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Abstract: Hyperspectral remote sensing images contain hundreds of data channels. Due to the high dimensionality of the hyperspec-

tral data, it is difficult to design accurate and efficient image segmentation algorithms for such imagery. In this paper, a new multilevel 

thresholding method is introduced for the segmentation of hyperspectral and multispectral images. The new method is based on Frac-

tional-Order Darwinian Particle Swarm Optimization (FODPSO) which exploits the many swarms of test solutions that may exist at 

any time. In addition, the concept of fractional derivative is used to control the convergence rate of particles. In this work, the so-

called Otsu problem is solved for each channel of the multispectral and hyperspectral data. Therefore, the problem of 𝑛-level thresh-

olding is reduced to an optimization problem in order to search for the thresholds that maximizes the between-class variance. Experi-

mental results are favorable for the FODPSO when compared to other bio-inspired methods for multi-level segmentation of multispec-

tral and hyperspectral images. The FODPSO presents a statistically significant improvement in terms of both CPU time and fitness 

value, i.e., the approach is able to find the optimal set of thresholds with a larger between-class variance in less computational time 

than the other approaches. In addition, a new classification approach based on Support Vector Machine (SVM) and FODPSO is intro-

duced in this paper. Results confirm that the new segmentation method is able to improve upon results obtained with the standard SVM 

in terms of classification accuracies. 
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I.	INTRODUCTION				

Image segmentation is regarded as the process of partitioning a digital image into multiple regions or objects. In other words, in image 

segmentation a label is assigned to each pixel in the image such that pixels with the same label share certain visual characteristics [1]. 

These objects provide more information than individual pixels since the interpretation of images based on objects is more meaningful 

than the interpretation based on individual pixels only. Image segmentation is considered as an important task in the analysis, interpre-

tation and understanding of images and is also widely used for image processing purposes such as classification and object recognition 

[1, 2]. 

 

Image segmentation plays a key role in the field of remote sensing image analysis. For example, in order to improve classification 

results, the integration of classification and segmentation steps has recently been taken into account [3, 4]. In such cases, the decision 

to assign a pixel to a specific class is simultaneously based on the feature vector of this pixel and some additional information derived 

from the segmentation step. To make this approach effective, an accurate segmentation of the image is needed. A few methods for 

segmentation of multispectral and hyperspectral images have been introduced in the literature. Some of these methods are based on 

region merging techniques, in which neighboring image segments are merged with each other based on their homogeneity. For exam-

ple, the multiresolution segmentation method in eCognition software uses this type of approach [5]. Tilton proposed a hierarchical 

segmentation algorithm [6], which alternately performs region growing and spectral clustering. There is an extensive number of seg-

mentation methods that have been proposed in the literature that exploit mathematical morphology approaches [7-15], for segmenta-

tion of multispectral and hyperspectral images.  

 

Image segmentation can be classified into four specific types including histogram thresholding based methods, texture analysis based 

methods, clustering based methods and region based split and merging methods. Thresholding is one of the most commonly used 

methods for the segmentation of images into two or more clusters [16]. Thresholding techniques can be divided into two different 
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types: Optimal thresholding methods [17-21] and property based thresholding methods [22-24]. Algorithms in the former group search 

for the optimal thresholds which make the thresholded classes on the histogram reach the desired characteristics. Usually, thresholds 

are selected by optimizing an objective function. The latter group detects the thresholds by measuring some selected property of the 

histogram. Property-based thresholding methods are fast, which makes them suitable for multilevel thresholding. However, the num-

ber of thresholds for these approaches is hard to determine and needs to be specified in advance.  

 

Many algorithms have been proposed in literature to address the issue of optimal thresholding (e.g., [17, 19-20, 24-28]). While several 

research papers address bi-level thresholding, others have considered the multilevel problem. Bi-level thresholding is reduced to an 

optimization problem to determine the threshold t that maximizes the 𝜎!
!

  between − class variance  and  minimizes  𝜎!
!  

within − class variance  [16]. For two level thresholding, the problem is solved by finding the value T* which satisfies max(𝜎!
! 

(T*)) where 0 ≤T*< L and L is the maximum intensity value. This problem could be extended to n-level thresholding through satisfy-

ing max 𝜎!
! (T*1, T*2, . . .,T*n-1) where 0 ≤T*1<T*2<. . .<T*n-1<L. One way for finding the optimal set of thresholds is by using exhaus-

tive search. A commonly used exhaustive search is based on the Otsu criterion [19]. That approach is easy to implement, but it has the 

disadvantage that it is computationally expensive. Exhaustive search for n - 1 optimal thresholds involves evaluations of fitness of 

n(L-n+1)
n-1

combinations of thresholds [16]. Therefore, that method is not suitable from a computational cost point of view. The task 

of determining n - 1 optimal thresholds for n-level image thresholding could be formulated as a multidimensional optimization prob-

lem. To solve such a task, several biologically inspired algorithms have been explored in image segmentation [16, 29-32]. Bio-

inspired algorithms have been used in situations where conventional optimization techniques cannot find a satisfactory solution or 

they take too much time to find it, e.g., when the function to be optimized is discontinuous, non-differentiable, and/or presents too 

many nonlinearly related parameters [33].  
 

One of the best known bio-inspired algorithms is Particle Swarm Optimization (PSO) [34]. The PSO consists of a number of particles 

that collectively move in the search space (e.g., pixels of the image) in search of the global optimum (e.g., maximizing the between-

class variance of the distribution of intensity levels in the given image). However, a general problem with the PSO and similar optimi-

zation algorithms is that they may get trapped in local optimum points, and the algorithm may work in some problems but fail in oth-

ers [35]. To overcome such a problem, Tillett et al. [36] presented the Darwinian PSO (DPSO). In the DPSO, multiple swarms of test 

solutions performing just like an ordinary PSO may exist at any time with rules governing the collection of swarms that are designed 

to simulate natural selection. More recently, Couceiro et al. [35] further extended the DPSO using fractional calculus to control the 

convergence rate of the algorithm. In [35], fractional-order DPSO (FODPSO) was successfully compared to both the fractional-order 

PSO (FOPSO) from Pires et al. [37] and the traditional DPSO. 

