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MULTILEVEL FILTERING ELLIPTIC PRECONDITIONERS*

C.-C. JAY KUOf, TONY F. CHAN:I:, AND CHARLES TONG

Abstract. A class of preconditioners for elliptic problems built on ideas borrowed from the digital filtering
theory and implemented on a multilevel grid structure is presented. These preconditioners are designed to be
both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows for the use of filter
design techniques for constructing elliptic preconditioners and also provides an alternative framework for un-
derstanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess
the convergence behavior of the new methods and to compare them with other preconditioners of multilevel
type, including the usual multigrid method as preconditioner, the hierarchical basis method, and a recent
method proposed by Bramble-Pasciak-Xu.

Key words, filtering, multigrid, multilevel, parallel computation, preconditioned conjugate gradient, pre-
conditioners
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1. Introduction. Preconditioned conjugate gradient (PCG) methods have been a
very popular and successful class ofmethods for solving large systems ofequations arising
from discretizations of elliptic partial differential equations. With the advent of parallel
computers in recent years, there has been increased research into effectively implementing
these methods on various parallel architectures. In this paper, we present a class of pre-
conditioners for elliptic problems built on ideas from the digital filtering theory and
implemented on a multilevel grid structure. Our goal is to work towards preconditioners
that are both highly parellelizable and rapidly convergent.

The idea of preconditioning is a simple one, but it is now recognized as critical to
the effectiveness ofPCG methods. Suppose we would like to solve the symmetric positive
definite linear system Ax b, whereA arises from discretizing a second-order self-adjoint
elliptic partial differential operator. A good preconditioner for A is a matrix M that
approximatesA well (in the sense that the spectrum for the preconditioned matrixM-A
is clustered around and has a small condition number), and for which the matrix
vector product M-Iv can be computed efficiently for a given vector v. With such a
preconditioner, one then solves in principle the preconditioned system .3Y , where, M-I/2AM-1/2, . ml/2x and M-/2b, by the conjugate gradient method.

Since an effective preconditioner plays a critical role in PCG methods, many classical
preconditioners have been proposed and studied, especially for second-order elliptic
problems. Among these are the Jacobi preconditioner (diagonal scaling), the symmetric
successive overrelaxation (SSOR) preconditioner [3], and the incomplete factorization
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404 C.-C. J. KUO, T. F. CHAN, AND C. TONG

preconditioners (ILU [25] and MILU [15]). These preconditioners have been very suc-
cessful, especially when implemented on sequential computers.

In the parallel implementation of PCG methods, the major bottleneck is often the
parallelization ofthe preconditioner, since the rest ofthe PCG methods can be parallelized
in a straightforward way (the only potential bottleneck is the need for innerproducts,
but many parallel computers do support fast inner-product evaluations). Unfortunately,
previous works [12], [16] have shown that for many of the classical preconditioners,
there is a fundamental trade-off in the ease of parallelization and the rate ofconvergence.
A principal obstacle to parallelization is the sequential manner in which many precon-
ditioners traverse the computational gridthe data dependence implicitly prescribed by
the method fundamentally limits the amount of parallelism available. Reordering the
grid traversal (e.g., from natural to red-black ordering) or inventing new methods (e.g.,
polynomial preconditioners 2 ], 19 to improve parallelization usually has an adverse
effect on the rate of convergence 12 ], 23 ].

The fundamental difficulty can be traced to the global dependence of elliptic prob-
lems. An effective preconditioner must account for the global coupling inherent in the
original elliptic problem. Preconditioners that use purely local information (such as red-
black orderings and polynomial preconditioners) are fundamentally limited in their ability
to improve the convergence rate. On the other hand, global coupling through a natural
ordering grid traversal is not highly parallelizable. The fundamental challenge is therefore
to construct preconditioners that maintain global coupling and are highly parallelizable.
Ideas along this line have ofcourse been explored in the development ofmultigrid methods
as solution 10 ], 17 as well as preconditioning techniques 20 ], 21 ], and the more
recently proposed hierarchical basis preconditioner 8 ], 29 ].

We are thus led to the consideration of preconditioners that share global information
through a multilevel grid structure (ensuring a good convergence rate) but perform only
local operations on each grid level (and hence highly parallelizable). Compared with a
purely multigrid iteration, we have more flexibility in terms of the choice of inter- and
intragrid level operators (such as interpolation, projection, and smoothing), since we are
using the multilevel iteration within an outer conjugate gradient iteration. One precon-
ditioner of this type has been proposed recently by Bramble, Pasciak, and Xu [9] and
Xu 28]. The methods that we propose in this paper are quite similar to their precon-
ditioner, and our digital filtering framework can be looked at as providing an alternative
view oftheir method. It also allows the flexibility in deriving several variants. The approach
taken in this paper and that of Bramble, Pasciak, and Xu differs from that of multigrid
methods in that the smoothing operation in multigrid methods is replaced by a simple
scaling operation. Other types of multilevel preconditioners have been studied by Vas-
silevski 27 ], Axelsson and Vassilevski 6 ], 7 ], Kuznetsov 24 and Axelsson 4 ].

The outline ofthe paper is as follows. In 2, we describe our framework for deriving
multilevel filtering preconditioners for a model problem on a single discretization grid.
The basic framework is then extended to the multigrid discretization case in 3. In 4,
we briefly survey several other preconditioners of the multilevel type. Numerical results
for (model, variable coefficient, and discontinuous coefficient) problems in two and three
dimensions are presented in 5, comparing the performance of several multilevel pre-
conditioners, including the usual multigrid method as a preconditioner, the hierarchical
basis preconditioner, and the method of Bramble-Pasciak-Xu. Some brief concluding
remarks are given in 6.

