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Abstract

An irwastiaation was made of nult i level cros-
sing rates as a means of time series analysis of
random signals. Pattern recognition techniques
based on the Kahalanobis distance were implemented
as a means of evaluating the discriminating power of
level crossings. Measurement of multilevel crossing
rates was found to be an easily implementable means
for detection of changes in general frequency con-
tent. Level crossing analysis was also shown to be
applicable for the study of conductivity measure-
ments of two-phase flow of a i r and water, where
knowledge of the relationship between amplitude and
frequency was beneficial in characterizing the proc-
ess.

I. Introduction

Multilevel crossing analysis represents an ap-
proach to interpretation and characterization of
tine signals by readily relating frequency and am-
plitude information. In particular, measurement of
a signal's level crossing rate, defined to be the
nun-.ber of crossings per unit time of a level, yields
information as to the "apparent frequency" associ-
ated with that level. Observation cf the crossing
rates for a number of levels is a procedure that may
be easily implemented whereby the crossing behavior
may be categorized with respect to the amplitude of
the signal. Regardless of the applicability of
level crossings, it. would not be unreasonable to as-
sume that much of the effort in tha literature may
be due to the vast number of problems which remain
unsolved [ I~ ; i j3_^ <T

The objective of this investigation was to use
multilevel crossing rates for characterizing random
processes and to use pattern recognition techniques
to distinguish among level crossing observations.
In general, a f in i te number of pattern classes are
defined such that a classif ier assigns the signal to
one of the classes. The ab i l i t y of the classif ier
to distinguish among classes is based upon the in -
formation obtained through the processing of sample
data from the classes during a training period.

Two types of signal classification problems
are considered in the' foi l owing discussion. The
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f i r s t is the classical surveillance problem in which
one is interested in classifying an input as either
normal or abnormal and the only available sample
data for training are from the normal signal.
Therefore, the typical aoproach is to establish
bounds of normal behavior for the signal and to
classify as abnormal any observation outside these
bounds. The second classification problem consid-
ered wi l l be referred to as the multiclass case, in
which sample data for training are available for the
characterization of a l l defined classes. The task
of the classif ier is to assign each observation to
the class whose features most resemble the observa-
t ion.

The classification technique enrployec is the
Mahalanobis distance, which is a measure of simi-
lar i ty between an observation and a class charac-
terized by the training data. Thus the task of
discriminating multivariate observations is reduced
to evaluation of a scalar quantity. Appropriate re-
strictions are considered in using the Mahalanobis
distance in l ight of the fact that each observation
is a set of level crossing rates. The Mahalanobis
distance approach has been successfully applied tc a
variety of problems in the f ield of surveillance of
nuclear reactors [J4T§1

I I . Level Crossing for Continuous Randon Processes

The expected crossing rate of level u by a
continuous, stationary, and ero'godic random signal,
x(t), is given by [5J

• 7 _

Nu[x; (1)

ir.Z-rt,

where p '(u , v) is the jo int probability density
~-- x»x

function of x( t ) and the f i r s t derivative, x ' { t ) .
By the assumption of stationerity, the number of
crossings during time T is obtained from

Nu[x;T] = T HuLV, 1 ] . (2)

Observation of the number of crossings of level u
during time T by a sample function provides an esti-
mate of the crossing rate, such that [3]

'c c C[3
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(3)

where

for [x (—)-u ] [x ( | -T) -u ] < 0

otherwise

and m subintervals are defined by

! B i

(4)

(5)

I f en estimate of the crossing rate is obtained for
each member of a set of levels, Eq. (1) may be ap-
proximated by a set of level, crossing rates, called
a level crossing profile [US.], qr.LCP-. ; i

Since the number of crossings of a level must
be a non-negative integer ( f in i te for any physically
realizable process), the observed crossing rete of
any level within the bounds of the process x wi l l be
a non-negative, discrete random variable. The re-
str ic t ion of the level to the bounds insures that
the observed crossing rate w i l l have a non-zero
variance. Since N is discrete, i t s corresponding

probability density wi l l be a sequence of impulses.
Fig. 1 is an example of an experimentally determined
histogram epproxirr.ation of p (?) ) for sore level u.

