as the first-, second-, and
third-level codes, respectively. This coding scheme, denoted,
has rate equal to 1.97 bits/symbol and can be compared with
uncoded QPSK modulation, which has approximately the same
rate (a difference of only 0.06 dB).

Simulation results of this example are shown in Fig. 3.
S1 and UB denote computer simulations and
upper-bound evaluation, respectively, of the corresponding

ex-BCH code. In the simulations, we used the ordered
statistics soft-decision decoding procedures of [15]. The results
agree with the theoretical bounds at the practical BER of 10.
Three levels of error protection are achieved with the block
partitioning. An impressive coding gain of 8.5 dB is achieved at
the BER of 10 for 18 most important bits (14.3%) encoded in
the first level. In the second and third stages, the corresponding
values of coding gain are 2.5 and−4.0 dB, respectively. It is
interesting to note that at this BER, the simulated coding gain
at the first decoding stage is greater than the asymptotic coding
gain (8.1 dB) due to the reduced error coefficients.

B. Six-Level Coded 64-QAM Modulation with UEP Using
Block Partitioning

For a 64-QAM modulation, a six-level coded system can be
constructed with the block partitioning. As in the case of 8-PSK,
partitioning at each level is done such that signal points are
contained in disjoint regions of the two-dimensional Euclidean
space, as shown in Fig. 4. In this figure, the four less significant
label bits are shown in the quadrant corresponding to

(a)

(b)

Fig. 4. A 64-QAM constellation with block partitioning: (a) labeling and (b)
X-coordinate projections.

. In the other three quadrants, the same assignment
of label bits is used. The convention used to draw the
points is the same as in Fig. 2, i.e., label bitdetermines the
color and label bit the shape of the signal points. Once again,
this partitioning approach results in a small number of NN for
each stage of the multistage decoding.

1) Error Performance: The theoretical derivation of the
probability of a bit error for six-level coded 64-QAM is similar
to that for three-level coded 8-PSK. Based on the same method
as in Section III-A-1 and in Appendix A with , it follows
that at the first two decoding stages, the probability of a bit
error, for , is given by

(10)

where

and , , , and .
Assuming correct decoding in the first and second stages, the

bound on the bit-error probability in the third and fourth de-
coding stages becomes, for

(11)

where
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Fig. 5. Error performance of a six-level coded 64-QAM modulation with block
partitioning and four levels of error protection.

Finally, assuming that the previous decoding stages are correct,
the probability of a bit error in the fifth and sixth stages is, for

(12)

2) Simulation Results:Fig. 5 shows simulation results
and theoretical upper bounds on the error performance of a
six-level coded 64-QAM modulation with block partitioning.
This scheme transmits 4.03125 bits/symbol. The component
codes , , were selected as (64,24,16), (64,24,16),
(64,45,8), (64,51,6), (64,57,4), and (64,57,4) ex-BCH codes,
respectively. As before, the simulation results agree with the
upper bounds at the BER of 10 or less. A coding gain of 12
dB at the BER of 10 , with respect to uncoded 16-QAM is
obtained for 48 bits, or 18.6% of the information, encoded in
the first two levels.

IV. HYBRID PARTITIONING

In this section, we present a partitioning approach that takes
advantage of both the reduction of error coefficients, achieved
by the block partitioning, and the increasing minimum intraset
distances associated with Ungerboeck partitioning.

A. Three-Level Coded 8-PSK Modulation with Two-Level
Error Protection Using Hybrid Partitioning

Fig. 6 depicts an 8-PSK signal set with points labeled by
a hybrid partitioning. The first partition level is identical to a
block partitioning. In the remaining partition levels, Unger-
boeck’s partitioning rules [9] are used. At the third level, the
MSED between signal points is 2.0, as opposed to 0.586 for
the block partitioning. The price to pay for the corresponding
improvement in performance of the third level is: 1) an in-
creased number of NN at the second level and 2) a slightly
more complex decoder for the second level code, since at the
second partition level the subsets are no longer contained in
half planes.

Fig. 6. An 8-PSK signal set with hybrid partitioning.

