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1 Introduction
In the functional data analysis (FDA) literature, it is commonly assumed that the data are

a sample of random functions varying smoothly over their observation domain (Ramsay and

Silverman, 2005). Limited methodological research has focused on binary-valued functional

data. Most of the methods dealing with such data rely on generalized linear mixed models

or generalized estimating equations (GEE). Hall et al. (2008) review the existing paramet-

ric models and introduce a functional data approach for studying the variability in binary

longitudinal data, by means of conditioning on a Gaussian latent process. Their approach

uses functional principal component analysis (FPCA) to model the functional latent process

and to reconstruct the individual trajectories.

This article is concerned with modeling cross-dependent binary functional data. Specif-

ically, for each subject r in the observed data sample, the subject-data are viewed as a

set of binary-valued functional observations {Yr(dri) : i = 1, . . . ,mr}, where a functional

observation is a realization of a random function Y (dri) observed at a fixed design point

dri; we denote by Y (dri, t) the value of the function Y (dri) at time point t or other form of

functionality, for example, wavelength. The correlation between two functional observations

is assumed to tail off as the distance between their associated design points increases. In

this paper, we consider the case when the functional observations Yr(dri) are observed on a

common (moderately) dense grid. The case study presented in the paper is related to the

analysis of spectral backscatter from long range infrared light detection and ranging (LIDAR)

data, where the goal is to estimate the probability of high spectral backscatter at different

wavelengths. Other examples include: (a) distribution of the presence or absence of birds

species over time observed at multiple geographical locations, and for multiple species; and

(b) product alarms detected and reported to a technical system observed for many products

and for a number of systems over time.
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Models for cross-dependent multilevel functional data have been proposed by Shi et al.

(1996), Rice and Wu (2001), Morris et al. (2003), Baladandayuthapani et al. (2008) and

Di et al. (2009) among others. Extending these models to binary-valued random functions

is not straightforward because of the nonlinear relationship between the observed functional

data and the model components that need to be estimated, and because of the correlation

structure between the functional observations corresponding to the same subject.

We propose a nonparametric functional approach for the analysis of cross-dependent

binary-valued functional data. Our methodology assumes the existence of an underlying

latent bivariate Gaussian process, which can be modeled as in Staicu et al. (2010). Relevant

features of the stochastic dependence of the observed data are reflected by the mean and

covariance properties of this latent bivariate process. This approach was considered initially

by Hall et al. (2008) for modeling binary-valued functional data. The primary contribution is

that we suggest estimation methods that accommodate different scenarios for the prevalence

of the events - for binary data indexed with 0’s and 1’s, an event is when we observe Yr(dri) =

1. Specifically, in the case of non-rare events (relatively balanced number of 0’s and 1’s), our

methods can be viewed as an extension of the estimation techniques of Hall et al. (2008)

to multilevel cross-dependent functional data. On the other hand, in the case of rare-events

(small number of 1’s), different techniques are required, as the former approach provides

biased results.

The article is organized as follows. Section 2 introduces the model framework. Section

3 highlights the challenges of the underlying estimation problem. Section 4 provides the

estimation procedures under two approximations to the logistic function. We compare the

performance of the two approximations in a simulation study in Section 5. Our application is

presented in Section 6. Some technical details, additional simulation results and a description

of our software implementations are deferred to the Web Appendices.
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2 Model Framework
Here we describe the modeling framework and the associated assumptions. Let Yrij =

Yr(dri, trij) be the value of the response functional observation Yr(dri) at time point trij,

where dri denotes the fixed design point associated with this functional observation. Here

r indexes the subjects in the sample, r = 1, . . . , R, i indexes the units within the subject

at which we observe functional observations, i = 1, . . . ,mr, and j indexes the subunits at

which the functional responses are sampled, j = 1, . . . , nri. In this paper we also use the

notation Yri = Yr(dri) to refer to the functional observation for the rth subject at unit

dri. It is assumed that trij ∈ T for some compact interval, for simplicity T = [0, 1], and

dri ∈ D for some open-set domain, for simplicity taken D = [0,∞)dim, for all r, i and j,

where the dimensionality of the spatial domain is dim ≥ 0. When dim = 0, there is no

cross-dependence between random functions observed for the same subject. When dim = 1,

the domain can be time or some other unidimensional functional domain. When dim = 2,

the domain can be a geographic space, for example.

