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Ebstract

An investication wes mede of muitilevel cros-
sing rates as a means of time series enalysis of
random signals. Pattern recognition techniques
bzsed on the Mahalanobis distance were implemented
as a means of evaluating the discriminating power of
Tevel crossings. Measurem2nt of multilevel crossing
rates was found to be an easily implementable means
for detection of changes in general frequency con-
tent. Level crossing analysis was also shown to be
applicable for the study of conductivity measure-
rents of twn-phase flow of air and water, where
knowledge of the relztionship between amplitude end
freguency was beneficial in chsracterizing the proc-
ess.

I. Introduction

Multilevel crossing enalysis represents an ap-
proach to interpretation and characterization of
time sicenals by readily relating freauency and am-
plitude information. In particular, measurement oY
@ signal's level crossing rate, defined to be the
nurber of crossings per unit time of a level, yields
information as to the "apparent freguency” associ-
eted with that level. Observation cf the crossing
rates for a number of levels is a procedure that may
be easily implemenied whereby the crossing behavior
may be categorized with respect to the amplitude of
the signal. Regardless of the epplicability of
level crossings, it would not be unreasonable to as-
sume that much of the effort in the literature may
be due to the vast nugber of problems which rem2in
unsolved [1-131._- &

The objective of this investigation was to use
multilevel crossing rates for characterizing random
processes and to use pattern recognition techniques
to distinguish emong level crossing observations.

In general, a finite number of pattern classes are
defined such that a classifier assigns the signal to
one of the classes. The ability of the classifier
to distinguish among classes is based upon the in-
formation cbtained through the processing of semple
data from the classes during a training period.

Two types of signal classification problems
are considered in the following discussion. The

s~ rESearch s sponsored by the 4e? Depariment
of EnéFby under contract witn the Unicn Carbide
Corporation.

7o : -
[ a1 -‘717 [ 7% ERci T L fer L«

b

Joerocatien, Svte iier e £/ GoweR
M ¥

MULTILEVEL CROSSING RATES
FOR AUTOMATED SIGNAL CLASSIFICATION

37916, and

By acceptance of ttus articie, the
publisher or recipient acknowiedges
the U.S. Government’s rignt 1o
retain a nonexclusive, royaily fres
license «n and 10 any copyright
covering the article.

first is the classical surveillence problem in which
nne 15 interested irn classifying an irnput as either
normal or abnormal and the only available samnle
data for training are from the normal sianal.
Therefore, the typical aoproach is to establish
bounds of normal behavior for the signal and to
classify as abnormal any observation outside these
bounds. The second classificetion problem consig-
ered will be referred to as the muiticlass case, in
which sample data for training are available for the
characterization of all defined classes. The task
of the classifier is to assign each observation to
the class whose features most resemble the observa-
tion.

The classification technique emplovecd is the
Mzhalanobis distance, which is 2 measure of simi-
Tarity between an observation and 2 class charac-
terized by the training data. Thus the task of
discriminating multivariate observations is reduced
to evaluation of a scaler quantity. Approprizte re~
strictions are considered in using the Mahalanobis
distance in light of the fact that each observation
is a set of level crossing rates. The Mahalanobis
distance approach has been successfully epplied tc a
variety of problems in the field of surveillance of
nuclear reactors [J4=TB].

{z-/ 0O

1I1. Llevel Crossing for Continuous Randon Processes

The expected crossing rate of level u by a
continuous, stationary, and erogodic random signal,
x(t), is given by [33 (s

L/v H

ﬁh[x; 1] = [m ivlpx’x-ﬁj, v )dv 1)
IRECE
whe 1€ P, x'ﬁ" v) is the joint probebility density
i L4

function of x(t) and the first derivative, x {t).
By the assumption o¢f stationarity, the number of
crocsings during time T is obteined fram

N D7) = 71 [x; 7] {2)

Observation of the number of crossings of level u
during time T by a sample function pravides en esti-
mate of the crossing rate, such that [3]
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i-1 i
1 for [x(———)—u][x(ﬁ-T)-u] <0
m Il
Zu[x;lmi] =