 

The main goal of this study is to propose a computationally efficient bio-inspired segmentation method, which is robust for partition-

ing remote sensing images into multiple regions. For this purpose, a new method for segmentation of multispectral and hyperspectral 

images based on the FODPSO is proposed. To demonstrate the performance of this new method, a methodical and statistic compari-

son with two other methods for thresholding segmentation of images, namely the well-known PSO and the DPSO, is carried out. In 

summary, the main contributions of the paper are as follows:  

i) Formal presentation of the FODPSO algorithm for image segmentation; 

ii) Evaluation of this novel algorithm using more complex data sets (i.e., multispectral/hyperspectral) and comparison with other 

thresholding based segmentation methods; 

iii) Proposition of a novel classification approach based on the concept of the new segmentation method to improve the classification 

accuracy of the traditional Support Vector Machine (SVM) method. 

 It should be noted that this is the first time that the concept of FODPSO is used in remote sensing, thus showing the potential of its use 

in efficient image segmentation to determine broad groups of objects. The current paper partially builds on [34] with an important 

study on how FODPSO performs for remote sensing images while the segmentation level for such images are changed. Moreover, a 

deep statistical analysis is conducted so as to further sustain the proposed approach when compared to others. Many problems in re-

mote sensing have been solved by considering optimization methods such as Genetic Algorithm (GA) and PSO. Therefore, this paper 

introduces a very powerful optimization method, both in terms of speed and optimal convergence, which can be considered for a wide 

variety of problems in remote sensing. Some optimization methods are fast but not efficient (for finding the global optimum) and vice-

versa. It has been recently proved in [35] for benchmarking optimization problems that the FODPSO is faster than the PSO (the most 

well-known optimization algorithm in terms of speed) and more efficient than the DPSO (in order to find the global optimum while 

avoiding local optima). Therefore, applying the FODPSO to the segmentation of images may allow achieving both vital important 

goals at once. More specifically, due to its convergence speed, this optimization method may present itself as a potential solution to a 

wide variety of complex problems in remote sensing such as hyperspectral image analysis - a problem that many researchers are 

struggling with since hyperspectral images in remote sensing are very volumetric.  

Bearing these ideas in mind, the problem formulation of image 𝑛-level thresholding is presented in the following subsections. Section 

II presents a brief review of PSO and DPSO algorithms and focuses on their strengths and weaknesses, thus paving the way for a de-

tailed description on the method that is proposed in the paper. In Section III, two different remote sensing data sets are considered and 

the performance of the three different methods is compared. In Section IV, the proposed segmentation approach is extended and ap-

plied for classification. Finally, the main conclusions are outlined in Section IV. 



 

 

3 

	

II.	METHODOLOGY	

Multilevel segmentation techniques provide an efficient way to perform image analysis. However, the automatic selection of a 

robust optimum n-level threshold remains a challenge in segmentation of remote sensing images. Below a more precise formu-

lation of the problem is introduced along with the basic notation used in the paper. 

A. Problem Formulation 

Let there be L intensity levels in each component, e.g., three color components for RGB images, of a given image and these levels are 

in the range {0, 1, 2, …, L-1}. Then one can define: 

 

𝑝!
!
=

!
!

!

!
, 𝑝!

!!!!

!!!
 

= 1, (1) 

 

where i represents a specific intensity level, i.e., 0 ≤ i ≤ L-1, C represents the component of the image, e.g., 𝐶 = 𝑅, 𝐺, 𝐵  for RGB 

images, N represents the total number of pixels in the image and ℎ!
!  denotes the number of pixels for the corresponding intensity level 

i in the component C. In other words, ℎ!
!represents an image histogram for each component C, which can be normalized and regarded 

as the probability distribution 𝑝!
! . The total mean (i.e., combined mean) of each component of the image can be easily calculated as: 

 

𝜇!
!
= 𝑖𝑝!

!!!!

!!!
 

. (2) 

 

The 𝑛-level thresholding presents 𝑛 − 1 threshold levels 𝑡!
! , 𝑗 = 1,… , 𝑛 − 1, and the operation is performed as: 

 

𝐹
!
𝑥, 𝑦 =

0,                                   𝑓! 𝑥, 𝑦 ≤ 𝑡!
!

!

!
𝑡!
!
+ 𝑡!

! ,                𝑡!
!
< 𝑓! 𝑥, 𝑦 ≤ 𝑡!

!

⋮
!

!
𝑡!!!
!

+ 𝑡!!!
! , 𝑡!!!

!
< 𝑓! 𝑥, 𝑦 ≤ 𝑡!!!

!

𝐿 − 1,                                  𝑓! 𝑥, 𝑦 > 𝑡!!!
!

. (3) 

 

where x and y are the width (𝑊) and height (𝐻) pixel of the image of size 𝐻×𝑊 denoted by 𝑓! 𝑥, 𝑦  with 𝐿 intensity levels for each 

component. In this situation, the pixels of a given image will be divided into 𝑛 classes 𝐷!
! ,…, 𝐷!

! , which may represent multiple ob-

jects or even specific features for such objects (e.g., topological features). The probabilities of occurrence 𝑤!
!of classes 𝐷!

! ,…,𝐷! 
!  are 

given by  

 

𝑤!
!
=

𝑝!
!

!!
!

!!!
 

 , 𝑗 = 1

𝑝!
!

!!
!

!!!!!!
!

!!

 

 , 1 < 𝑗 < 𝑛

𝑝!
!!!!

!!!!!!
!

!!

 

 , 𝑗 = 𝑛.

, (4) 

 

The mean of each class 𝜇!
!can then be calculated as  

 

 

𝜇!
!
=

!"!
!

!!
!

!!
!

!!! 
 , 𝑗 = 1

!"!
!

!!
!

!!
!

!!!!!!
!

!!

 

 , 1 < 𝑗 < 𝑛

!"!
!

!!
!

!!!

!!!!!!
!

!!

 

 , 𝑗 = 𝑛.

. (5) 

 

The simplest and computationally most efficient method of obtaining the optimal threshold is the one that maximizes the between-

class variance of each component which can be generally defined by 

 

𝜎 
!

!

!
= 𝑤!

! 𝜇!
!
− 𝜇!

!
!!

!!!
 

, (6) 
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where 𝑗 represents a specific class in such a way that 𝑤!
!  and 𝜇!

!  are the probability of occurrence and mean of class 𝑗, respectively.  

In other words, the problem of 𝑛-level thresholding is reduced to an optimization problem to search for the thresholds 𝑡!
!

 that maxim-

izes the objective functions (i.e., fitness function) of each image component 𝐶, generally defined as 

 

𝜑! = 𝑚𝑎𝑥
!!!!

!
!⋯!!!!!

!
!!!!

 

𝜎 
!

!

!
𝑡!
! . (7) 

 

Computing the above optimization problem involves high computational complexity as the number of threshold levels and image 

components increase. Many optimization methods have been proposed in the literature [2]. However, more recently, biologically in-

spired methods, such as the well-known PSO, have been used as computationally efficient alternatives to analytical methods to solve 

optimization problems [16, 17]. 