We assume without loss of generality that Yr(d, t) are independent realizations of a

stochastic process Y observed on the domain D × T . A key assumption in our modeling

approach is the existence of the latent process Xr such that:

E{Yr(d1, t11), . . . , Yr(dm, tmnm
)|Xr} =

∏m

i=1

∏ni

j=1
g{Xr(dri, tij)}; (1)

where 0 ≤ ti1 < . . . < tini
≤ 1, for all i, the function g is a smooth monotone increasing

link function. For binary data, the link is g(x) = exp(x)/{1 + exp(x)}, corresponding to

the canonical form of the location parameter for the Binomial distribution. To account for

the correlation structure of the observed response, we assume a structural decomposition for

the latent process Xr into components that exhibit both cross- and within-unit dependence,

similar to Staicu et al. (2010). We note that in Staicu et al. (2010), the link function

3



is g(x) = x corresponding to the canonical form of the location parameter for the normal

distribution. Our modeling procedure is more challenging since the relationship between the

functional data and the latent process is nonlinear.

More specifically, we assume that for any fixed design point dri ∈ D and t ∈ T we have

Xr(dri, t) = µ(t) + Zr(t) + ϵ(dri, t), (2)

where µ is the overall mean function, Zr is the random deviation from the mean function

that is common to all the units, and ϵ(dri, t) = Wri(t) +Ur(dri) represents a specific random

deviation additively separable in ’t’ and ’d’. The model structure in equation (2) decomposes

the variability in the latent process Xr into between-subject variability Zr(t) and within-

subject variability ϵ(dri, t). We assume no dependence across subjects, i.e. Zr(t) does not

depend on the design points dri, i = 1, . . . ,mr. However, units are cross-dependent; that is,

the units are correlated given the subject.

We assume that Zr and Wri are independent Gaussian processes, with mean zero and

covariance functions KZ and KW , respectively, defined by KZ(t, t
′) = E{Zr(t)Zr(t

′)} and

KW (t, t′) = E{Wri(t)Wri(t
′)} for t, t′ ∈ T . Also U is a zero-mean second order stationary and

isotropic Gaussian process with auto-covariance function ν(·) defined by E{Ur(d)Ur(d
′)} =

ν(∥d − d′∥) = σ2

uρ(∥d − d′∥), for any d, d′ ∈ D,where σ2

u is the variance, ρ(·) is the auto-

correlation function, and ∥ · ∥ is the Euclidean distance in D. Furthermore we assume that

lim ρ(∆) = 0 as ∆→∞.

Within this modeling framework, our objective is to estimate the components of the

latent structure Xr: the mean and the covariance functions.

3 Model Estimation: Overall Approach
We now discuss the challenges in the estimation of the mean and covariance functions of the

latent model components of (2) for binary-valued functional data while considering a simpler

4



form of it, that is, when Wri(t) = 0 and Ur(d) = 0. This reduced model was introduced by

Hall et al. (2008). In this section, we discuss this reduced model to simplify our derivations

motivating various approximation of the link function.

When the functional observations are binary-valued, the mean and covariance functions

of the latent structure Xr cannot be estimated using existing methods such as Di et al.

(2009) or Staicu et al. (2010), due to the nonlinearity in the link function g. We therefore

contrast three different approximations to the logistic function with different applicability.

Linear Approximation: Approximate g(x) using Taylor expansion around zero and

truncate the expansion assuming x is small. Therefore, the underlying assumption is that

the variation of Xr(t) around its mean function µ(t) is relatively small or Xr(t)−µ(t). Such

a method is computationally efficient and works well as long as the marginal probabilities

α(t) = pr{Yr(t) = 1} stay away from the endpoints 0 and 1. However, this method fails when

the probabilities are very small, the case of rare events. In the Web Appendix A, we provide

more insights into this limitation of the linear approximation within a simulation study

following the simulation settings of Hall et al. (2008) but under the rare-events case. We

find that the simulation of Hall et al. (2008) only validates the use of the linear approximation

under the non-rare event case.

Adjusted Exponential Approximation: Employ a Taylor approximation to the link

function g by using exp(x)/{1+exp(x)} ≈ exp(x){1−exp(x)} assuming that exp(x) is small.