0 otherwise (a)

and m subintervals are defined by

_opi-l i
T © [_E_'T’ m

If an estimate of the crossing rate is obtained for
each member of a set of levels, Eg. (1) may be ap-
proximated by a set of Tevel_crossing rates, called
a level crossing profile £19 ] or.LCPt 4

Since the number of cross1nus of a level must
be a2 non-necetive intecer (finite for any physicaliy
realizable process), the observad crossing rate of
any level within the bounds of the process x will be
2 non-negative, discrete random variable. The re-
striction of the level to the bounds insures that
the gbserved crossing rate will kave a non-zero
variance. Since Nu is discrete, its corresponding

probazbility density will be a2 sequence ot impulses.
Fig. 1 is an example of an experimentally determined
histogram epproximation of DU(NU) for somz level u.

Tne probability of observing a
rate of that level is equal to the magnitude of the
impulse zt that cressing rate. The smaller impulses
wvhich appear alternately reprecent those observa-
tions in which there cccurred an odd number of cros-
sings. In terms of the sample record, the endpoints
werz on opposite sides of the level, so that the

rumber of upcrossings did not eoual the number of
downcrossings. As the Tevel approaches the mean, it
can be expected that, for sufficiently long T, the
probability of c“serv1ng an odd number of crossings
approaches the probability of observing an even
number of crossings. Thus an envelope of the proba-
bility density impulises would tend toward a smooth
curve.

particular crossing

ITI. Generation c¢f the LCP

Figure 2 shows iﬁ(t, 's)’ a linearly inter-

polated epproximation to a signal x(t), sempled

every T seconds, and digitized (denoted by "-"; at
each samp1e point to an integer value in the range
0 to 2 V. representing the number of bits used

in the d1screta representation. This approximation
to x{t) is the waveform for which the LCP will
actually be calculated. Once sampling and digitiza-
tion have been performed, the level crossing:point
for each Tevel which has a vzlue between the (

dec 0f CONSE Lulive scwpl€ points s increl
by one. The total number of counts
1eve1 it divided by the <ime of cech record o give
tre Jevel crossing count per unit time, or estirate:
crossing rate.

If a digitized sample point a2t time L

[ 5
for each

equals

the velue of an asciagned level L., further eznaiysis

the sa :le points

hat [X 3

b
of the signal may be reguired. If

+h T

L ‘]! 5’

&t times ti-] and t1+1 a2re such
- L ] [i(t1+1, T, ) - L. ] < 0, then L has been

crossed and the count should be 1ncrem=n ted. Qther-
wise, a minimum or 2 meximum occurred in the inter-
val ¢f resolution ebout the level and the decision
to increment the crossing count will depend upeon the
round-off or truncation characteristics af the cigi-
tizer.

Unlike the histoaoram approach to soproxinatirc
the prebability density funciion (P2F) for which
only the amplitude bin in which a semple point oc-
curs is incremented, the LCP algorithm linearly
interpolates between sem~'e points. Tne differance
in philosophy is due to 1. fact tnat the proba-
bility density function px(u) ic z descriptor of ¢ e

relative amount of time x spends in the int
u + du, whereas the level crossing rate, Nu

erval u,
is a
measure of the number of times x crosses level u.
Obvicusly, if a continucus x{t) Ties between Uge

£ &9 . 4 N [ Ta
at time i, and between Upr Ui at time tiee

ey then x(t) must have

uj+1
with ui < u, 541 cu <

crossed 1evL1s uj 1 through u, at least once between

K

timas ti‘ The probability that each of these

i+l°
levels was crossed only once epproaches one zs the
rate of sampling is ingreased. However, in approri-
mating px(u , the relative amount of time x{t)

spends in all bins between times ti’ is re-

Y
gerded as insignificant, 5o that only bins with
sgmple points are considered. This results in 2
relatively smooth LCP as opposed to the often jac-
ced histograzm appreoximztion of the PDF, as illus<rz-
ted in Fig. 3 for a Gaussian process.