1) Error Performance: For the hybrid partitioning, the
bit-error probability of the first decoding stage is also upper
bounded by (7). When the decoded sequence at the first stage is
correct, the constellation associated with the second decoding
stage becomes a half 8-PSK constellation. Consequently, each
signal point has either one or two NN as observed from Fig. 6.
Then an error event will occur at the second stage whenever the
decoded codeword of the second level has nonzero weight. Let

denote the weight of the incorrectly decoded codeword.
With probability 1/2, a signal point with one neighbor (or with
two neighbors) is selected. If we assume that for thenonzero
positions of , signal points have two NN and signal
points have one NN in the corresponding code sequence, then
the probability of a block error associated with is upper
bounded as in (6) by

(13)

where . The last equality follows from the fact
that . Note that in (13), the value 3/2 simply
represents the average number of NN associated with a half
8-PSK constellation. As in the case of block partitioning, when
assuming systematic encoding of the second-level code, the
probability of a bit error in the second decoding stage is upper
bounded by

(14)

From (14), we observe that the second level of the hybrid parti-
tioning has a smaller error coefficient factor than that of Unger-
boeck’s partitioning, compared to .

To estimate the bit-error probability in the third decoding
stage, we note that the second stage is more likely to be in error
than with block partitioning. However, on the average, given that
a decoding error is made at the second stage, the probability of
a decoding error at the third stage is 1/2. Therefore, the bit-error
probability at the third stage can be expressed as the sum of the
contributions of errors from the second stage plus a conventional
union bound for the third-level code. For , it follows
the approximated upper bound on the probability of a bit error
at the third decoding stage

(15)
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Fig. 7. Simulation results of a three-level coded 8-PSK modulation with
hybrid partitioning.

2) Simulation Results:The same code selection as in the
three-level 8-PSK modulation example presented in Section
III-A-2 was first simulated with hybrid partitioning. Fig. 7
presents the corresponding simulation results, with the prac-
tically optimum decoding achieved by the algorithm of [15].
For the half 8-PSK constellation obtained in the second level
decoding after removing the contribution from the first de-
coding stage, it is shown in Appendix B that the metrics to be
used by this algorithm are simply the- and -coordinates
of the received signal points scaled and added. Once again,
we observe that the bounds match the simulation results at
BER <10 . In this case, by proper selection of the component
codes, two levels of error protection are achieved. Note also
that the average coding gain is greater than the one obtained
with the block partitioning.

For the hybrid partitioning, at a BER of 10, the degrada-
tion in coding gain for the second level code, with respect to
the block partitioning of Section III-A-2, is about 2.3 dB. How-
ever, the advantage in coding gain for the third level code is ap-
proximately 4.4 dB at a BER of 10 . A good tradeoff is thus
obtained between error performance loss at the second level (a
larger error coefficient) and increase in intraset distance at the
third level.

It is also possible to use convolutional codes as component
codes. Fig. 8 presents plots of simulations and bounds on
the error performance of a coded 8-PSK modulation with
hybrid partitioning. As for the component codes, is a best
rate-1/3 memory-6 convolutional code with generators (in
octal) (554, 624, 764) and minimum free distance 15, is
a rate-2/3 memory-6 punctured convolutional code, obtained
from a rate-1/2 convolutional code with generators (133, 171),
with minimum free distance 6, and is a (30, 29) single
parity-check code.

B. Six-Level 64-QAM with UEP Using Hybrid Partitioning

The principle of hybrid partitioning described in Section
IV-A can be extended in a straightforward way to QAM
signaling. In this section, we consider a 64-QAM squared
constellation, while generalization to any QAM constellation
follows the same lines.

Fig. 8. Simulation results of a three-level coded 8-PSK modulation with
hybrid partitioning and convolutional codes.

TABLE II
AVERAGE NUMBER OF NN � FOR THE LEVEL-(i + 1) AT WHICH

UNGERBOECKPARTITIONING STARTS

1) Error Performance: For , the nonstandard
labeling described in Fig. 4 is applied to the firstlevels of
the partitioning only, while Ungerboeck’s partitioning is applied
to the remaining levels. As a result, the intraset distance
associated with this hybrid partitioning remains constant in the
first levels, and for 6-stage decoding, the error probabilities of
these stages are upper-bounded by (10), (11), or (12). On the
other hand, the intraset distance associated with the last
levels increases at the expense of the corresponding effective
error coefficients. Table II summarizes the average number of
NN associated with level- .