This approximation implies exp {Xr(t)− µ(t)} small or pr{Yr(t) = 1} small. The marginal

mean function of Yr(t), α(t) = E{Yr(t)} = pr{Yr(t) = 1} could therefore be approximated

by

α̃(t) = exp {µ(t) +KZ(t, t)/2} − exp {2µ(t) + 2KZ(t, t)} ≈
exp{µ(t) +KZ(t, t)/2}

[1 + exp{µ(t) + 3KZ(t, t)/2}]
. (3)

Exponential Approximation: Drop the second term in the approximation of α(t) in
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the adjusted exponential approximation (3), resulting in an exponential approximation to

the link function; we denote α̃(t) = exp{µ(t) + KZ(t, t)/2}. This approximation assumes

that exp(x) is very small implying that pr{Yr(t) = 1} is very small. The exponential approx-

imation is commonly used in the case of biomedical and epidemiological applications with

rare events; see for example Piegorsch, et al. (1994), Epstein and Satten (2003), Kwee, et al.

(2007) among others. In this paper, we focus on this approximation instead of the adjusted

exponential because of the feasibility in deriving estimates for the covariance functions.

Comparison. We compare the linear and exponential approximations in Figure 1 using a

simulation study following the setting by Hall et al. (2008) but replacing the mean function

with µ(t) ←− µ(t) − 4, a rare-events case. Both exponential approximations are clearly

more accurate than the linear approximation in estimating α(t). Moreover, in the rare

event case, the estimate of µ obtained using the adjusted exponential approximation is very

accurate whereas the linear approximation is very biased; and this is because in the rare event

case, the influence of the variance function KZ(t, t) to the marginal mean function α(t) is

not negligible. By accounting for the variance function, the two versions of exponential

approximations give reliable estimates of the mean function.

The underlying message of this comparison is that for binary functional data, different

methods need to be employed according to the prevalence of events, and particularly, use

the exponential approximation for rare events data.

4 Model Estimation: Procedure
This section details the estimation of the components of the more general model in (2) under

the linear and exponential approximations introduced in the previous section. The last

subsection particularly contrasts the differences and similarities in the estimation procedure

for the two approximations.
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4.1 Non-rare events setting: Linear approximation

Assuming that the variation of Xr about its mean is relatively small and using the Taylor

expansion of g{Xr(dri, t)} = E {Yr(dri, t)|Xr(dri, t)} about µ(t) as in Hall et al. (2008), we

derive the approximation

g{Xr(dri, t)} ≈ g{µ(t)} + {Zr(t) +Wri(t) + Ur(dri)}g′{µ(t)}

+ (1/2){Zr(t) +Wri(t) + Ur(dri)}2g′′{µ(t)}, (4)

where g′(t) = ∂g(t)/∂t, and g′′(t) = ∂2g(t)/∂t2. It follows that the marginal probabilities

can be approximated by pr{Yr(dri, t) = 1} ≈ g{µ(t)}+ 1

2
{KZ(t, t) +KW (t, t) + σ2

u} g′′{µ(t)}.
This approximation, while accurate, may not be easy to apply; following Hall et al. (2008)

we consider a simpler alternative, which ignores the second order-term of the approxima-

tion (4), and thus uses a linear approximation. The linear approximation of the marginal

probability α(t) = pr{Yr(dri, t) = 1} becomes α(t) ≈ g{µ(t)}. Furthermore, using the linear

approximation, we derive approximations for the marginal joint probabilities as

pr{Yr(dri, t) = 1, Yr(drℓ, t
′) = 1} ≈ g{µ(t)}g{µ(t′)}+ g′{µ(t)}g′{µ(t′)}

×{KZ(t, t
′) +KW (t, t′)I(i = ℓ) + ν(∥dri − drℓ∥)} ,

where I(i = ℓ) is the indicator function which equals 1 if i = ℓ and 0 otherwise.

Using the approximation of the marginal probabilities we can further derive approximate

relationships between the total, within and between covariances of Yr and the model compo-

nents in (2) as follows. Denote by SY
T (t, t

′) = cov{Yr(dri, t), Yr(dri, t
′)} the total covariance

of the observed process Yr, by SY
B (t, t

′,∆) = cov{Yr(dri, t), Yr(drℓ, t
′) the between-unit co-

variance and by SY
W (t, t′,∆) = (1/2)E [{Yr(dri, t)− Yr(drℓ, t)}{Yr(dri, t

′)− Yr(drℓ, t
′)}] the

within-unit covariance at time points (t, t′) and for units located at distance ∆ = ∥dri−drℓ∥.