The manner with which levels ware chosen for
the experiments of this investication was heuristic.
Some gernerzl guidelines which were found to be use-
fil are a5 follows:

1} Spacing between levels is uniform.

} The bounds on the amplitude ¢f the levels
are chosen such that all levels are
crossed at Teast once during the training
period, as a necessary condition for im-
plementation of the Mazhalznobis distance.

3) The number of levels is kept moderate,
tvp1ca11y 15 te 25, to hold conputab1ons
invoiving the pattern recognition tech-
niques to & reasoneble emount of tims.

As illustrated in Fig. & for a pure sine wavs,
level crossing counts will be missed when the s
nal is ;arp1ed near the Nvauist rate. If the grol
tude of the sine wave is random, then regardiec
the <ara11ng rate, the expected croas1ng rate ¢
sampled version wi]] always be less thar of thc

Thou



continuous signal. There will be a missed count
whenever a local maximum of the continous signal oc-
curs above a level while the preceding and following
sample points are below the level. An anologous
statement may be made for a local minimum.

"As a-general’ guide to sampling, one approach
is to represent a band-limited signal, x(t), by its
Fourier series. Consider the “highest frequency
component, f_, to give the cosine term,

% (t) = 2 cos 2nfyt. (6)

In reference to Fig. 5, as a necessary condition for
sampling, no more than one level may be missed by
the linearly interpolated, sampled version,

xh’l(t. Ts). In other words, if xh(t) crosses L,

then xh‘z(t, Ts) must cross L .. It follows from

Fig. 5§ that the shortest sampling time is required
when a = Ln' If n represents the number of uni-

formly spaced levels of positive amplitude (starting
with n = 0 at the zero level), then the maximum
sampling time may be given in terms of the number of
levels, such that

T =<t

S

S n-1
o = 7 arccos (5. (7)

h

This choice of Ts may be smaller than necessary to
ensure that xz(t, Ts) meets the .ame condition for
sampling as x, Z(t’ Tg). However, the analysis was

ade under worst case assumptions to provide some
general criterion for sampling of any signal.

IV. Classification Approach

The Tevel crossing profile may be repreuented
as a vector

where X5 is the crossing rate [Eq. {3)] of the jth
level by the input signal.

A measure of similarity between a vector x and
the mean vector of the ith class, denoted by(ﬁ;, is
given by [6] C

dalic

Di(x) = (x - mi)Tc;1(l - mi) (9}

where superscript "T” denotes transposition, and Ci
is the covariance matrix of the ith class. Both m;

and Ci may be estimated from the vectors of the

training set [6].

For the two class case of normal and abnormal,
m and C are estimated for the normal population only
and -the class subscripts may be dropped.. .Following
training, however, whenever an observaticn yields a
value of D(x) greater than-some:non-negative T, the
input ‘is classified as abnormal; ctherwise-a*deci-
sion.of normal -is given. -For.D{x) =7, a:multi~
dimensional ellipse, or.hyperellipsoid, is.generated
maximum variance. Consequently, only those vectors
with coordinates 1ying within the hyperellipsoid
are designated as normal. For the multiclass case,
my and Ci must be estimated for each class. During

classification, a separate Mahalanobis distance be-
tween the mean of each class, L and the observa-

tion x is to be computed, after which x is assigned
to the class yielding the smallest distance.

Implementation of the Manalanobis distance is
optimum when a class possesses a multivariate Gaus-
sian distribution. As illustrated in Fig. 1, the
observed crossing rate may not be Gaussian; however,
the Mahalanobis distance may still be useful when
the mean and the variance are regarded as signifi-
cant descriptors of the probability density.

The threshold, T, may be selected using one of
several criteria such as a chi-square distribution
[9], a maximum-distance calcuiation using the train-
ing set [9], or receiver operating characteristic
(ROC) curves [12].

Y. Experimental Results

The following experiments were conducied to
evaluate the performance of the level crossing/
Mahalanobis distance approach under a variety of
practical conditions.