We note that the main emphasis ofthe present paper is on the convergence behavior
ofthese multilevel preconditionersno attempt is made to assess their parallel efficiency.
That will be the subject of a forthcoming paper.
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MULTILEVEL FILTERING PRECONDITIONERS 405

2. Multilevel filtering preconditioners: Fundamentals.
2.1. Motivation. Consider the one-dimensional discrete Poisson equation on

[0, 1] with zero boundary conditions on a uniform grid fh,

(2.1) 1-E- un=f, n =1,...,N-I,

where N h- 2 L, with integer L > 1, and E is the shift operator on 2h. We denote
the above system by

Au =f,

where A, u, and f correspond, respectively, to the discrete Laplacian, solution, and
forcing functions. Clearly, A is a tridiagonal matrix with diagonal elements -1/2, and-. It is well known that the matrix A can be diagonalized as

(2.2) A WTAAW,
where AA is a diagonal matrix

diag (X, , Xu- ), cos (kh),

and W is an order (N- )2 ohogonal matrix whose kth row is

(2.3) w= (sin (kh), sin (knh), sin (k(N- 1)h)).

The diagonalization of the matrix A can be intereted as the decomposition of the
driving and solution functions into their Fourier components, i.e.,

a u sin (knh), sin (knh),
n=l n=l

k= 1,2, ,N-1.

One can easily verify that and are related via

A(I=, = ,, ,- ,
where

(2.4) (k)= Xk cos (krh),

is known as the spectrum of the discrete Laplacian.
In order to invert A, we can make use of (2.2) and obtain a fast Poisson solver:

(2.5) A-l WrAS W.

The above procedure also serves as the general framework for fast Poisson solvers in
cases of higher dimension. However, fast Poisson solvers are not generally applicable for
nonseparable elliptic operators and irregular domains. Instead, we want to find good
approximations to this solution procedure that are extensible to more general problems
and then use them as preconditioners. The fundamental idea is to avoid the use of fast
Fourier transform (FFT) and to use instead a sequence of filtering operations to ap-
proximate the desired spectral decomposition. This explains the motivation and the name
of the multilevel filtering (MF) preconditioner proposed in this paper.

Our main idea for deriving the MF preconditioner for A is to divide all admissible
wavenumbers into bands and to approximate the spectrum 4 (k) at each band with some
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406 C.-C. J. KUO, T. F. CHAN, AND C. TONG

constant. To be more precise, consider the following piecewise constant function in the
wavenumber domain

where

P(k)=Cl, k-Bl, <=I<=L,

BI ={k:2/-<=k<2 and krI},
is the/th wavenumber band. Let Ae be the diagonal matrix with P(k) as the kth diagonal
element, i.e.,

Ae diag (P(1),P(2), ,P(N- )),

and P WTAeW. Then, the P-preconditioned Laplacian becomes

P-A WTAp-A W,
where

Ap_,A=(Ap)_IAA= diag(Xl 2 k3 21-1 21-1 kN-I)Cl C2 C2 Cl Cl CL

The question is how to choose appropriate Cl’S to reduce the condition number K(P-I A).
Suppose that we can find Cl’S so that

C1 k__ C2, ke Bt, L,
Cl

where CI and C2 are positive constants independent of h. Then, P and A are spectrally
equivalent. There are many ways to achieve this goal. For example, we can choose any
eigenvalue X within band Bl to be the constant ct. For the following discussion, let us
consider the choice,

(2.6) c/=4-- )

The ratio ofA(k) and (k) is then bounded by

4z- [1 cos (2-z+t-w)]-(k)A(k)<4z-t[1 cos (2-z+tr)],
for k Bl. The largest and smallest values of-(k)A(k) for k B are bounded. They
are, respectively,

2

Xmax (P-A)=maxfi-(k)A(k)< max 4-[1-cos(2-z+tr)]<,k llL

and

kmi (p-lA)=minP-(k)A(k)>= min 4L-/[1--COS(2-L+/-17r)]>_-- 1.
k I_I-<L

Note that the last inequalities in the equations above hold independent of L, or equiv-
alently, the grid size h. Thus, the condition number K of the preconditioned operator
P-A is bounded by a constant

r 2

r(p-IA) <-, 4.93.

We plot the spectra A(k), P-(k), and P-l(k)A(k) in Fig. 2.1 for N h- 256 with
cl defined in (2.6).
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FIG. 2.1. Spectra ofA, P- and P-A.

2.2. Decomposition and synthesis based on filtering. The preconditioning procedure

(2.7) p-lr= WTA,1Wr,
consists ofthree building blocks: decomposition, scaling, and synthesis. The construction
of these building blocks with ideal digital filters will be discussed in this section.

Let us rewrite (2.7) as

(2.8) P-r= WW r,
l= cl

where Wt, <= l <- L, are (N- )2 square matrices which have the same 2 t-1 to 2t-

rows as Wand zero vectors for remaining rows. Ifwe implement l/Vt and Wr in decom-
position and synthesis respectively, FFT and inverse FFT are needed. This is due to the
fact that Wt is a mapping from the space domain to the wavenumber domain, whereas
Wf is a mapping from the wavenumber domain to the space domain. By perform-
ing P-r according to (2.8), we are led to an algorithm similar to the fast Poisson
solver (2.5).