SY
T (t, t

′) ≈ {KZ(t, t
′) +KW (t, t′) + σ2

u}g′{µ(t)}g′{µ(t′)}; (5)
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SY
B (t, t

′,∆) ≈ {KZ(t, t
′) + ν(∆)}g′{µ(t)}g′{µ(t′)}; (6)

SY
W (t, t′,∆) ≈ {KW (t, t′)− ν(∆) + σ2

u}g′{µ(t)}g′{µ(t′)}, (7)

where ν(∆) = cov{Ur(d
′), Ur(d

′′)} = σ2

uρ(∆) and ∆ = ∥d− d′∥ is the covariance at lag ∆ of

the process Ur. These approximations are a natural generalization of the method introduced

by Hall et al. (2008) to the multilevel functional model. They are not limited to the logit

link function; they hold for any link function for which g′ does not vanish and furthermore

inft{g′(t)} > 0. In addition, these equations can be regarded as extensions of the equations

(3.4) - (3.6) of Staicu et al. (2010) to the case when the curves are binary-valued.

Equations (5)-(7) provide the intuition behind the road map of the estimation procedure

consisting of three steps:

Step 1. Obtain an estimator of the mean function µ(t) from the linear approximation of

the marginal probability;

Step 2. Use equation (7) to estimate the covariogram ν(∆);

Step 3. Estimate the covariance functions KZ and KW , using (5)-(7).

We describe the estimation approach for the model components µ(t), ν(∆), KZ and KW

in detail in Web Appendix B.

4.2 Rare events setting: Exponential approximation

In this section, we use an exponential approximation for the conditional probability of an

event g{Xr(dri, t)}. Particularly, we extend the approximation in (3) to the more general

model in (2) to approximate the marginal probabilities by

pr{Yr(dri, t) = 1} ≈ exp [µ(t) + {KZ(t, t) +KW (t, t) + σ2

u}/2]
1 + exp [µ(t) + 3{KZ(t, t) +KW (t, t) + σ2

u}/2]
; (8)
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The approximation in (8) can be used to obtain an approximate estimate for µ(t) as soon

as we have estimates for the covariance functions, KZ(t, t), KW (t, t) and σ2

u. Similarly

to the linear approximation, the covariance functions are estimated from an approximate

relationship between these functions and the marginal joint probabilities.

The Taylor approximation to the link function from which we derive (8) cannot be used to

derive such an approximation for the marginal joint probabilities. For estimating the covari-

ance functions, we instead use the exponential approximation and derive the approximate

relationship of the marginal joint probabilities to the covariance functions

pr{Yr(dri, t) = 1, Yr(drℓ, t
′) = 1} ≈ α(t)α(t′) exp {KZ(t, t

′) +KW (t, t′)I(i = ℓ) + ν(∥dri − drℓ∥)} .

For this approximation, it is more convenient to work with the marginal second moments

E{Yr(dri, t)Yr(drℓ, t
′)} than the marginal covariance cov{Yr(dri, t), Yr(drℓ, t

′)}.
Before describing the general procedure we introduce some additional notation. De-

note by EYT (t, t′) = E{Yr(dri, t)Yr(dri, t
′)} the marginal second moment of Yr(dri, t), and by

EYB (t, t′,∆) = E{Yr(dri, t)Yr(drℓ, t
′)} the between-unit marginal second moment for units

which are at distance ∆ = ∥dri − drℓ∥ apart. The quantities EYT and EBY correspond to

the total covariance, KY
T , and between-unit covariance, KY

B , respectively, introduced in the

context of the linear approximation. Simple algebra yields

EYT (t, t′) ≈ α(t)α(t′) exp
{
KZ(t, t

′) +KW (t, t′) + σ2

u

}
; (9)

EYB (t, t′,∆) ≈ α(t)α(t′) exp {KZ(t, t
′) + ν(∆)} . (10)

Equations (8)-(10) provide the intuition behind the road map of the estimation procedure

consisting of three steps:

Step 1. Obtain an estimator of the cross-dependence covariance, ν(∆) - this step requires

estimation of the marginal mean function α(t) and of EYB (t, t′,∆);
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Step 2. Use equations (9)-(10) to estimate covariance functions KZ(t, t
′) and KW (t, t′);

Step 3. Estimate the mean function µ(t) using equation (8), by substituting the estimates

for all the covariance functions.