B. General Approach 

The original PSO algorithm was developed by Eberhart and Kennedy in 1995 [34]. The PSO basically takes advantage of the swarm 

intelligence concept, which is the property of a system whereby the collective behaviors of unsophisticated agents that are interacting 

locally with their environment, create coherent global functional patterns. More recently, and based on the concepts inherent to the 

PSO, the DPSO [36] and the FOPSO [37], an extended version denoted as FODPSO was presented in [35], in which several swarms 

compete using Darwin’s survival-of-the-fittest principles and fractional calculus to control the convergence rate of the algorithm. 

Using those principles, the FODPSO enhances the ability of the PSO algorithm to escape from local optima by running several simul-

taneous parallel PSO algorithms, each being a different swarm, on the same test problem and apply a simple selection mechanism. 

When a search tends to a local optimum, the search in that area is simply discarded and another area is searched instead. In this ap-

proach, at each step, swarms that show improvement are rewarded (extend particle life or spawn a new descendent) and swarms which 

stagnate are punished (reduce swarm life or delete particles). Moreover, the approximate Grünwald–Letnikov FC definition allows to 

use the concept of fractional differential with 𝛼, 0 ≤ 𝛼 ≤ 1, to control the convergence rate of particles. 

Table I presents the FODPSO algorithm applied to image segmentation. Each particle, 𝑎 ,within each different swarm, 𝑠, moves in a 

multidimensional space according to position (𝑥!
 
𝑡 ), 0 ≤ 𝑥!

 
𝑡 ≤ 𝐿 − 1, and velocity (𝑣!

 
𝑡 ). The position and velocity values are 

highly dependent on the local best (𝑥!
 
𝑡 ) and global best (𝑔!

 
𝑡 ) information. The coefficients 𝑤, 𝜌! and 𝜌! are assigned weights, 

which control the inertial influence, i.e., according to “the globally best” and “the locally best”, respectively, when the new velocity is 

determined. Typically, the inertial influence is set to a value slightly less than 1. 𝜌! and 𝜌!  are constant integer values, which repre-

sent “cognitive” and “social” components. However, different results can be obtained by assigning different influences for each com-

ponent. Depending on the application and the characteristics of the problem, tuning these parameters properly will lead to better re-

sults. The parameters  𝑟! and 𝑟! are random vectors with each component generally a uniform random number between 0 and 1. The 

intent is to multiply a new random component per velocity dimension, rather than multiplying the same component with the velocity 

dimension of each particle. 

 
Table I. The FODPSO Segmentation Algorithm. 

 

Initialize 𝛼, 𝜌!, 𝜌!  // fractional coefficient, global and local weights 

Initialize 𝑁,𝑁!"# ,𝑁!"#  // initial, minimum and maximum number of particles within each swarm 

Initialize 𝑁! ,𝑁
!"#

! ,𝑁!"#
!  // initial, minimum and maximum number of swarm 

Initialize ∆𝑣  // maximum number of levels a particle can travel between iterations 

Initialize 𝐼! , 𝐼!"##  // total number of iterations and maximum stagnation of swarms 

𝑝
!

!
=

!
!

!

!
, 𝑝

!

!!!!

!!!
 

= 1  

𝜇!
!
= 𝑖𝑝

!

!!!!

!!!
 

  

Initialize 0 ≤ 𝑥!
! 0 ≤ 𝐿 − 1  // initial position of all particles from all swarms 

Initialize 𝑥!
! ,𝑔!

!  based on 𝑥!
! 0   // initial local best of all particles and global best of all swarms 

For each iteration 𝑡 until 𝐼!   // main loop 

 For each particle 𝑎 of swarm 𝑠 

  𝑣!
!
𝑡 + 1 = 𝛼𝑣!

!
𝑡 +

!

!
𝛼𝑣!

!
𝑡 − 1 +

!

!
𝛼 1 − 𝛼 𝑣!

!
𝑡 − 2 +

!

!"
𝛼 1 − 𝛼 2 − 𝛼 𝑣!

!
𝑡 − 3 + 𝜌!𝑟! 𝑔!

!
− 𝑥!

!
𝑡 + 𝜌!𝑟! 𝑥!

!
− 𝑥!

!
𝑡 , 𝑣!

!
𝑡 + 1 ≤ ∆𝑣  

  𝑥!
!
𝑡 + 1 = 𝑥!

!
𝑡 + 𝑣!

!
𝑡 + 1 , 0 ≤ 𝑥!

!
𝑡 + 1 ≤ 𝐿 − 1    

  Compute (4) and (5) based on the thresholds defined in 𝑥!
!
𝑡 + 1   

  𝜎 

!

!

!
= 𝑤!

! 𝜇!
!
− 𝜇!

!
!!

!!!
 

  // compute the solution of each particle 𝑎 of swarm 𝑠 

  If 𝜎 !

!

!

!
> 𝜎!"#$%

!

!

!
// particle 𝑎 has improved 

   𝜎!"#$%
!

!

!
= 𝜎 

!

!

!
   

   𝑥!
!
= 𝑥!

!
𝑡 + 1   

 For each swarm 𝑠 

  If max𝜎! 

!

!

!
> 𝜑! // swarm 𝑠 has improved 

   𝜑!
= max𝜎! 

!

!

!
   

   𝑔!
!
= 𝑥!

!
𝑡 + 1   

   𝐼! = 0  // reset stagnancy counter  

   If 𝑁! < 𝑁!"#   // the current number of particles within swarm 𝑠 is inferior to the maximum number of allowed particles  
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    𝑁! = 𝑁! + 1   

    Randomly spawns a new particle in swarm 𝑠   

    If 𝑁!
< 𝑁!"#

!  and 𝑟𝑎𝑛𝑑  
!!

!!"#

> 𝑟𝑎𝑛𝑑    // small probability of creating a new swarm  

     𝑁
!
= 𝑁

!
+ 1   

     Randomly spawns a new swarm with an initial number of 𝑁 particles   

  Else  // swarm 𝑠 has not improved 

   𝐼! = 𝐼! + 1   

   If 𝐼! = 𝐼!"##  // swarm 𝑠 has improved for too long  

    If 𝑁! > 𝑁!"#  // swarm 𝑠 has currently more than the minimum number of allowed particles to form a swarm  

     Delete worse particle from swarm 𝑠, i.e., lower local solution  

    Else  // swarm 𝑠 does not currently have the minimum number of allowed particles to form a swarm  

     Delete whole swarm 𝑠, i.e., all particles from swarm 𝑠  

End 

 

It is noteworthy that the 𝛼 value greatly affects the inertial particles. With a small 𝛼, particles ignore their previous activities, thus 

ignoring the system dynamics and being susceptible to get stuck in local solutions (i.e., exploitation behavior). ). On the other hand, 

with a large 𝛼, particles will present a more diversified behavior, which allows exploration of new solutions and improves the long-

term performance (i.e., exploration behavior). However, if the exploration level is too high, then the algorithm may take too much 

time to find the global solution. Based on the experimental results from [35], it will be used a fractional coefficient of 𝛼 = 0.6, thus 

resulting in a balance between exploitation and exploration. 