Let Ft WfWt. Then, Ft is a mapping from the space domain to the space domain.
In addition, we have

F W rAF,W,
where AFt is a diagonal matrix whose kth element is

1, kBt
(k)=

O, otherwise.
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408 C.-C. J. KUO, T. F. CHAN, AND C. TONG

The spectral property of FI is characterized by l(k). A digital filter is a mapping from
the space domain to the space domain satisfying a certain spectral property. Since FI
passes Fourier components in band Bl and blocks components in other bands, it is called
a bandpass filter. We might perform the preconditioning (2.8) by implementing Fl’S
with digital filters in decomposition and a simple addition operation in synthesis. However,
the resulting scheme loses a certain symmetrical property in decomposition and synthesis.
This turns out to be important in the multigrid context (see 3).

This motivates us to write (2.7) in another form as

/=1

where bandpass filters F (= F]) are implemented in both decomposition and synthesis
building blocks. In the context of multirate signal processing [13 ], the separation of a
function into several components, each of which is confined to a narrow wavenumber
band, is known as the filter bank analyzer and the reverse process is the filter bank
synthesizer. Although there exist many ways to implement the filter bank analyzer and
synthesizer, a simple design illustrated by the block diagram of Fig. 2.2 will be sufficient
for our purpose. This design, called the single-grid multilevel filtering (SGMF) precon-
ditioner, is based on the cascade of a sequence of elementary filters H, H_ 1, H,
where the function ofH is to preserve Fourier components contained in bands Bl,
Bl- and to eliminate Fourier components contained in band B. In terms ofmathematics,
we define

(2.10a) Hi W rikt,W,
where Am is a diagonal matrix with the kth element

1, k6B1U tO BI_
(2.10b) (k)=

0, kBl.

FIG. 2.2. Block diagram ofthe MF preconditioner with a single discretization grid SGMF).
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MULTILEVEL FILTERING PRECONDITIONERS 409

From Fig. 2.2, we see that the filters Ft are related to the filters Ht via

(2.1 la) FI=I-HI,

(2.11b) F=(I-H) 1-I H, 2<-_l<-L 1,
p=/+l

L

1-I

It is easy to verify that F’s satisfy the desired bandpass characteristics by pre- and post-
multiplying (2.11 with W and W r, respectively. Note also that the values oft(k) for
k e B+ U U B do not influence the bandpass feature of F’s. This observation
simplifies the design ofH’s (see 2.3).

To save computational work, we can further simplify the SGMF preconditioner in
Fig. 2.2 by deleting the paths and the associated work corresponding to I- H. As given
in Fig. 2.3, we have the modified SGMF preconditioner

(2.12) Q-lr= -5-GGt r,
/=1

where

Gt I-i Hp, for <=I<=L 1.
p=l+l

Note that bandpass filters Ft in the preconditioner P have been replaced by lowpass filters
Gl in the preconditioner Q. By choosing dt’s appropriately, we can make Q behave the
same as P. With the preconditioner Q, Fourier components of band B exist in the first
L + levels and these components are multiplied by dZ l, ..., d7 l, respectively.
Therefore, the scaling constants dt’s are implicitly defined via

L

(2.13) Z di c!

Solving (2.13 for dt gives

(2.14) dL=cz and dl=c?l--c-tl I=L-1,’",I.

However, we observe from numerical experiments that the parameter sets { ct } and { dt}

r HL

FIG. 2.3. Block diagram ofthe modified SGMF preconditioner.
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410 C.-C. J. KUO, T. F. CHAN, AND C. TONG

used in Fig. 2.3 give about the same convergence rate. This can be explained by the
observation that, for small l, dl cl, since c- > c-+ .

2.3. Design of elementary filters. Consider the design of the filter H. appearing at
the first stage. The HE have the following ideal lowpass characteristic,

.(k)-{l’ 0_-<k<2-(2.15)
t 0, 2E-_-<k_-<2 E.

From (2.10), we find that HE is an (N- )2 full matrix. Thus, the operation HEY for
an arbitrary vector v has a complexity proportional to O(N:). This is too expensive to
perform. Therefore, we seek the approximation of the ideal lowpass filter HE with a
nonideal lowpass filter^HE,2, which is a symmetric band matrix ofbandwidth O(J)with
the spectral property HE,2(k) .(k) for =< k =< N- 1. Consequently, the operation
HE,2V only has a complexity proportional to O(JN).

Let us write the nonideal lowpass filter of the form
J

(2.16) HE,2=a0+ a2(E+E-2),
j=l

where the coefficients a0 and aj’s are to be determined. In order to define the operation

J

HE,jV, ao + , a(v + + 1)n -j)
j=l

for any vector Vn appropriately, the odd-periodic extension of v, is assumed,

v_, -v and v, + 2pU-- l)n, for integer p.

This implies that HE,j corresponds to a circulant matrix. The above odd-periodic as-
sumption is used only for analyzing and designing Hl,s’s in this section. The actual
implementation of the MF preconditioner with a multigrid discretization described in
3 does not rely on this assumption.

There are numerous ways to determine the coefficients a0 and a’s depending on
what approximation criteria are to be used. The operator HE,j has the eigenfunction
sin (kTrnh) with the eigenvalue

J

E,J(k) a0 + 2 aj. cos (krjh).
j=l

Here we consider a class of lowpass filters based on the following two criteria:

/E, and E,(k) E,(N- k)

(2) HE,(0) and the first jth derivatives _-<j_-< J) of E,(0) are all zero.
The first criterion implies that the function /E,(k) 1/2 is odd symmetric with respect
to k N 2. A direct consequence of this criterion is that

a0 and a 0, j positive even.