We describe the estimation approach for the model components µ(t), ν(∆), KZ and KW

in detail in Web Appendix C.

4.3 Linear vs. Exponential Approximation

We conclude this section with a comparison of our derivations for the model component

estimates under the two approximations. The primary differences are summarized as follows:

• The estimate of the mean function µ(t) does not depend onKZ(t, t
′), KW (t, t′), σ2

u under

the linear approximation but it does depend on these components under the exponential

approximation.

• Because of the underlying formulas derived under the two approximations, compare

equations (5)-(7) to (8)-(10), KZ(t, t
′), KW (t, t′), ν(∆) and σ2

u are estimated using different

approximation functions of the within and between covariance functions of Y .

• The estimates of the total, within and between covariance functions of Y differ for the

two approximations. For the linear approximation we estimate them assuming a Gaussian

process using similar methods as developed by Staicu et al. (2010). In contrast, for the

exponential approximation we employ smoothing techniques to estimate these covariance

functions. Therefore, the estimation procedure under linear exponential is less computation-

ally expensive than the one under the exponential approximation.

5 Simulation Study
In this section we present a simulation study to assess the finite sample performance of

the proposed estimation methodology. The primary objective of the simulation study is to
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compare the estimation accuracy under the two approximations for the logistic link function.

We focus on the estimation accuracy of the mean function µ(t) as well as of the covariance

functions KZ(t, t
′) and KW (t, t′).

Simulation Settings. We generate data following the model in (1) under two settings:

(1) non-rare events setting, µ(t) = 2 sin(2πt)/
√
5, and (2) rare events setting µ(t) = 2t2 +

2t− 5, for t ∈ [0, 1].

For both simulation settings, the latent process is generated using the decomposition (2).

The cross-dependence process Ur is assumed Gaussian with covariance function specified by

the Matérn correlation function (Matérn, 1986)

KS(∥di − dj∥) = σ2

u

1

Γ(ρ)

(
ϕ∥di − dj∥

2

)ρ

2Bρ(ϕ∥di − dj∥),

where σ2

u = 0.5, ϕ = 1/4 and ρ = 2. We compare accuracy results for various dimensionality

of the domain D, specifically, dim = 0, 1, 2. The results in this section are based on dim = 1.

We include additional simulation results for dim = 0 and 2 in Web Appendix C.

The functional processes Zr and Wri are assumed Gaussian with covariance specified by

the covariance functionsKZ(t, t
′) =

∑
k≥1

ϕZ
k (t)ϕ

Z
k (t

′)λZ
k andKW (t, t′) =

∑
l≥1

ϕW
l (t)ϕW

l (t′)λW
l .

We set λZ
1
= 0.5, λZ

2
= 0.25, and λZ

k = 0 for k ≥ 3 and λW
1

= 0.5, λW
2

= 0.15 and λW
l = 0

for l ≥ 3. Also we take ϕZ
1
(t) =

√
2 cos(2πt), ϕZ

2
(t) =

√
2 cos(4πt) and ϕW

1
(t) =

√
3(2t− 1),

ϕW
2
(t) =

√
5(6t2 − 6t + 1). We simulated the structure of the covariance functions of the

processes Zr and Wri using the Karhunen-Loève (KL) expansion (Karhunen, 1947; Loéve,

1945). Specifically, ϕZ
k (t) and λZ

k for k ≥ 1 are the eigenfunctions and eigenvalues, respec-

tively, for the KL decomposition of the covariance function KZ(t, t
′). Similarly, ϕW

k (t) and

λW
k for k ≥ 1 are the eigenfunctions and eigenvalues, respectively, for the KL decomposition

of the covariance function KW (t, t′). Using these covariance structures, the processes Zr and

Wri are non-stationary - more general, but more realistic, modeling assumptions.
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We generate 100 data sets following the simulation settings above with a total of R = 50

subjects,M = 50 units andN = 25 sub-units. Estimates of the mean function and covariance

functions are obtained for each of the two approximations using the methods introduced in

Web Appendices B and C. For visual assessment of the covariance function estimates, KZ

and KW , we use plots of the eigenfunctions corresponding to their spectral representation.