One may summarize both computational and memory complexity as Table II depicts. 

 
Table II. Computational and memory complexity of PSO, DPSO and FODPSO. 

 

Complexity PSO DPSO FODPSO 

Memory 𝒪 𝐶  𝒪 𝐶  𝒪 4𝐶  

Computational 𝒪 𝑛𝑁
!  𝒪 𝑛 𝑁

!
∀!   𝒪 𝑛 𝑁

!
∀!   

 

Note that the memory complexity of the FODPSO is larger than the alternatives since it intrinsically has memory properties related to 

the fractional extension. In other words, due to the truncation order of the approximate fractional derivative, it needs to track the last 4 

steps of each particle’s velocity that depends on the number of components 𝐶 (i.e., bands) of the image. The computational complexity 

of the algorithms was considered excluding the initial computation of equations (1) and (2). Note that this may be accomplished since 

the three algorithms require that same initial computation that depends on the size of the image. After that initial setup, the three algo-

rithms may be adjusted in such a way to ensure a similar computational complexity. Likewise, the computational complexity of the 

three algorithms will increase with the number of desired thresholds 𝑛. Nevertheless, while the PSO depends on the number of parti-

cles 𝑁! within the population, the DPSO and FODPSO depend on the accumulated number of particles within each swarm, i.e., 

𝑁
!

∀! . In other words, one may ensure that the computational complexity of both DPSO and FODPSO will be inferior to the PSO 

one by defining the maximum number of particles within each swarm as 𝑁!"# ≤
!
!

!!"#
!

, wherein  𝑁!"#
!  represent the maximum num-

ber of allowed swarms. It is, however, noteworthy that one may avoid holding this assumption since the evolutionary features of both 

DPSO and FODPSO are stochastic and depends on uniformly distributed variables. In other words, by setting a an adequate combina-

tion between the minimum and maximum acceptable number of particles to form a swarm 𝑁!"# and 𝑁!"# and the minimum and max-

imum number of swarms within the population 𝑁!"#
!  and 𝑁!"#

! , one may ensure that 𝒪 𝑛 𝑁
!

∀! ≤ 𝒪 𝑛𝑁
!  for a steady state re-

gime. Such a condition may be achieved by adhering to the following condition: 𝑁!
≥

!
!"#

!
!!"#!!!"#

!
!!"#

!
. 

C. Algorithm Evaluation 

The computational time is one of the most important indicators along with the fitness value to determine the performance of the algo-

rithm. Provided that the data is large, the efficiency of the method is restricted to a great extent [44]. For instance, hyperspectral imag-

es are in general large, so using a high speed and efficient algorithm is highly preferable. Moreover, in real-time applications, using a 

high-speed algorithm is the main objective [45]. As a result, the evaluation of the CPU processing time and the fitness value seems 

vitally important to show the efficiency of the new method. In addition, since all bio-inspired methods are random and stochastic, the 

results are not completely the same in each run. Consequently, the stability of different methods should be evaluated by an appropriate 

index such as standard deviation value. 

PSO-based segmentation algorithms have been widely used in recent years. In fact, the ability of the traditional PSO-based segmenta-

tion has already been compared with other thresholding-based methods such as GA-based algorithms and exhaustive ones. Results 

confirm that the PSO based method present better results in terms of fitness value and CPU processing time. In [46], authors illustrat-

ed that the PSO-based segmentation method acted better than other methods such as Genetic Algorithms (GA), Differential Evaluation 

(DE), Ant Colony Optimization (ACO), Simulated Annealing (SA) and Tabu Search (TS) in terms of precision, robustness of the re-

sults and runtime. In [26], PSO outperforms GA in terms of CPU time and the fitness value for Kapur’s and Otsu’s functions. In [47], 

results indicate that PSO-family methods act better than GA with a learning operator (GA-L) from different points of view. Conse-

quently, it is easy to detect that PSO-based segmentation methods are considered an efficient way to find optimal thresholds in short 

CPU processing time.  
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III.	EXPERIMENTAL	RESULTS	

 

To compare the performance of the proposed FOPSO method with the PSO and DPSO approaches, all methods are tested on two 

different types of images, i.e.,  multispectral and hyperspectral images.  In all cases the image segmentation approaches were pro-

grammed in MATLAB on a computer having Intel Core 2 Duo T5800 processor (2.00 GHz) and 3GB of memory.  

A. Description of data sets 

a) First Test Case – Multispectral Worldview Image 

The first data set is an 8 x 8 km multispectral Worldview satellite image consisting of 8 bands captured at Tamworth, Northern New 

South Wales in Australia (Fig. 1). The pixel size was 2.4 x 2.4m. The image covered large sections of pine plantations, interspersed 

with native vegetation, grasslands, logged areas, barren soil and roads. This introduced a high level of natural variability to the seg-

mentation problem. Unlike artificial objects, natural vegetation has multiple levels of variation. For example, within the pine planta-

tion class, there are age differences, differences in reflectance due to slope, aspect, sun position, soil types, etc., and all these cause 

added complexities in the segmentation scheme. Fig. 1 shows an image of the data where data channels 5, 3 and 2 are used for show-

ing R, G, and B components respectively while Fig. 2 depicts the histogram for all 8 data channels. 

 

Figure 1: Our test case study site (data channels 5, 3, 2 are mapped to the R, G, and B channels) 

 

Table III gives the initial parameters of the PSO, DPSO and the proposed FODPSO based methods for the first test case. The PSO, 

DPSO and FODPSO methods are parameterized algorithms. Therefore, one needs to be able to choose the parameter values that would 

result in faster convergence. The cognitive, social and inertial weights were chosen by taking into account several works focusing on the 

convergence analysis of the traditional PSO (cf., [35, 47, 1]). For instance, to guarantee the convergence of the process, Jiang et al. [47] 

presented a set of attraction domains that altogether present a relation between 𝝆1, 𝝆2 and 𝒘, wherein 0 ≤ 𝒘 < 1 and 𝝆𝟏 + 𝝆𝟐 > 0. 