The second criterion, called the maximallyflat criterion 18 ], requires the approximation
at the origin to be as accurate as possible. It is used to determine aj with odd j. In Table
2.1, we list coefficients a for J 1, 3, 5 obtained according to criteria and (2) and
plot their spectra in Fig. 2.4 with N 28 256. The larger J becomes, the better the
approximation is.
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MULTILEVEL FILTERING PRECONDITIONERS 411

TABLE 2.1
Coefficients ofa class ofnonideal lowpass filters.

J ao a a3 as

0 0

-1
3 3" 3"" 0

50 -25
5 -- --

As illustrated in Figs. 2.2 and 2.3, the low wavenumber band of the function r is
used as the input to the filter HL- at the next stage. The filter H,_ can be constructed
with the same set of coefficients used by Hz, i.e.,

J

(2.17) Hz__,j=ao+ aj(E2J+E-2J).
j=l

Comparing (2.16) and (2.17), we see that the only difference between HL,j and
HL_ ,j is the position of grid points used for averaging. For the first-stage filter Hz,j,

local averaging is used. For the second-stage filter Hz_ ,j, we consider averaging between
points separated by 2h. This design is due to the following reason. From (2.17 ), we see
that the filter H,_ l,J has the spectrum

J

/L_ ,j(k) ao + 2 aj cos (krj2h ),
j=l

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

characteristics for ideal and nonideal lowpass falters.. --5","".. iideal

’,.

50 1 150 200 250

wavenumber

FIG. 2.4. Spectra ofmaximallyfiat lowpass filters HL,j with J 1, 3, 5.
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412 C.-C. J. KUO, T. F. CHAN, AND C. TONG

and that L-,J(k) is related to L,j(k) via

L ,J(k) L,J(2k).
Consequently, for functions consisting only of components in low wavenumber region

-< k < 2- z_ behaves like a lowpass filter, which preserves components in the
region -< k < 2 2 and filters out components in the region 2 2 _< k < 2L- 1. However,
note that Ht, < L is not a lowpass filter with respect to the entire wavenumber band.

By applying the same procedure recursively, we can approximate the general ele-
mentary filter Ht on a uniform infinite grid as

J

(2.18) H,s=ao+ aj(E2"-9+E-2L-9), 2<=l<=L,
j=l

where the coefficients aj’s are listed in Table 2.1. The spectrum of Hl,s is

J

(2.19) I,j(k)=ao+2 acos(krj2-h), 2<=l<=L.
j=l

According to (2.11 ), we can construct nonideal bandpass filters Ft,s with nonideal ele-
mentary filters Hz,j,

(2.20a) F,j I- H,,

(.Ob f,=(I-g,l I-[ /-/, =<l=<;-1,
p=/+l

0.5

0.4

0.3

0.2

0.1

0
0 100 150 200

wavenumber

FIG. 2.5. Spectra ofilL, s, I HI-,j and F_,s with J 1.
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L

(2.20c) F,j I-[ Hp,j.

p=2

To give an example, the construction of FL- ,j with J is illustrated in Fig. 2.5. Note
that the elementary filter H,j given by (2.18) is symmetric. So is the bandpass filter
Ft,j. Finally, we obtain the nonideal MF-preconditioner

(2.21 P2 r F,F, r,
l= cl

which approximates the ideal MF-preconditioner P given by (2.9).
It is worthwhile to summarize the similarities and differences between the fast Poisson

solver (2.5) and the SGMF preconditioning (2.21). They are both based on spectral
decomposition. The fast Poisson solver decomposes a function into its Fourier components
through the FFT, whereas the MF preconditioner approximately decomposes it into a
certain number ofbands through filtering. The filtering operations, which correspond to
local averaging processes, can be easily adapted to irregular grids and domains and variable
coefficients. In contrast, the FFT is primarily applicable to constant coefficient problems
with regular grids and domains. Besides, for the fast Poisson solver we usually require
detailed knowledge of the spectrum. But for the MF preconditioner we have only to
estimate how the spectrum varies from one band to another.

2.4. Fourier analysis and higher-dimensional cases. Since the MF preconditioner
Pj and the Laplacian A share the same eigenvectors, i.e., Fourier sine functions, the
spectrum and condition number of the MF-preconditioned Laplacian can be analyzed
conveniently by Fourier analysis. From (2.20), we have the following spectral relationship

(2.22a) PL,j(k) z,j(k),

(.b ,(cl=(l-,(c 1-I B,(I S-l,
p=/+l

L

(.c PI,( ,(,
=2

where ,(k), N N L, are given by (2.19). Using (2.4), (2.6), and (2.22), we can
determine the eigenvalues of p21A,

f,(,(lA(l.
=c

The eigenvalues X(P2A)are plotted as a function ofk with J 1, 3, 5 and h -1 256
in Fig. 2.6. We should compare these spectra with that in Fig. 2.1 based on the ideal
filtering assumption. All of them have one common feature. That is, eigenvalues are
redistributed in such a way that there exist many local maxima and minima. The condition
numbers for J 1, 3, 5 are 2.50, 1.88, and 1.93, respectively. Note that these numbers
are in fact smaller than the condition number 4.93 obtained with ideal filtering. The
precise reason for this phenomenon is still not clear to us. It might be related to the
smoothness of the eigenvalue distribution curves. The eigenvalue distribution for P-A
in Fig. 2.1 has many keen edges. However, these edges are smoothed by nonideal digital
filters as shown in Fig. 2.6.