• Figure 2 shows the estimates for µ(t) provided by the two approximation methods for

all 100 simulations (in grey) and the true mean function (in black). The estimated means for

the rare events setting are (negatively) biased when using the linear approximation (Figure

2b) but approximately unbiased under the non-rare events setting (Figure 2a). On the other

hand, the estimated means under the rare events setting are unbiasedly estimated when

using the exponential approximation (Figure 2d) as compared to the linear approximation

(Figure 2b). Therefore, in the rare events setting, the exponential approximation provides

considerably more accurate estimates for µ(t).

• Figures 3 and 4 present the estimated (in grey) and true (in blue) eigenfunctions of

the covariance function KZ(·, ·) and KW (·, ·) for the linear and exponential approximations

under the rare event case. We also compared the estimated eigenfunctions under the non-

rare event setting (see Web Appendix C). We found that in the non-rare events setting,

the eigenfunctions are more accurately estimated than under rare events; the improvement

is more significant for the between covariance function. This is to be expected, since the

accuracy of logistic regression depends on the number of cases.

• Figure 5 presents the estimated cross-correlation function (in grey) in contrast to the

true correlation function for the two settings. These estimates are derived using the lin-

ear approximation approach. The estimates derived from the exponential approximation

approach are similar. As expected, the cross-dependence between the longitudinal binary

observations is more accurately estimated for non-rare events than for rare events, regardless
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of the method of estimation employed.

• Comparing the estimates for all model components (see Web Appendix C for a table

including mean square errors), the most significant improvement in the estimation accuracy

is for the mean function µ(t) and the level-1 covariance function KZ(·, ·) when using the

exponential over the linear approximation under the rare-events case.

6 Data Analysis
We consider the analysis of spectral backscatter from long range infrared light detection and

ranging (LIDAR) data. The data are described in detail by Carroll et al. (2012), and the

estimation of spectral backscatter uses the algorithm of Warren et al. (2008, 2009), but

applied to the observed data rather than the deconvolved data. Our main goal is to estimate

the probability of high spectral backscatter at different wavelengths.

In the experiment, 30 aerosol clouds are investigated. There were two types of clouds:

control clouds that were non-biological in nature and treatment clouds that were biological.

For each cloud r = 1, ..., 30, functional responses were sampled at i = 1, ..., 50 locations

dri, called bursts, these locations being sampled one second apart. Within each location we

observe CO2 laser wavelengths, denoted as trij = 1, . . . , 19. We then defined high spectral

backscatter as being above 0.30, roughly the 90th percentile of all the backscatter data. Thus,

Yrij = Yr(dri, trij) is the indicator that the estimated backscatter corresponding to the rth

cloud, observed at the dri location/burst and for wavelength trij is larger than 0.30.

We use the proposed modeling approach and assume that the observed data can be

modeled using (1) and (2), with the difference that in (2) the latent mean function accounts

for the two groups. Specifically, µ(t) = µ0(t)I{G(r) = 0} + µ1(t)I{G(r) = 1}, where I(·)
is the indicator function and G(r) denotes the group membership of the cloud r, 0 for the

control and 1 for the treatment group. Because a high value of the spectral backscatter
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represents a rare event, we use an exponential approximation to estimate the mean and

covariance functions of the latent process. The methodology requires slight modifications to

account for different group mean functions. For the estimation of the covariance functions

KZ , KW , and ν we consider first estimating them based on the data of each group; the

final estimators are obtained by averaging the group estimators. The group mean estimates

µ̂0(t) and µ̂1(t) are based on the estimates of the covariance functions and on the marginal

probability estimates.

Figure 6 (a) depicts the estimates of the mean functions of the high spectral backscatter.

The two group mean functions have similar shapes, showing two peaks and two dips, but

there are differences also. There seems to be a delay between the wavelengths at which the

local extremes occur the treatment group and those in the control group. The latent mean

function has larger values in the control group than in the treatment group, indicating that

the log odds ratio of high spectral backscatter is slightly smaller in the treatment group than

in the control group. Interestingly, the estimated group mean functions using the linear

approximation (results shown in the Web Appendix D) are very similar, shapewise, to the

ones shown in Figure 6(a) but the magnitude of their values is smaller.