Based on the attraction domain in [3], if one would choose an inertial coefficient 𝒘 = 0.8, the sum between the cognitive and social 

components would need to be less than 7, i.e., 𝝆𝟏 + 𝝆𝟐 < 7. The parameters in Table II were selected by considering that many works 

present a larger cognitive coefficient (cf., [47]). Note that the threshold velocities of particles and the maximum number of particles 

within each swarm in the DPSO are smaller than the PSO algorithm. This was experimentally adjusted to provide swarms of 20 parti-

cles with the same level of diversity (i.e., exploration and exploitation) than swarms of 150 particles. 

Table III: Initial parameters of the PSO, DPDO and FODPSO for the first data set 

Parameter PSO DPSO FODPSO 

𝑰𝑻 100 100 100 

𝑁 150 20 20 

𝝆1 1.2 1.2 1.2 

𝝆2 0.8 0.8 0.8 

𝒘 0.8 - - 

∆𝑣 2 2 2 

𝑁!"# - 10 10 

𝑁!"#  - 30 30 

𝑁
! - 4 4 

𝑁
!"#

!  - 2 2 

𝑁!"#
!  - 6 6 

𝐼!"##  - 10 10 

𝛼 - - 0.6 
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Figure 2: The histograms of different data channels (data channel no. inserted in each figure). Grey values on x-axis and value count on y-axis. 

 

b) Second data set – Hyperspectral ROSIS image 

 

The second test case is a hyperspectral data set which was captured on the city of Pavia, Italy by Airborne data from the ROSIS-03 

(Reflective Optics System Imaging Spectrometer). The ROSIS-03 sensor has 115 data channels with a spectral coverage ranging from 

0.43 to 0.86 µm. In our experiments we eliminate 12 noisy data channels and used 103 data channels for processing. The spatial reso-

lution is 1.3m per pixel. The original data set is 610 by 340 pixels. This data set is captured on the Engineering School at the Universi-

ty of Pavia consisting of different classes including: trees, asphalt, bitumen, gravel, metal sheet, shadow, bricks, meadow and soil. Fig. 

3 shows an image of the second test case. 

 

The proposed multilevel thresholding techniques based on PSO, DPSO and FODPSO were implemented with the specific parameters 

shown in Table IV for the second test case. Table III presents the initial parameters of the PSO- and DPSO-based methods for the se-

cond test case. The main differences here in comparison to Table II are that the maximum velocity of particles and the capacity of each 

swarm, in the case of the DPSO and FODPSO algorithms, need to be increased in order to overcome the increased complexity of using 

data. 
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Fig. 3: an image of the second test case 

Table IV: Initial parameters of the PSO, DPSO and FODPSO for the second data set 

Parameter PSO DPSO FODPSO 

𝑰𝑻 100 100 100 

𝑁 150 15 15 

𝝆1 1.2 1.2 1.2 

𝝆2 0.8 0.8 0.8 

𝒘 0.8 - - 

∆𝑣 5 5 5 

𝑁!"# - 10 10 

𝑁!"#  - 50 50 

𝑁
! - 4 4 

𝑁
!"#

!  - 2 2 

𝑁!"#
!  - 6 6 

𝑁!"##  - 10 10 

𝛼 - - 0.6 

B. Results and Discussion 

a). First Test Case: Multispectral image  

The CPU average processing time of the PSO, DPSO and FODPSO for 6-, 8- and 10-level thresholding is presented in Table V and 

was calculated over 40 different runs. PSO is referred to as a fast optimization algorithm. However, as can be seen from Table V, the 

computation time for PSO-based segmentation was significantly higher than for both the FODPSO and DPSO methods. The main 

reason for this is that the PSO has a fixed population of 150 particles which, in other words, means that 150 different solutions are 

needed to be evaluated within the same swarm. The FODPSO and DPSO, on the other hand, are composed of multiple smaller swarms 

(between 2 and 6 swarms of 10 and 50 particles each), being faster than the PSO even with an equal or larger number of particles in 

the whole DPSO and FODPSO. The dynamical clustering of particles inherent to both FODPSO and DPSO allows releasing most of 

the processing effort necessary to compute the local and global solutions. In other words, the CPU processing time decreases as the 

number of particles within the same swarm decreases. The difference percentages of CPU processing time between FODPSO and 

DPSO remain almost the same regardless on the segmentation level in the range of 3 to 8 percent. Although the difference may be 

considered small to justify the choice between the FODPSO and the DPSO, it still represents an improvement that can be highly pon-

dered depending upon the fitness value of the algorithms. Moreover, the stability of the traditional PSO highly deteriorates for a seg-

mentation level of 10, contrarily to both FODPSO and DPSO. 

Table V: Average and STD CPU processing time (in seconds) of each algorithm for different levels 

 

 

 

 

Level FODPSO DPSO	 PSO	 Difference	(%)	between	

FODPSO	and	DPSO	

Difference	(%)	between	

FODPSO	and	PSO	

6 41.05 ± 0.63 43.04 ± 0.78 46.69 ± 0.54 4.8 13.73 

8 54.15 ± 1.21 56.21 ± 1.27 60.03 ± 0.65 3.8 10.85 

10 65.46 ± 0.90 67.12 ± 1.39 73.60 ± 2.22 2.5 12.43 
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The fitness and optimal threshold values were calculated for all different data channels separately. The average and standard deviation 

fitness values of all data channels were calculated for each level of segmentation and the obtained results are presented in Table VI. 

FODPSO generally performed slightly better than other methods in terms of fitness value. An exception may be observed for a seg-

mentation level of 6 in which the DPSO presented a slightly better result than the FODPSO. It is noteworthy that such behavior should 

be expected for specific situations since the DPSO is a particular case of the FODPSO. In general, both DPSO and FODPSO give a 

better fitness because the PSO may get stuck in the vicinities of the global solution, while both FODPSO and DPSO use natural selec-

tion in order to avoid stagnation (cf., [35, 36]). Hence, it can be concluded that both Darwinian algorithms are able to find better 

thresholds in less CPU time than the traditional PSO. Fig. 4 shows 10-level segmented image based on FODPSO and their histograms. 