Tne probability of observing a particular crossing
rate of that level is equal to the magnitude of the
impulse at that crossing rate. The smaller impulses
which appear alternately represent those observa-
tions in which there occurred an odd number of cros-
sings. In terms of the sample record, the endpoints
were on opposite sides of the level , so that the
number of upcrossings did not equal the number of
downcrossings. As the level approaches the mean, i t
can be expected that, for suff iciently long T, the
probability of observing an odd number of crossings
approaches the probability of observing an even
number of crossings. Thus an envelope of the proba-
b i l i t y density impulses would tend toward a smooth
curve.

I I I . Generation cf the LCP

Figure 2 shows x»(t, T ), a linearly inter-
polated approximation to a signal x ( t ) , sampled
every Ts seconds, and digit ized (denoted by " • " ; at

each sample point to an integer value in the range

0 to 2 ' - 1, Y. representing the number of bits used
ir, the discrete representation. This approximation
to x( t ) is the waveform for which the LCP wi l l
actually be calculated. Once sampling and digit iza-
tion have been performed, the level crossing.-point

flrr.litudes of consf .-l ive senile points is incre-
mented by one. The total n ur.be r o* counts f r r each

level is divided by the tine o f each record to c've
the level crossing count per u-.i* time, cr estimate;
crossing rate.

If a digitized sample point 2t time t ; equals

the value of an assianed level L ; , further enalvsis
j

of the signal may be required. I f thesarple points
\ 1 [ ^ T )at times t\ ̂ and t i + 1 are sue1", that

- Lj]-.* [ i ( t i + 1 , Ts) - U ] < 0, then I. has been

crossed and the count should be incremented. Other-
wise, a minimum or a maximum occurred in the inter-
val of resolution about the level and the decision
to incident the crossing count wi l l depend upon the
round-off or truncation characteristics of the digi-
t izer.

Unlike the histogram approach to arproxir,.5tirc
the probability density function (*>DF) for which
only the amplitude bin in which a sample point oc-
curs is incremented, the LCP algorithm linearly
interoolates between sanT^e points. The difference
in philosophy is due to x. •> fact that the proba-
b i l i t y density function p (u) is a descriptor of i e

relative amount of tine x spends in the interval u,
u + du, whereas the level crossing rate, N is a

measure of the number of times x crosses level u.
Obviously, i f a continuous x(t) lies between u.,

t . and between u. , u,.+, at tine t- , ,u.+, at

with u. < u.+,

crossed levels u.+, through u. at least once between

IJ,+, , then x(t) must have

times t i , tj+j

for each level which has a value between the
I

The probability that each of these

levels was crossed only once approaches one as the
rate of sampling is increased. However, in approxi-
mating Px(u). the relative amount of time x(t)

spends in al l bins between times t . , t-^ is re-
garded as insignif icant, so that only bins with
secple points are considered. This results in a
relatively smooth LCP as opposed to the often jag-
ced histogram approximation of the PDF, as i l lus t ra-
ted in Fig. 3 for a Gaussian process.

The manner with which levels were chosen for
the experiments of this investigation was heuristic.
Some general guidelines which were found to be use-
fol are as follows:

1) Spacing between levels is uniform.
2) The bounds on the amplitude of the leve-U

are chosen such that a l l levfels are
crossed at least once during the training
period, as a necessary condition for im-
plementation of the Kahalenobis distance.

3) Tne number of levels is kept moderate,
typically 15 to 25, to hold computations
involving the pettern recognition tech-
niques to a reasonable amount of time.

As i l lustrated in Fig. < for a pure sine wsve,
level crossing counts wi l l be rissed when the sig-
nal is sampled near the Nynuist rate. I f the e r r i i -
tude of the sine wave is random, then regardless cf
the sampling rate, the expected crossing rate cf the
sampled version w i l l always be less than of the

C <:•:....-?



continuous signal. There will be a missed count
whenever a local maximum of the continous signal oc-
curs above a level while the preceding and following
sample points are below the level. An anologous
statement may be made for a local minimum.