Figure 6(b) displays the estimated spatial correlation ν̂(∆)/ν̂(0) as a function of the

normalized location/bursts, namely ∆rij = |dri − drj|/50. The results indicate that the

correlation does not die out rapidly. Specifically, there seems to be high correlation be-

tween the spectral backscatter measurements taken within 20 seconds of one another, where

the estimated correlation is larger than 0.8. The correlation decreases almost linearly as

the measurements are between 20 and 40 seconds apart and it becomes negligible as the

measurements are more than 40 seconds apart.

Summaries of the estimated covariances of the two latent processes, Zr(·) and Wri(·)
using the exponential approximation are illustrated in Figure 6(c) and Figure 6(d). The
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plots show that the first three eigenfunctions for K̂Z and first two eigenfunctions for K̂W

describe most of the variability (more than 95%) between and within aerosol clouds (NZ = 3

and NW = 2). The interpretation of these results is more challenging. For example, the first

estimated eigenfunction provides the following insights. Aerosol clouds with positive scores

on the first eigenfunction for the between variability tend to have a log odds ratio of the

high spectral backscatter indicator that is smaller than the population average for the first

set of wavelengths and larger for the second set of wavelengths.

The figures in Web Appendix D display the eigenfunctions estimated by the linear ap-

proximation method. The first two eigenfunctions that explain about 95% of the variability

at level 1 are in fact similar only scaled differently. Only the first eigenfunction at level 1 is

similar to the corresponding one estimated using the exponential approximation. Moreover,

the first functional component at level 2 coincides with the one estimated using the exponen-

tial approximation but only one component explains about 95% of the variability at level 2,

and therefore, the second component as estimated by the exponential approximation is not

uncovered. This suggests that the linear approximation doesn’t capture the finer structures

of the covariance structures at level 1 and level 2.

The exponential approximation estimated the spatial variance to be σ2

u = 0.12, the

eigenvalues at level 1 to be λZ
1
= 0.84, λZ

2
= 0.36, λZ

3
= 0.22 (the first three components

explain approximately 95% of the variability) and the the eigenvalues at level 2 to be λW
1

=

0.19, λW
2

= 0.02 (the first two components explain approximately 98% of the variability).

This results indicates that the variability explained at level 1 is roughly 7 times larger than

the variability at level 2. This difference is even higher when comparing the estimated

eigenvalues from the linear approximation method - the sum of eigenvalues at level 1 is 4.07

as compared to 0.193 at level 2.
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7 Discussion

We have provided a means for decomposition, estimation and interpretation for modeling

multilevel binary functional data. One challenge is that linearization of the logistic function

as proposed by Hall et al. (2008) applies only under a non-rare events setting and it provides

biased estimates under the setting of rare events. We therefore developed an estimation

procedure based on the exponential approximation to the inverse link function and compared

it to the linear approximation to assess their advantages and limitations.

We illustrated the estimation bias due to the linear approximation under the rare events

setting in both our simulation study as well as in one motivating case study. The bias is most

significant in the estimation of the mean function µ(t) and the between covariance function

KZ(t, t
′). Because the estimation of the within covariance and spatial dependence are com-

putationally expensive under the exponential approximation, we therefore recommend using

the linear approximation approach for the estimation of the cross-covariance represented by

Uri when the number of units M is medium to large.

We highlight here a more difficult setting than the one presented in this paper - multilevel

binary-valued functional data where the functional observations are observed sparsely. Hall

et al. (2008) motivate their methodology for sparse binary functional data; however, their

theoretical results show that the model estimates are biased under this more difficult setting.

We conjecture that neither of the two methods apply to sparse binary-valued functional data.

Because our estimation procedure for modeling rare-events longitudinal data is derived

assuming the exponential link function, this procedure can also be applied to Poisson count

data. Often these data are observed as events at random time points; events are then

aggregated within fixed time intervals of equal length. Multilevel count longitudinal data

with or without cross-dependence are also common in many applications including sales
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retail data where each subject in our notation corresponds to a different product sold at

different stores (units) over a period of time (subunits), or neural spike train data where

units correspond to a set of neurons of a subject, for which response spike are recorded over

a period of time (subunits). However, challenges in these types of applications arise when the

counts are sparse, i.e. there are many zero values. Moreover, the Poisson assumption could

be restrictive since the mean and variance are often not equal. Investigating functional-based

approaches for longitudinal count data is beyond the scope of this paper.