 
Table VI: Average fitness values for all bands at each level for the first test case 

Level FODPSO DPSO PSO 
6 3812.23 ± 0.25 3812.31 ± 0.04 3811.45 ± 0.59 

8 3877.56 ± 0.23 3877.21 ± 0.07 3876.04 ± 0.60 

10 3907.52 ± 0.24 3907.15 ± 0.15 3905.95 ± 0.61 

 

 
Figure 4: 10-level segmented image (data channels 5, 3, 2 are mapped to the R, G, and B channels of the display) based on FODPSO and the histograms of all data 

channels 

Despite the minor differences in fitness values between the FOPSO and the DPSO with respect to the between-class variance, 

one should note that the FODPSO-based thresholding is able to achieve segmentation of the image faster than both DPSO and 

PSO. Consequently, the proposed FODPSO method is very attractive for image segmentation, especially for more complex 

images and/or high segmentation levels. 

Fig. 5 shows a subset of the main image, 6-level and 10-level FODPSO based segmented images zoomed by 200 percent. As can be 

seen from the figure, the main image (Fig. 5c) has more details than the other images. In contrast, the 6 level segmented image (Fig. 

5a) is the roughest image. It is easy to conclude that by increasing the level of segmentation, the segmented image includes more de-

tail. As a result, the 10-level segmented image (Fig. 5b) is smoother than the 6 level one. Our segmented image is also less pixelated 

compared to the original image. 
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Figure 5: The subset of a) 6-level, b) 10-level c) input image zoomed by200 percent 

To further improve the comparison between the three algorithms, the significance of the segmentation method and the segmentation 

level (independent variables) on the fitness value and the CPU processing time (dependent variables) was analyzed using the two-way 

MANOVA technique after checking the assumptions of multivariate normality and homogeneity of variance/covariance [49, 50]. The 

assumption of normality for each of the univariate dependent variables was examined using univariate tests of Kolmogorov-Smirnov 

(p-value < 0.05). The univariate normality of each dependent variable has not been verified. However, since 𝑛 ≥ 30 the multivariate 

normality was assumed based on the Central Limit Theorem (CLT) [49-51]. Furthermore, the assumption of multivariate normality 

was validated [49, 50]. The assumption about the homogeneity of variance/covariance matrix in each group was examined with the 

Box’s M Test (M = 605.13, F(24; 376576.64) = 24.693; p-value = 0.001). Although the homogeneity of variance/covariance matrices 

has not been verified (i.e., p-value = 0.001), the MANOVA technique is robust to this violation because all the samples have the same 

size [49, 50]. When the MANOVA detected significant statistical differences, we proceeded to the commonly-used ANOVA for each 

dependent variable followed by the Tukey’s HSD Post Hoc. The classification of the size effect (i.e., measure of the proportion of the 

total variation in the dependent variable explained by the independent variable) was done according to Maroco [49] and Pallant [50]. 

This analysis was performed using the IBM SPSS Statistics software with a significance level of 5%. 

 

A two-way MANOVA analysis was carried out to assess whether the algorithms used on this study have statistically significant differ-

ences with respect to the segmentation process. The MANOVA analysis revealed that the type of algorithm had a large effect and sig-

nificant on the multivariate composite (Pillai's Trace = 0.973; F(4; 702) = 166.19; p-value = 0.001; Partial Eta Squared 𝜂!
! = 0.486; 

Power = 1.0). The segmentation level had a very large and significant effect on the multivariate composite (Pillai's Trace = 1.847; 

F(4; 702) = 2116.515; p-value = 0.001; 𝜂!
! = 0.923; Power = 1.0). Finally, the interaction between the two independent variables had a 

moderate effect and significant on the multivariate composite (Pillai's Trace = 0.469; F(8; 702) =26.901; p-value = 0.001; 𝜂!
! = 0.235; 

Power = 1.0).  

 

After observing the multivariate significance for different algorithm types and segmentation levels, a univariate ANOVA for each de-

pendent variable followed by the Tukey’s HSD Test was carried out. For the type of algorithm, the dependent variable fitness value 

presents statistically significant differences (F(2, 351) = 469.97; p-value = 0.001; 𝜂!
! = 0.728; Power = 1.0), as well as the dependent 

variable CPU processing time (F(2, 351) = 2138.04; p-value = 0.001; 𝜂!
! = 0.92; Power = 1.0). For the segmentation level, the de-

pendent variable fitness value also demonstrates statistically significant differences (F(2, 351) = 2445064.03; p-value = 0.001; 𝜂!
! = 1; 

Power = 1.0), as well as the dependent variable CPU processing time (F(2, 351) = 1864.22; p-value = 0.001; 𝜂!
! = 0.99, Power = 1.0). 

Using the Tukey’s HSD Post Hoc, it is possible to verify the differences between the algorithms. Analyzing the fitness value and the 

CPU processing time, there are statistically significant differences between the obtained experimental results using the PSO, DPSO 

and FODPSO segmentation algorithms. 
 

Table VII: Tukey’s HSD Post Hoc Test to the Maximum Communication Distance 

 

Algorithm Fitness Value CPU Time 

PSO vs DPSO -1.06* 4.61* 

PSO vs FODPSO -1.25* 6.34* 

DPSO vs FODPSO -0.18* 1.73* 

* The corresponding mean difference is significant at the 0.05 level 

All p-values corresponding to the mean differences are equal to 0.001  

 

It is noteworthy that the FODPSO produces better solutions than both the PSO and DPSO. As expected, the FODPSO algorithm pro-
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duces better solutions than the DPSO and, on the other hand, this last one produces better solutions than the PSO. In fact, using the 

PSO segmentation algorithm proves to be the “worse” segmentation method. 

 

As shown in Table VII, which is based on Tukey’s HSD Post Hoc test, the FODPSO is able to reach a slightly better fitness solution in 

less time. Nevertheless, the differences between the algorithms are not clearly seen in Fig. 6. Although it is possible to observe signifi-

cant differences in the global CPU processing time between the FODPSO and the other algorithms, the improvement of the solution is 

not perceptible. Hence, in the next section the same analysis will be performed on a hyperspectral image. 

 

 

     

Figure 6: Estimated marginal means of the: a) fitness value; b) CPU processing time. 

 

b) Second data set: Hyperspectral Image 

 

As for the first data set, the CPU processing time in the second test case for each algorithm for 10-, 12- and 14-level thresholding was 

calculated as the average value of 40 different runs and the results being presented in Table VIII. According to Table VIII, the 

FODPSO based method has the least CPU processing time in comparison with other studied methods as was observed for the first 

data. On the contrary, PSO is the worst method among others in terms of CPU processing time. As can be seen from Table VIII, 

FODPSO significantly outperforms the PSO based method in particular when the level of segmentation increases. FODPSO improves 

the result of the PSO based segmentation method by 119.6% and 65.1% in the best and worst case respectively. In the same way, the 

CPU processing time of the FODPSO is considerably less than for the DPSO and shows an improvement by 7.4% and 31.5% for the 

best and worst case, respectively. 