The generalization ofthe MF preconditioner to two- or three-dimensional problems
on square or cube domains can be done straightfoardly. For example, we may construct
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1.4

1.2

1

0.8
100

wavenumber

FIG. 2.6. Eigenvalues ofP-jA with J 1, 3, 5.

the two-dimensional elementary filter by the tensor product of one-dimensional elemen-
tary filters along the x- and y-directions,

2L-lj L-
Ht,j ao + aj(Ex- + E-2 z.- tj X ao + ., a(Ey + E_2 lj

j=l j=l

which can be further simplified by using operator algebra [14 ]. For example, the coef-
ficients for H, can be written in stencil form as

21

Hz,’-7 2 4 2.(2.23)
I0 2

Similarly, the three-dimensional elementary filter can be obtained by the tensor product
of three one-dimensional filters along the x-, y- and z-directions.

The condition numbers of one-, two-, and three-dimensional MF-preconditioned
Laplacians with two types of nonideal filters (J and J 3 are computed and plotted
as functions of the grid size h in Figs. 2.7 (a) and (b). These figures show that Pj and A
are spectrally equivalent.

The discussion in 2.3 is based on the odd-periodic property of the sequence V.
However, this may not be easily implementable for general multidimensional problems
with nonrectangular domains. The difficulty arises when the size of Ht,j is so large that
it operates on points outside the domain. There are two possible solutions. It may be
preferable to construct filters of larger size by the repeated application of filters of smaller
size. For example, we can apply the filter HI,j (2.16 with J twice. This is equivalent
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10:
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FIG. 2.7. Condition numbers ofthe MF-preconditioned Laplacian with (a) J and (b) J 3.

to a filter of size 5,

H2,1=(1 11 )2 1E_2E-I++E =- 3 E2+-E-1-F- +-E+-
Another possibility is to apply smaller filters at points close to boundaries and larger
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filters at points far away from boundaries. Note also that, for fixed J, the size of the
elementary filter H,j increases as decreases. However, this problem can be resolved by
incorporating the multigrid discretization structure into the above multilevel filtering
framework as described in 3.

3. Multigrid multilevel filtering (MGMF) preconditioners. In 2, we discussed
the construction of the MF preconditioner for the model Poisson problem based on a
single discretization grid. This section will discuss the generalization ofthis preconditioning
technique so that it can be implemented more efficiently and applied to more general
self-adjoint elliptic partial differential equation (PDE) problems.

The filtering operation described above is performed at every grid point at all levels
2 =< _-< L. Since there are O(log N) levels and O(JN) operations per level, where N and
J denote, respectively, the order of unknowns and the filter size, the total number of
operations required is proportional to O(JN log N). However, since waveforms consisting
only of low wavenumber components can be well represented on coarser grids, we can
use the multigrid philosophy [10], [17] and incorporate the multigrid discretization
structure into the filtering framework described in 2. That is, we construct a sequence
of grids f/of sizes h/= O(2-), =< =< L, to represent the decomposed components.
Then, the total number of unknowns is O(N) and consequently the total number of
operations per MF preconditioning step is O(JN). Note that J is a constant independent
of N.

The block diagram of the multigrid multilevel filtering (MGMF) preconditioner is
depicted in Fig. 3.1. It is obtained by inserting down-sampling (I-1) and up-sampling
(I_ ) operators into the SGMF preconditioner. With the notation commonly used in
the multigrid literatures, the down-sampling and up-sampling operators for grids ft/
(h 2L-h) and

_
(h_ 2L-+ lh) can be defined as

0 0 0[l-I 0 0 0l

0 0 0 0 0 0/_

It is easy to verify that a lowpass filter followed by a down-sampling operator is the same
as the restriction operator in MG methods, whereas an up-sampling operator followed
by a lowpass filter is equivalent to the interpolation operator [22 ].

Given a sequence of grids 2, =< l =< L, down-sampling (I+1) and up-sampling
(I+ operators between grids ft and ftl + 1, and appropriate elementary filters Hi defined
on fl, the algorithm corresponding to the block diagram given by Fig. 3.1 can be sum-
marized as in Table 3.1.

TABLE 3.1
Computation ofM-r.

Decomposition:
1)L r,
for/-L- 1,...,
Ol :"- I+Ht+tvt+,

Scaling:
for/=L,...
wt := vdi

Synthesis:
S :: W
forl=2,...,L
st := wt + HI_ s_
M-r :=

This is the MGMF algorithm implemented in 5.
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FIG. 3.1. Block diagram ofthe modified MGMF preconditioner.

The preconditioning M-r can be viewed as a degenerate multigrid method, for
which we have a sequence of restriction and interpolation operations but where the error
smoothing at each grid level is replaced by an appropriate scaling. This observation leads
us to generalize the MF preconditioner to the case of nonuniform grids commonly ob-
tained from the finite-element discretization. That is, one can view projection as decom-
position and interpolation as synthesis and any multigrid method can be used as an
MGMF preconditioner ifwe replace the potentially more expensive error smoothing by
a simple scaling. It is well known that the eigenvalue ),k in band Bt (see 2.1 behaves
like O(h-2), where ht describes approximately the grid spacing for level l[9 ]. Therefore,
a general rule for selecting the scaling constant ct at grid level is

Cl O( h-i-2 ).