As a general guide to sampling, one approach
is to represent a band-limited signal, x(t), by its
Fourier series. Consider the highest frequency
component, fh, to give the cosine term,

x h ( t ) = a cos (5)

In reference to Fig. 5, as a necessary condition for
sampling, no more than one level may be missed by
the l inearly interpolated, sampled version,
xh Z
then

Fig.
when

I n o t h e r c r o s s e s

n j -

s
(t. T ) must cross L ... It follows from

5 that the shortest sampling time i s required
L If n represents the number of uni-

formly spaced levels of positive amplitude (starting
with n = 0 at the zero level), then the maximum
sampling tine may be given in terns of the number of
levels , such that

1 a r c c o s (Orl). (7)T
s i

This choice of Ts may be smaller than necessary to

ensure that x-(t, T ) meets the .ane condition for

sampling as xh »{t, T ). However, the analysis was

made under worst case assumptions to provide some
general criterion for sampling of any signal.

IV. Classification Approach

Tlie level crossing profile may be represented
as a vector

x. = (8)

where Xj i s the crossing rate [Eq. (3)] of the jth

level by the input signal.
A measure of similarity between a vector x and

the mean vector of the ith class, denoted by/1^-, is

given by [6] C_

D f(x) - U - m. (9)

where superscript "T" denotes transposition, and Ĉ

is the covariance matrix of the ith class. Both m.

and C. may be estimated from the vectors of the

training set [6] .
For the two class case of normal and abnormal,

m and C are estimated for the normal population only
and the class subscripts may be dropped.: Following
training, however, whenever an observation "yields a
value of D(x) greater than

;
some-non-negative ?, the

input is classified as abnormal; otherwisea; deci-
sion of normal is given.: For D ( x ) = ? , a multi-
dimensional e l l ipse , or hyperellipsbid, is-generated
about m,: with -the axes oriented to: the directions of
maximum variance. Consequently, bnlylthose vectors
with coordinates lying within the hyperellipsoid
are designated as normal. For the multiclass case,
m. and C. must be estimated for each class . During

classification, a separate Hahalanobis distance be-
tween the mean of each c lass , m., and the observa-
tion x is to be computed, after which x is assigned
to the class yielding the smallest distance.

Implementation of the Hahalanobis distance i s
optimum when a class possesses a multivariate Gaus-
sian distribution. As illustrated in Fig. 1, the
observed crossing rate may not be Gaussian; however,
the Hahalanobis distance may s t i l l be useful when
the mean and the variance are regarded as s ignif i -
cant descriptors of the probability density.

The threshold, ?, may be selected using one of
several criteria such as a chi-square distribution
[ 9 ] , a maximum-distance calculation using the train-
ing set [9 ] , or receiver operating characteristic
(ROC) curves [12].

V. Experimental Results

The following experiments were conducted to
evaluate the performance of the level crossing/
Mahalanobis distance approach under a variety of
practical conditions.

Reactor Experiment

A signal from a neutron detector taken at the
Oak Ridge National Laboratory High-Flux Isotope
Reactor (HFIR) was analyzed to determine whether
level crossings coufcl be used to detect the addi-
tion o'; a -mall ag&itude noise signal (bandwidth
3.5-4.5 Hz.) aojpsld as a demand to the control rod
servo system. •'Previous investigations of this s i tu-
ation have been carried out elsewhere [J^IO] by
frequency analysis. "7

The signal was lowpass filtered at 10 Hz. and
sampled every 0.008 seconds with 2048 sample points
per observation. Twenty-one levels were selected
for the LCP, spaced throughout the full range of the
signal so that levels were also placed at extreme
amplitudes. There were 1200 LCPs for the training
set and 59 LCPs for the abnormality.

The system classified all the observations
from the training set as normal, and 57 of the 59
abnormal signals were properly flagged as being be-
yond the limits of normal behavior. The c lass i f i -
cation threshold was selected as the maximum
Mahalanobis distance found in the training set .