Since for multistage decoding, each stage is decoded based
on the assumption that any sequence is possible at the following
stages, the bit-error probability for stage- of this hybrid
decoding is bounded by

(16)

with . In (16), we assume that the probability of
decoding errors propagating from the previous decoded stages
is negligible. The bit-error probabilities of the remaining stages
are evaluated based on the same principle, after proper choice
of the corresponding values ofand .

As an example, consider the case for which the
64-QAM constellation is first partitioned into four 16-QAM
constellations as in Fig. 4. Each 16-QAM constellation is then
partitioned using Ungerboeck’s rules. Hence and are
upper-bounded by (10), while from (16)

(17)
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Fig. 9. Error performance of a six-level coded 64-QAM modulation with
hybrid partitioning and two levels of error protection.

For level 4, we evaluate the corresponding average number of
NN as 2.25, so that

(18)

with . Note that the average number of NN associated
with level 4 and differs from the value of Table II for .
Finally, for and , we obtain

(19)

(20)

2) Simulation Results:Fig. 9 depicts the simulation results
for hybrid partitioning with of the BCM scheme with
component codes: the (64,45,8) ex-BCH code at levels 1,2, and
3, the (64,57,4) ex-BCH code at level 4, the (64,63,2) ex-BCH
code at level 5, and the (64,64,1) ex-BCH code at level 6. This
scheme of rate 4.984 375 bits/symbol is compared with uncoded
32 cross-QAM signaling. We obtain a UEP scheme with 2 levels
of protection. At the BER 10 , coding gains of 7.4 and 1.6 dB
over uncoded 32-cross QAM are achieved by this scheme. We
also observe that at this BER, the upper bounds derived previ-
ously are very tight. The dominance of the effective error coef-
ficients in the error performance is emphasized by this example,
in which stages 1, 2, and 3 have the same asymptotic coding gain
of 5.95 dB, a value totally irrelevant for describing the error per-
formance of this scheme at practical BER’s.

V. CONCLUSIONS

Theoretical upper bounds and simulation results for multi-
stage decoding of multilevel coded modulations for UEP have
been presented. Bits-to-signal mappings by block and hybrid
set partitionings of -ary modulations were used to construct

good coding schemes with UEP capabilities. In all cases, a very
large coding gain is achieved for the most important bits.

The theoretical bounds derived in this paper are very tight
and consequently constitute a powerful tool for designing
good multilevel coded modulation schemes for UEP with
multistage decoding. Based on the various hybrid partitionings
of the signal constellation associated with an-level coded
modulation scheme, a large choice of UEP schemes with up
to distinct levels of protection can be devised. This ap-
proach provides a generalization of the set partitioning method
proposed in [9] for multistage decoding of multilevel coded
modulation schemes with UEP properties. The conventional
set partitioning of [9] simply corresponds to the special case
where one level of protection, i.e., uniform error protection (or
no UEP) is required.

APPENDIX A
DETERMINATION OF THE MINIMUM DISTANCE BETWEEN A

CODE-SEQUENCE ANDITSASSOCIATEDDECISIONHYPERPLANE

In this appendix, we determine the minimum distance be-
tween the point

and the hyperplane of equation in the -di-
mensional Euclidean space. The pointis chosen such that
the first coordinates have value , the following co-
ordinates have value , , the last coordinates have value

with . Without loss of generality, any of the
points obtained by permu-

tation of the coordinates of can also be considered due to the
symmetry of the hyperplane with respect to any axis
. Let be the projection of the point

onto the hyperplane . For with ,
the point is determined by solving the optimization problem

Minimize

subject to

with . By solving with the Lagrange multiplier
method, we obtain for and

from which it follows that
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APPENDIX B
DIFFERENTIAL COST EVALUATION FOR PSK SIGNALING

AND UNGERBOECK-TYPE PARTITIONING

Let represent the received symbol and let
and be the two closest points to

in the transmitted PSK signal constellation, whererepresents
the transmitted signal energy and , for . Then
if represents the SED betweenand , we obtain

which is proportional to .
The value , which is independent of , can be used as the
differential cost in the algorithm of [15] applied to multistage
decoding of a BCM scheme based on a PSK constellation with
Ungerboeck partitioning. The values and are
preprocessed so that and are simply scaled and added to
evaluate the corresponding .
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