This generalized version is closely related to the preconditioner by Bramble, Pasciak,
and Xu [9 ]. They derived their preconditioner in the finite-element context discretized
with the nested triangular elements. From our filtering framework, the corresponding
elementary filter HL takes the form

0
(3.1) Hi,sex" - 2

O 0

which is different from H, given by (2.23). We can derive other filters from (3.1) by
applying it more than once. For example, by applying it twice, we get

(3.2) Hi,rBex’-;--;
04

0 0 2
0 2 6 6 2

6 10 6
2 6 6 2 0

2 0 0

In order to eliminate the directional preference, we can apply (3.1) in alternating directions
to give a symmetric filter:

(3.3) HI,Aoex" 7-;

0 2 0
4 6 4

2 6 8 6 2
4 6 4

0 2 0

The MF preconditioner is designed to capture the spectral property (or h-depen-
dency) of a discretized elliptic operator but not the variation of its coefficients. This is
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also true for the hierarchical basis and BPX preconditioners. In order to take badly scaled
variable coefficients into account, we use the MF preconditioner in association with
diagonal scaling in our experiments [16 ]. The diagonal scaling is often used for cases
where the diagonal elements of the coefficient matrix A vary for a wide range. Suppose
that the coefficient matrix can be written as

A=D1/2D1/2

where we choose D to be a diagonal matrix with positive elements in such a way that
the diagonal elements of are of the same order, say, O(1). Then, in order to solve
Au f, we can solve an equivalent problemA f, where D1/Zu andf D-I/zf,
with the MF preconditioner. There exist other ways to incorporate the coefficient infor-
mation into preconditioners ofthe multilevel type, say, to use the Gauss-Seidel smoothing
suggested by Bank, Dupont, and Yserentant [8 ].

4. Brief survey of multilevel preconditioners. In this section, we very briefly survey
other multilevel preconditioners that have been proposed in the literature and their re-
lationships to one another.

4.1. Multigrid preconditioner (MG). A natural choice for a multilevel precondi-
tioner is to use a fixed number ofcycles ofa conventional multigrid method. This approach
was explored early on in the development of multigrid methods [20 ], [21]. The basic
operations on each grid are interpolation, projection, and smoothing operations, each of
which can be easily designed to be highly parallelizable. For example, in the V-cycle
strategy, each grid is visited exactly twice in each preconditioning step, once going from
fine to coarse grids and once coming back from coarse to fine. However, for highly
irregular problems, such as singularities in the solutions due to reentrant corners and
highly discontinuous coefficients, it is not clear how to choose the smoothing operations
and the performance can deteriorate.

4.2. Hierarchical basis preconditioner (HB). Another preconditioning technique
of multilevel type is the hierarchical basis method [8 ], [29 ]. The name refers to the
space of hierarchical basis functions defined on the grid hierarchy. The usual nodal basis
functions are used except that those defined at grid points on a given level which also
belong to coarser levels are omitted. Let the hierarchical basis functions be denoted by
/. where l denotes the grid level andj the index ofthe basis function on that level. Then,J,

the action of the inverse of the hierarchical basis preconditionerM on a function v can
be written as,

j

which takes the discretized form SSTv, and can be computed by a V-cycle with the matrix
ST corresponding to a fine-to-coarse grid traversal and S to a coarse-to-fine traversal. On
each level, only local operations are performed. In two dimensions, the condition number
ofthe preconditioned system can be shown to grow like O(log 2 h -1 ), which is very slow.
Unfortunately, this nice property is lost in three dimensions, where the growth is O(h -1

[26], [29]. However, these theoretical results are proven under much weaker regularity
assumptions than for the multigrid methods. Moreover, the computational work per step
is O(h -1 even for highly nonuniform and refined meshes. For numerical experiments
on parallel computers, see [1], [16].

4.3. Method by Bramble-Pasciak-Xu (BPX). Very recently, Bramble-Pasciak-
Xu [9], [28] proposed the following preconditioner for second-order elliptic problems
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in Ra:

E E (v,
j

where 4 are the nodal basis functions and ht is the measure of the mesh size at grid level
l. Since the form of their preconditioner is similar to that for the hierarchical basis
preconditioner, the computations can be arranged in a similar way via a V-cycle. They
proved that the condition number of the preconditioned operator can be bounded by
O(log h -l for problems with smooth solutions, by O(log - h- for problems with crack
type singularities, and by O(log h -1 for problems with discontinuous coefficients. In
3D, this is a significant improvement over the hierarchical basis preconditioner.

4.4. Algebraic multilevel preconditioners (AMP). Vassilevski [27] proposed a dif-
ferent approach to derive multilevel preconditioners. He used the standard nodal basis
functions and a multilevel ordering of the nodes of the discretization, in which nodes at
a given level belonging to a coarser grid are ordered after the other nodes. He then
considered an approximate block factorization of the stiffness matrix in this ordering, in
which the Schur complement at a given grid level is approximated by iteration with the
preconditioner of the stiffness matrix recursively defined at the current level. He showed
that, with one iteration at each level, the condition number ofthe preconditioned system
can be bounded by O(log h -1 ). A similar method has been proposed by Kuznetsov 24 ].
Later, Axelsson-Vassilevski [6], [7] improved this bound to O(1) by carrying out re-
cursively more (Chebyshev) iterations with the preconditioner at each level. Axelsson
4 also showed that the same technique can be applied when hierarchical basis functions
are used instead ofthe nodal basis. Note that when the number of iterations at each level
exceeds 1, the grid traversal differs from all the previously mentioned V-cycle based
methods. At this time, we have not included non-V-cycle type preconditioners in our
numerical comparisons but plan to do so in the future.