Reactor Experiment

A signal from a neutron detector taken at the
Oak Ridge National Laboratory High-Flux Isotope
Reactor (MFIR) was analyzed to determine whether
Tevel cwassings coulg be used to detect the addi-
tion o a cmall itude noise signal (bandwidth
3.5-4.5 Kz.} 2 d as-a demznd to the control rod
servo system. ‘’Previous investigations of this situ-
ation have been carried out elsewhere [{§510] by
frequency analysis. 7

The signal was lowpass filtered at 10 Hz. and
sampled every 0.008 seconds with 2048 sample points
per observation. Twenty-one levels were selected
for the LCP, spaced throughout the full range of the
signal so that levels were also placed at extreme
amplitudes. There were 1200 LCPs for the training
set and 59 LCPs for the abnormality.

The system classified all the observations
from the training set as normal, and 57 of the 5%
abnormal signals were properly flagged as being be-
yond the limits of normal behavior. The classifi-
cation threshold was selected as the maximum
Mahalanobis distance found in the training set.
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Two-Phase Flow Experiment

The term two-phase flow refers to the flow of
two immiscible f1uids, which in this experiment
happen to have been air and water. Three major
types of flow are often considered: 1) bubbly,

2) slug, or large:bubble, and.3) annular, where a
r1ng of water surrounds the air. The percentage of
air within a vu]ume s known .as the void fraction.

1t is of ‘interest in-the:nuclear:industry to be able
to determine the type of flow, the void fraction, or
any other re1evant information concern1ng the flow.
A review of experimental méthods in this area is
provided by Hewitt and: Lovegrove 13].

One of these methods is the measurement of
the relative conductivity across the flow. For a
particular typé of flow, the conductivity decreases
as the void fraction increases. ‘Shown in Fig. 6 are
some theoretical curves of the relative conductivi-
ty versus void fraction for the three types of flow
mentioned above [14]. If the conductivity and the
type of flow are known, then it should be possible
to determine the corresponding void fraction from
the curves.

For this experiment, measurements of the con-
ductivity between a pair of electrodes were obtained
[15] for 3%, 25%, and 50% void fractions. Figure 7
illustrates sample voltace waveforms representative
cf the time measurements of conductivity for the
three void fractions. Each descending spike indi-
cates the immediate presence of an air slug or bub-
ble and the depth of the spike is indicative of the
size of the slug. The smaller spikes result from
bubbly flow. Each signal illustrated in Fig. 7 is
the result of the original conductivity measurement
having been AC coupled to remove the DC component
first and then amplified to increase the dynamic
range of recording. - The DC value removed and the
gain employed were different for each case. As the
vo1d§/fract1on increased, the DC value decreased,
‘due”"to the low overall conduct1v1ty. and the gain
c¢f each signal increased. Thus, in termms of the
curves of Fig. 6, each waveform reflects the acti-
vity about a mean conductivity level. The magnitude
of the activity, that is, the size of any spike, is
relative to the individual signal only since the
gains were different. The crossing rate at any
Tevel by the descending spikes indicates the number
of air slugs of a particular width or greater which
passed between the electrodes in a unit amount of
time.

A training period was established whereby 70
profiles were generated and processed for each class
of void fraction. The signals were lowpass filtered
at 100 Hz. and seventeen levels were chosen, ranging
from -4 to 0. This range was set to ensure cros-
sings of all levels by all three signals as a neces-
sary condition for the existence of an inverse co-
variance matrix for each tlass. The estimated mean
LCP ©f each class is shown in Fig. 8. Following
training, pairwise classification was performed on
each LCP of the training set, whereby a Mahalanobis
distance was computed from the mean of each class to
the LCP. The signal was assigned to the class
yielding the smallest distance.
three Mahalanobis distances computed for each LCP of
the 3% void fraction. Class separation is clearly
evident since the distances from the classes of the
25% and 50% void fractions are one to two orders of

Figure 9 shows the -

magnitudz greater than the distances from the class
of the 3% void fraction. Similar results were found
to be valid for the classification of the LCPs of
the 25% and 50% void fractions.
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Figure 7. Conductivity measurements of two-phase flow for void fractions of (a) 3% (b) 25% (c) 50%.
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