We did not address the problem of predicting individual probability trajectories. The

prediction approach by Hall et al. (2008) employs two layers of approximations. First, it

uses the normal approximation for the binomial. Second, the expectation of the normal

distribution is approximated using a second order linear approximation and the variance

using a first order approximation. The first layer of approximation (from binomial to normal)

relies on the assumption that pr{Yr(t) = 1} is away from zero or one, the non-rare case. The

second layer of approximation relies on the assumption of non-rare observations as discussed

in this paper together with small eigenvalues λZ
k , k = 1, . . . and λW

ℓ , ℓ = 1, . . .. Based on

these observations, we conclude that prediction of the individual probabilities is much more

challenging, a research topic by itself.

We also did not address the problem of making inference on the model components of

the latent process Xr. Because of the nonlinear relationship between the observed process

Yr and the latent process Xr, there is not a direct way to derive confidence intervals for

these model components. When analytical confidence intervals are difficult to derive, often

one would resort to sampling techniques. For the nonparametric bootstrap, the predicted

trajectories need to be estimated first. For the parametric bootstrap, one could sample from

the Gaussian distribution of the latent components Zr, Wri and Ur to obtain confidence

intervals for the predicted trajectories. Moreover, for estimating a bootstrap confidence
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interval for µ(t), one has to re-sample the observed data as well. This last step needs to be

performed with cautious due to the dependencies in the observed process Yr.

Supplementary Materials
Web Appendices, Tables, and Figures referenced in Sections 3-6 are available with this paper

at the Biometrics website on Wiley Online Library. In addition to the material referenced

in the paper, we also provide the programs implemented in the R statistical software used

in the simulation study and the case study of this paper. The software deliverable directory

is available as a .zip file with three directories including the R code programs for different

values of the dimensionality of the domain of the unit design points.
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Figure 1: Rare-events Setting: (a) Approximations of the marginal mean function α(t) =
E{Yr(t)} using the true function µ(t). Depicted are the Monte Carlo estimate α̃(t) using a
large number of samples, the linear approximation, the exponential approximation, and the
adjusted exponential approximation. (b) Approximations of the latent mean function µ(t).
Depicted are the true function µ(t), the estimates using the linear approximation, and the
adjusted exponential approximation.
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(c) Setting 1: Exponential Approx
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Figure 2: Mean estimates (in grey) compared to the true mean (solid line) for the two
simulation settings under linear and exponential approximations. The top left panel is
the result of the linear approximation for non-rare events, while the top right panel is the
same approximation for rare events. The bottom left panel is the result of the exponential
approximation in the non-rare event case, while bottom right panel is the same approximation
in the rare event case. This figure appears in color in the electronic version of this article.
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Figure 3: Eigenfunction estimates (in grey) using the linear approximation compared to the
true eigenfunctions (solid line) for the rare event simulations (setting 2). The top panels are
the eigenfunctions for the covarianceKZ(t, t

′), while the bottom panels are the eigenfunctions
for the covariance KW (t, t′). This figure appears in color in the electronic version of this
article.
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Figure 4: Eigenfunction estimates (in grey) using the exponential approximation compared
to the true eigenfunctions (solid line) for the rare event simulations (setting 2). The top
panels are the eigenfunctions for the covariance KZ(t, t

′), while the bottom panels are the
eigenfunctions for the covariance KW (t, t′). This figure appears in color in the electronic
version of this article.

24



0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Delta

S
pa

tia
l C

or
re

la
tio

n

(a) Setting 1

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Delta

S
pa

tia
l C

or
re

la
tio

n

(b) Setting 2

Figure 5: Covariance estimation for the non-rare event case (left panel) and the rare-event
case (right panel) estimated using the linear approximation approach and compared to the
true function (solid line). This figure appears in color in the electronic version of this article.
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Figure 6: Displayed are: (a) estimated group mean functions of µg(t) for the control group
(g = 0) and treatment group (g = 1), using the exponential approximation; (b) the estimated
correlation function varying with the distance between locations/bursts; (c) the first three
estimated eigenfunctions of the between-covariance function KZ(t, t

′); and (d) the first two
estimated eigenfunctions of the within-covariance function KW (t, t′). This figure appears in
color in the electronic version of this article.
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