Table VIII: Average and STD CPU processing time for each algorithm and different levels 

Level FODPSO DPSO PSO Percentage Difference be-

tween FODPSO and DPSO 
Percentage Difference be-

tween FODPSO and PSO 

10 689.83 ± 66.22 740.62 ± 49.73 1138.81 ± 103.02 7.4 65.1 

12 691.96 ± 7.6 800.84 ± 8.4 1387.84 ± 123.43 15.7 100.1 

14 753.59 ± 37.51 991.02 ± 82.60 1654.89 ± 141.82 31.5 119.6 

 

Table IX gives information regarding the average fitness value of 103 data channels in 40 different iterations. As in the case of the 

first multispectral data set, in the hyperspectral test case, FODPSO finds optimal threshold values which are better than for the other 

methods. This shows that FODPSO is able to find optimal thresholds with better fitness values in less CPU processing time compared 

to the other studied methods. The fitness value of the FODPSO based method is followed by DPSO which is more efficient than the 

conventional PSO. As can be seen from the table, by increasing the level of segmentation, the fitness of FODPSO increases more than 

the fitness of the other methods. PSO gives almost the same fitness for 10-, 12- and 14- level of segmentation since it is not endowed 

with any kind of mechanism to improve the convergence of particles when in the vicinities of the optimal solution.  

 
Table IX: Average and STD fitness values at each level 

Level FODPSO DPSO PSO 

10 2971.69 ± 1.13 2971.22 ± 0.40 2970.09 ± 0.12 

12 3002.73 ± 5.14 2991.78 ± 0.65 2984.92 ± 0.90 

14 3090.13 ± 14,06 3035.97 ± 10.65 2997.53 ± 3.04 

 

Fig. 7 shows 10-level and 14-level FODPSO based segmented images using a 200 percent zoom. As can be seen from the figure, 14-
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level based segmented image (Fig. 7(b)) provides more details than the 10-level segmentation.  

 

 
Figure 7: The subset of a) 10-level, b) 14-level FODPSO based segmented image zoomed by200 percent 

 

Similarly to the first data set, the assumption of normality for each of the univariate dependent variables was examined using univari-

ate tests of Kolmogorov-Smirnov (p-value < 0.05) [49-51]. The assumption about the homogeneity of variance/covariance matrix in 

each group was examined with the Box’s M Test (M = 1239.38, F(24; 376576.64) = 50.58; p-value = 0.001). When the MANOVA 

detected significant statistical differences, we proceeded to the commonly-used ANOVA for each dependent variable followed by the 

Tukey’s HSD Post Hoc. 

The MANOVA analysis revealed that the algorithm type had a very large and significant effect on the multivariate composite (Pillai's 

Trace = 1.40; F(4; 702) = 405.97; p-value = 0.001; Partial Eta Squared 𝜂!
! = 0.698; Power = 1.0). The segmentation level also had a 

large and significant effect on the multivariate composite (Pillai's Trace = 0.97; F(4; 702) = 165.03; p-value = 0.001; 𝜂!
! = 0.49; Pow-

er = 1.0). Finally, the interaction between the two independent variables had a very large and significant effect on the multivariate 

composite (Pillai's Trace = 1.02; F(8; 702) = 91.82; p-value = 0.001; 𝜂!
! = 0.51; Power = 1.0).  

After observing the multivariate significance in the type of algorithm and the segmentation level, a univariate ANOVA for each de-

pendent variable followed by the Tukey’s HSD Test was carried out. For the type of algorithm, the dependent variable fitness value 

presents statistically significant differences (F(2, 351) = 1066.64; p-value = 0.001; 𝜂!
! = 0.86; Power = 1.0), as well as the dependent 

variable CPU processing time (F(2, 351) = 2309.24; p-value = 0.001; 𝜂!
! = 0.93; Power = 1.0). For the segmentation level, the de-

pendent variable fitness value also presents statistically significant differences (F(2, 351) = 3907.10; p-value = 0.001; 𝜂!
! = 0.96; Pow-

er = 1.0), as well as the dependent variable CPU processing time (F(2, 351) = 77.58; p-value = 0.001; 𝜂!
! = 0.66, Power = 1.0). 

Using the Tukey’s HSD Post Hoc, one can observe that there are statistically significant differences between experiments using the 

PSO, DPSO and FODPSO segmentation algorithms, for both CPU processing time and fitness function. 
 

Table X: Tukey’s HSD Post Hoc Test to the Maximum Communication Distance 

 

Algorithm Fitness Value CPU Time 

PSO vs DPSO -15.47* 549.69* 

PSO vs FODPSO -37.33* 682.05* 

DPSO vs FODPSO -21.86* 132.37* 

* The corresponding mean difference is significant at the 0.05 level 

All p-values corresponding to the mean differences are equal to 0.001  
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Once again, the FODPSO produces better solutions than both the PSO and DPSO in terms of fitness value. Furthermore, as expected, 

the DPSO produces better solutions than the PSO.  As shown in Table X (also shown in Fig. 8) based on Tukey’s HSD Post Hoc test, 

the fractional-order algorithm is able to once again reach a better fitness solution in less time. Moreover, the differences between the 

FODPSO and the other algorithms are more evident as the segmentation level increases. This should be highly appreciated as many 

applications require real-time multi-segmentation methods (e.g., autonomous deployment of sensor nodes in a given environment).  

 

      

Figure 8: Estimated marginal means of the: a) fitness value; b) CPU processing time. 

In summary, it is possible to observe that the FODPSO is faster than the DPSO since fractional calculus is used to control the conver-

gence rate of the algorithm. As described in [48], a swarm behavior can be divided into exploitation and exploration. The exploitation 

behavior is related with the convergence of the algorithm, allowing a good short-term performance. However, if the exploitation level 

is too high, then the algorithm may be stuck on local solutions. On the other hand, the exploration behavior is related with the diversi-

fication of the algorithm which allows exploring new solutions, thus improving the long-term performance. However, if the explora-

tion level is too high, then the algorithm may take too much time to find the global solution. In the DPSO, the trade-off between ex-

ploitation and exploration can only be handled by adjusting the inertia weight 𝑤. While a large inertia weight improves exploration 

activity, the exploitation may be improved using a small inertia weight. Since the FODPSO presents a fractional calculus strategy to 

control the convergence of particles with memory effect, the coefficient α allows providing a higher level of exploration while ensur-

ing the global solution of the algorithm (cf., [36]). 