Two-Phase Flow Experiment

The term two-phase flow refers to the flow o f
two immiscible f l u i ds , which i n th is experiment
happen to have been a i r and water. Three major
types o f flow are often considered: 1) bubbly,
2) s l ug , or/largsibubble,, and 3) annular, where a
r ing o f water surrounds the a i r . The percentage of
a i r w i th in a volume is known as the void f rac t ion .
I t i s o f in teres t i n the nuclear industry to be able
to determinerthe type of f low, the void f rac t ion , or
any other relevant information concerning the f low.
A review o f experimental methods in th is area is
provided by Hewitt and Lovegrove [13 ] .

One of these methods i s the measurement of
the re la t i ve conductivity across the flow. For a
par t i cu la r type of f low, the conductivity decreases
as the void fract ion increases. Shown in Fig. 6 are
some theoretical curves o f the relat ive conductivi-
t y versus void fract ion fo r the three types of flow
mentioned above [14 ] . I f the conductivity and the
type o f flow are known, then i t should be possible
to determine the corresponding void fraction from
the curves.

For th is experiment, measurements of the con-
duc t i v i t y between a pair o f electrodes were obtained
[15] f o r 32, 255, and 50S void fract ions. Figure 7
i l l u s t r a t e s sample voltage waveforms representative
o f the time measurements o f conductivity for the
three void fract ions. Each descending spike i n d i -
cates the immediate presence of an a i r slug or bub-
ble and the depth o f the spike is indicative of the
size o f the slug. The smaller spikes result from
bubbly f low. Each signal i l l u s t ra ted in Fig. 7 i s
the resu l t o f the or ig inal conductivity measurement
having been AC coupled to remove the DC component
f i r s t and then amplified to increase the dynamic
range o f recording. The DC value removed and the
gain employed were d i f ferent for each case. As the
voideyfract ion increased, the DC value decreased,

-s due""to the low overall conduct iv i ty, and the gain
o f each signal increased. Thus, in terms of the
curves o f Fig. 6, each waveform ref lects the a c t i -
v i t y about a mean conductivity l eve l . The magnitude
o f the a c t i v i t y , that i s , the size of any spike, i s
re la t i ve to the individual signal only since the
gains were d i f ferent . The crossing rate at any
level by the descending spikes indicates the number
of a i r slugs of a par t icu lar width or greater which
passed between the electrodes in a unit amount o f
t ime.

A t ra in ing period was established whereby 70
pro f i l es were generated and processed for each class
o f void f rac t ion . The signals were lowpass f i l t e r e d
at 100 Hz. and seventeen levels were chosen, ranging
front -4 to 0. This range was set to ensure cros-
sings o f a l l levels by a l l three signals as a neces-
sary condit ion for the existence of an inverse co-
variance matrix for each class. The estimated mean
LCP o f each class is shown i n Fig. 8. Following
t r a i n i n g , pairwise c lass i f ica t ion was performed on
each LCP o f the t ra in ing se t , whereby a Mahalanobis
distance was computed from the mean of each class to
the LCP. The signal was assigned to the class
y ie ld ing the smallest distance. Figure 9 shows the
three Mahalanobis distances computed for each LCP of
the 3% void f ract ion. Class separation is c lear ly
evident since the distances from the classes of the
255 and 50" void fract ions are one to two orders o f

magnituda greater than the distances from the class
of the 'i% void f rac t ion . Similar results were found
to be val id for the c lass i f icat ion of the LCPs of
the 2555 and 50% void fract ions.
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Figure 1. Probability density of observed level crossing rate. Figure 2. Digitized, linearly interpolated, sampled signal.

Figure 3- Examples of (a) probability density histogram and (b) level crossing profile.
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Figure 4. Missed crossings by sampling near the Nyquist rate. F i g u r e 5. j ^ i crossings by highest frequency component of a random signal.

^ Figure 6. Relative conductivity vs. void fraction curves [14] .
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Figure 7. Conductivity measurements of two-phase flow for void fractions of (a) 3% (b) 25% (c) 50%.
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Figure 8. LCP's for conductivity measurements of two-phase flow for void fractions of (a) 3% (b) 25% (c) 50%.
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Figure 9. Mahalanobis distances to LCP's of 3% void fraction.