4.5. Relationship among multilevel preconditioners. As can be seen from the dis-
cussion above, there are similarities among various multilevel preconditioners. Most of
the multilevel preconditioners are in the form of a multigrid V-cycle (MG, HB, BPX,
and MF, but not AMP). The MF preconditioner is very similar to the BPX method.
The MF method allows some flexibility in the choice of filters (basically any multigrid
residual averaging operator can be used) and does not depend on the use of a finite-
element discretization with nested nodal basis functions. It also allows a single grid (i.e.,
nonmultigrid) version which may better suit massively parallel architecture computers.
On the other hand, the finite-element framework allows an elegant proofofthe asymptotic
convergence behavior for rather general problems as is done in [9], [28], whereas the
filtering framework is rigorously provable for constant coefficient model problems only
(although much more detailed information can be obtained for them).

Finally, it is interesting to compare these preconditioners with the conventional
multigrid method. Several of the preconditioners have the same form of a conventional
multigrid cycle, except that the smoothing operations are omitted. For less regular prob-
lems where a good smoothing operator is hard to derive and could be quite expensive,
one step ofthese preconditioners can be substantially less expensive than a corresponding
step ofthe multigrid iteration. In a sense, one can view these preconditioners as efficiently
capturing mesh size-dependent part of the ill-conditioning of the elliptic operator and
leaves the other sources of ill-conditioning (e.g., discontinuous coefficients) to the con-
jugate gradient iteration. The combination of multigrid and conjugate gradient holds the
promise of being both robust and efficient. However, to get a spectrally equivalent pre-
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420 C.-C. J. KUO, T. F. CHAN, AND C. TONG

conditioner, it seems that one must go beyond the V-cycle and perform more iterations
on each grid as in the AMP method.

5. Numerical experiments. In this section, we present numerical results for two-
and three-dimensional test problems to compare the convergence behavior and the
amount of work needed for various preconditioners. The preconditioners imple-
mented are:

HB:

MG(i, i)"

BPXI"
BPX2"

BPX3"

MGMFI"

MGMF2:

MGMF3:

RIC:

hierarchical basis preconditioner using linear elements for two-dimensional
and trilinear elements for three-dimensional problems,
multigrid preconditioner with one V-cycle, where is the number of pre-
and post-smoothings,
the BPX preconditioner for two-dimensional problems (HL given by 3.1 )),
a modified version ofBPX preconditioner by filtering twice for two-dimen-
sional problems (HL given by (3.2)),
another modified version ofBPX preconditioner by filtering twice but using
linear elements of different orientations for two-dimensional problems (HL
given by (3.3)),
the MGMF preconditioner with the 9-point (2.23) or 27-point filter for two-
and three-dimensional problems, respectively,
a modified version ofMGMF preconditioner in which the 9-point (or 27-
point) filter is applied twice,
another modified version of MGMF preconditioner in which the 9-point
(or 27-point) filter is applied once at the finest grid level (to have a smaller
amount of work compared to MGMF2) and twice at other grid levels (to
achieve a faster convergence rate compared to MGMF1 ),
the relaxed incomplete Cholesky preconditioner 5 is included for the pur-
pose of comparison. For the relaxation factor, we use the optimal value
w 8 sin 2 (.h/2) from [11]. The number of iterations required for RIC
can be bounded by O(nl/2).

The preconditioning operation counts for each method, for two- and three-dimen-
sional problems are given in Tables 5.1 and 5.2, respectively. These operation counts
include addition, multiplication, and division (each is counted as one operation), but
exclude overhead such as condition checking and data copying. The non-preconditioning
operation counts required per PCG step for two-dimensional problems are 21N, which
include 6N for three inner products (one more inner product than the basic CG step,
since we use the relative residual norm for convergence check), 6N for three SAXPY

TABLE 5.1
Work per iteration for preconditioners (2D).

Preconditioner Operation count per iteration

RIC 9 N
HB 7 N
MG(I. 1) 38 N
BPX 8 N
BPX2 26 N
BPX3 26 N
MGMFI 9 N
MGMF2 27 N
MGMF3 15 N
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TABLE 5.2
Work per iteration for preconditioners (3D).

Preconditioner Operation count per iteration

RIC 13 N
HB 8 N
MGMFI (BPXI) 9 N
MGMF2 (BPX2) 32 N
MGMF3 12 N

operations, and 9N for one matrix vector product. Similarly, the non-preconditioning
operation counts per PCG step for three-dimensional problems are 25N.

From Table 5.1, we observe that the operation counts per iteration for BPX and
MGMF1 are much less than that of the MG( 1, preconditioners, because the former
preconditioners do not need smoothing, which is expensive. In general, for two-dimen-
sional problems, MG(i, i) preconditioner takes (38 + 32 (i ))N operations. For
example, MG(3, 3) preconditioning requires 102N operations. Also note that the ap-
plication of filtering twice requires about three times the work of filtering once. This is
because by filtering twice the filter stencil is extended from 9-point to 25-point (about
three times as many points).

For three-dimensional problems, the operation count for BPX1 (BPX2) precon-
ditioning using trilinear elements is the same as for the MGMF1 (MGMF2) precondi-
tioning as shown in Table 5.2. The MG preconditioner has not yet been implemented
for three-dimensional problems.