IV.	CLASSIFICATION	

Although the main idea behind this work is to introduce a thresholding base segmentation technique, it is of interest to see the effec-

tiveness of the new segmentation method on classification. In this way, this section presents a novel framework to prove the efficiency 

of the proposed method for classification. The proposed classification method is based on the FODPSO and the Support Vector Ma-

chine (SVM) classifier. Since we do not have reference samples for the first data set, the classification is only performed on the second 

data set. Fig. 9 shows the general idea of the proposed classification approach. As can be seen, the data have been first classified with 

SVM and a Gaussian kernel. The hyper parameters have been selected using 5-fold cross validation. Each variable has been scaled 

between -1 and 1. To carry out a fair evaluation, the input is classified only once while the output of this step is used for all different 

levels. By doing that, the accuracy of the classification for different methods is only dependent on the effect of the segmentation 

method. In parallel, the input data is transformed using the Principal Component Analysis (PCA) and the first Principal Component 

(PC) is kept since the most of the variance is provided by that. The output of this step is segmented by proposed FODPSO method. 

In the final step, the results of the SVM and the FODPSO are combined by using Majority Voting (MV).  
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Fig. 9: Illustrative flowchart of the new classification approach. 

	

Fig. 10 depicts the general idea of the proposed approach with MV. The output of segmentation methods is a few number of 

objects and each object consist of several pixels with the same label. In other words, pixels in each object share the same char-

acteristics. To perform the MV on the output of the segmentation and classification steps, a counting on the number of pixels 

with different class labels in each object is first carried out. Subsequently, the all pixels in each object are assigned to the most 

frequent class label for the object. In the case where two classes have the same (most frequent) proportions in one object, the object 

is not assigned to any of those classes and the result of the traditional SVM is considered for each pixel in the object directly. 

 

	

Fig. 10: Integration of the classification and segmentation steps using MV [4]. 

	

	

	

The procedure of the new classification approach is described step-by-step as it follows: 

I. The input data is classified by SVM; 

II. The input data is transformed by PCA and the first PC is kept; 

III. The output of II is segmented by FODPSO; 

IV. The result of I and III are combined using MV; 
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Fig. 11 illustrates the classification map of the standard SVM and the proposed classification method with 10-, 12- and 14-level 

segmentation by FODPSO. The output of the SVM presents a lot of noisy pixels which decreases the accuracy of the classifica-

tion. The result of the overall accuracy and kappa coefficient for the SVM and the new method with 10-, 12-, and 14-levels are 

shown in Table X. For a better understanding, the classification accuracy for each class is also included in the table. All 3 seg-

mentation levels improve the result of the SVM classification. The accuracy increases when the number of levels increases from 

10 to 14. The main reason behind that phenomenon is denoted as under segmentation in which several objects are merged into a 

single one. This problem can be easily solved by increasing the number of levels. SVM+FODPSO with 10-, 12-, and 14-levels 

improve the kappa coefficient of SVM by 1, 2.2 and 2.6, respectively. 

	

	
Fig. 11: The classification map of the standard SVM and the proposed classification method with 10-, 12- and 14-level segmentation by FODPSO 

 

Table X: The result of the standard SVM and the proposed classification method with 10-, 12- and 14-level of segmentation by FODPSO. Classification 

accuracies are given in percentage. 

 

Class Samples  SVM SVM+ 

FODPSO(10) 

SVM+ 

FODPSO(12) 

SVM+ 

FODPSO(14) 

No Name Training Test      

1 Asphalt 840 5791  94.4 87.1 95.4 96.1 

2 Meadow 2317 16332  98.1 96.9 97.6 96.9 

3 Gravel 253 1846  77.9 98.8 98.2 98.5 

4 Trees 373 2691  93.0 99.7 98.6 99.0 

5 Metal sheets 149 1196  99.2 100 99.9 100 

6 Bare soil 619 4410  89.4 96.0 93.7 97.4 

7 Bitumen 181 1149  85.8 97.3 97.9 97.8 

8 Bricks 480 3202  92.0 91.0 87.4 86.5 

9 Shadow 135 812  99.4 99.1 99.9 99.9 

Overall Accuracy   94.3 95.0 96.0 96.2 

Kappa Coefficient   92.4 93.4 94.68 95.0 

	

V.	CONCLUSION	

In this paper, a novel multilevel thresholding segmentation method is proposed for grouping the pixels of multispectral and hyperspec-

tral images into different homogenous regions. The new method is based on Fractional-Order Darwinian Particle Swarm Optimiza-

tion (FODPSO) which is used for finding the optimal set of threshold values and uses many swarms of test solutions which may exist 

at any time. In the FODPSO, each swarm individually performs just like an ordinary Particle Swarm Optimization (PSO) algorithm 

with a set of rules governing the collection of swarms that are designed to simulate natural selection. Moreover, the concept of frac-

tional derivative is used to control the convergence rate of particles. Experimental results compare the FODPSO with the classical 

PSO and Darwinian PSO (DPSO) within multi-level segmentation problems on remote sensing images from different points of view 

such as CPU time and corresponding fitness value. Segmentation methods were carried out on two different test cases. The first test 

case was a multispectral image related to native vegetation, grasslands, logged areas and barren soil. The second test case was a hyper-



 

 

16 

spectral image which is from an urban area, showing a wide variety of human artifacts. Experimental results indicate that the FODPSO 

is more robust than the two other methods and has a higher potential for finding the optimal set of thresholds with more between-class 

variance in less computational time, especially for higher segmentation levels and for images with a wide variety of intensities. In 

addition, to show the efficiency of the proposed segmentation method on the result of classification, a novel classification approach 

based on the new segmentation method and Support Vector Machines (SVM) is proposed. Results confirm that the new segmentation 

method improves the SVM in terms of classification accuracies when compared to the standard SVM classification of the raw image 

data. It should be noted that this is the first time that the concept of FODPSO is used in remote sensing, thus showing the potential of its 

use in efficient image segmentation to determine broad groups of objects. As future work, due to the low computational complexity of 

the algorithm, the FODPSO will be evaluated in image segmentation applications for the real-time autonomous deployment and distrib-

uted localization of sensor nodes. The objective is to deploy the nodes only in the terrains of interest, which are identified by segment-

ing the images captured by a camera on board of an unmanned aerial vehicle using the FODPSO algorithm. Such a deployment has 

importance for emergency applications, such as disaster monitoring and battlefield surveillance. In addition, finding a way for the 

estimation of the number of thresholds (parameter n) and joint multichannel segmentation instead of segmenting data set band by band 

would be of interest.  
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