For all test problems, we use the standard 5- (or 7-) point stencil on a square (or
cubic) uniform mesh with h n- and N (n )2 (or N (n )3), zero boundary
conditions and zero initial guesses. Experimental results are given for different values of
h and the stopping criterion is rll ! rll --< 10-6. Diagonal scaling is always used except
for RIC. The six test problems are:

the two-dimensional model problem with solution u x(x- )y(y )exy,

(5.1) Au=f, f=(0,1) 9-,

(2) a two-dimensional variable coefficient problem with solution u xexy sin 7rx

sin ry,

(5.2) 0-- e- -x ] +-fffy eXyfffy =f’ f=(0, 1) 2,

(3) a two-dimensional problem with discontinuous coefficients with f=
2x(1 x) + 2y(1 y),

(5.3) 0- P(x Y -x + -y p(x, y -y =f, 2=(0,1) 2,

where

10 4 X>0.5 y< 0.5,

p(X,y) 10 -4 X=<0.5 y>0.5,

elsewhere.
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FIG. 5.1. (a) Iteration and (b) operation counts for Test Problem 1.

(4) the three-dimensional model problem with solution

u=x( l-x)y(1-y)z(1-z)exyz,

(5.4) Au=f, fl-(O, 1) 3,
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FIG. 5.2. (a) Iteration and b operation counts for Test Problem 2.

5 a three-dimensional variable coefficient problem with solution u exyz sin 7rx

sin ry sin rz,

(5.5) e- +:/e +=/e- :f, a:(0, 1) 3,
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FIG. 5.3. (a) Iteration and b operation countsfor Test Problem 3.

(6) a three-dimensional problem with discontinuous coefficients with f
2x(1 x) + 2y(1 y) + 2z(1 z),

(5.6) -x p(x,y,z) +-y p(x,y,z) +-z p(x,y,z) =f, ft=(O, 1) 3,
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FIG. 5.4. (a) Iteration and (b) operation counts for Test Problem 4.

where
10 -4

p(X,y,Z) 10 4

x>0.5 with y_-< 0.5, z=< 0.5 or y> 0.5, z> 0.5,

x-<0.5 with y> 0.5, z_-< 0.5 or y=< 0.5, z> 0.5,

elsewhere.
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FIG. 5.5. (a) Iteration and b operation counts for Test Problem 5.

The number of iterations and operation counts per grid point are plotted in Figs. 5.1-
5.6 (a) and (b), respectively. We can make the following observations from these figures.

The BPX and MGMF preconditioners have better convergence behavior than
the HB preconditioner, especially for three-dimensional problems. The HB method is
competitive with the other multilevel methods only for the discontinuous coefficient
problem in two dimensions.
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FIG. 5.6. (a) Iteration and (b) operation counts for Test Problem 6.

2 The O(log" n convergence rate for all the multilevel methods is evident, except
for the three-dimensional HB method. The three-dimensional HB method behaves like
O(h -’59) and O(h -’7) for problems (5.4) and (5.5), which are close to the predicted
theoretical result O(h-5). However, for the discontinuous coefficient problem 5.6 ), it
converges more slowly, like O(h-126).
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(3) In general, the MGMF methods perform slightly better than the corresponding
BPX methods. Recall that the only difference between the two methods is the choice of
the elementary filters.

(4) Filtering twice (BPX2, BPX3, and MGMF2) does improve the convergence
rates for the model Poisson problem in either two or three dimensions (the MGMF2
and BPX3 preconditioners appear to be spectrally equivalent.) For variable and discon-
tinuous coefficient problems, filtering twice does not seem to improve the convergence
rates enough to compensate for the extra work involved.

(5) The MGMF3 method is designed to incorporate the desired features ofMGMF
and MGMF2, i.e., the good convergence property due to filtering twice and the smaller
amount of work due to filtering once at the finest grid level. It turns out that it works
very well. MGMF3 behaves better than MGMF but worse than MGMF2 in the number
of iterations required. However, in terms of amount of work, MGMF3 is better than
MGMF1 and MGMF2.

(6) For small n (<100), the RIC method is competitive with all the multilevel
methods. In fact, for the discontinuous coefficient problems, none of the multilevel pre-
conditioners gives a better convergence rate than the RIC preconditioner. It appears that
the RIC preconditioner captures the variation of the coefficients especially well. Its per-
formance deteriorates as n gets large, as predicted by its inferior asymptotic conver-
gence rate.

(7) The MG preconditioner is among the most efficient methods for problems with
smooth coefficients. However, it has some difficulties with problems with discontinuous
coefficients. In fact, for Problem (5.3), MG( 1, requires too many iterations to fit on
the plot. Instead we show the results for the MG(3, 3) method, which converges in a
reasonable number of iterations but still requires the most work of all the methods. We
have noticed that the performance of the multigrid methods are somewhat sensitive to
the initial guess. In experiments with random initial guesses, we have observed that the
performance of the multigrid methods is significantly improved. This may be due to the
extra smoothing operations in the multigrid methods which are more adept at annihilating
the high frequency errors inherent in the random initial guess.

6. Conelnsions. The experimental results show that the class of multilevel filtering
preconditioners compares favorably with the hierarchical basis and the RIC precondi-
tioners, at least for problems with smooth coefficients and quasi-uniform grids such as
used in our experiments. For these types of problems, the multilevel filtering and the
BPX methods behave quite similarly to the multigrid preconditioner. What these new
methods offer is the saving of smoothing operations which are difficult to make effective
for irregular problems, while preserving the nice asymptotic convergence rates of multigrid
preconditioners. The relative performance ofthe hierarchical basis method should improve
for irregular problems on highly nonuniform and refined meshes. Even though the RIC
preconditioner shows better convergence rates for strongly discontinuous coefficient
problems, it has a low degree of parallelism. The multilevel filtering preconditioners are
also similar to the BPX method. What the filtering framework provides is the flexibility
of filter design, which can lead to more efficient methods.

Acknowledgment. The authors thank the referees for their help in improving the
presentation of this paper.
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