
Multilevel k-way Hypergraph Partitioning�

George Karypis and Vipin Kumar
fkarypis, kumarg@cs.umn.edu

Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

In this paper, we present a new multilevelk-way hypergraph parti-
tioning algorithm that substantially outperforms the existing state-
of-the-artK-PM/LR algorithm for multi-way partitioning. both for
optimizing local as well as global objectives. Experiments on the
ISPD98 benchmark suite show that the partitionings produced by
our scheme are on the average 15% to 23% better than those pro-
duced by theK-PM/LR algorithm, both in terms of the hyperedge
cut as well as the(K�1) metric. Furthermore, our algorithm is sig-
nificantly faster, requiring 4 to 5 times less time than that required
by K-PM/LR.

1 Introduction

Hypergraph partitioning is an important problem with extensive ap-
plication to many areas, including VLSI design [9], efficient stor-
age of large databases on disks [13], and data mining [12]. The
problem is to partition the vertices of a hypergraph intok roughly
equal parts, such that a certain objective function defined over the
hyperedges is optimized. A commonly used objective function is to
minimize the number of hyperedges that span different partitions;
however, a number of other objective functions are also considered
useful [9].

The most commonly used approach for computing ak-way par-
titioning is based on the recursive bisection paradigm, that reduces
the problem of computing ak-way partitioning to that of perform-
ing a sequence of bisections. The problem of computing an optimal
bisection of a hypergraph is at least NP-hard [23]; however, many
heuristic algorithms have been developed. The survey by Alpert
and Kahng [9] provides a detailed description and comparison of
various such schemes. Recently a new class of hypergraph bisec-
tion algorithms has been developed [10, 24, 14, 21], that are based
upon the multilevel paradigm. In these algorithms, a sequence of
successively smaller (coarser) hypergraphs is constructed. A bi-
section of the smallest hypergraph is computed. This bisection is
then successively projected to the next level finer hypergraph, and

�This work was supported the Army Research Office contract DA/DAAG55-98-
1-0441, the NSF CCR-9423082, and the Army High Performance Computing Re-
search Center cooperative agreement number DAAH04-95-2-0003/contract number
DAAH04-95-C-0008. This work was also supported by IBM Partnership Award. Re-
lated papers are available via WWW at URL:http://www.cs.umn.edu/˜karypis

at each level an iterative refinement algorithm (e.g., KL [1] or FM
[2]) is used to further improve the bisection. Experiments presented
in [24, 14, 21] have shown that multilevel hypergraph bisection al-
gorithms can produce substantially better partitionings than those
produced by non-multilevel schemes. In particular,hMETIS [18], a
multilevel hypergraph bisection algorithm based upon the work in
[24] has been shown to find substantially better bisections than cur-
rent state-of-the-art iterative refinement algorithms for the ISPD98
benchmark set that contains many large circuits [16].

Despite the success of multilevel recursive bisection algorithms,
there are a number of advantages of computing thek-way partition-
ing directly (rather than computing it successively via recursive bi-
section). First, a recursive bisection algorithm does not allows us
to directly optimize objectives that are global in nature and depend
on having a direct view of allk partitions. Some examples of such
objectives are the sum of external degrees (SOED), scaled cost, and
absorption [9]. Second, ak-way partitioning algorithm is capable
of enforcing tighter balancing constraints while retaining the abil-
ity to sufficiently explore the feasible solution space to optimize the
partitioning objective. This is especially true when the partitioning
solution must simultaneously satisfy multiple balancing constraints
[19]. Third, a method that obtains ak-way partitioning directly can
potentially produce much better partitionings than a method that
computes ak-way partitioning via recursive bisection [7].

For these reasons, researchers have investigated a number ofk-
way partitioning algorithms that try to compute ak-way partition-
ing directly, rather than via recursive bisection. The most notable
of them are the generalization of the FM algorithm fork-way parti-
tioning [3, 6], the spectral multi-way ratio-cut [5], the primal-dual
algorithm of [4], the geometric embedding [8], the dual-net method
[11], and theK-PM/LR algorithm [17]. A key problem faced by
some of these algorithms is that thek-way FM refinement algo-
rithm easily gets trapped in local minima. The recently developed
K-PM/LR algorithm by Cong and Lim [17] attempts to solve this
problem by refining ak-way partitioning by applying a sequence of
2-way FM refinement to pairs of domains. The pairing of domains
is based on the gain of the last pass, and the pairwise cell movement
passes continues until no further gain can be obtained. The experi-
ments presented in [17] have shown thatK-PM/LR outperforms the
k-way FM partitioning algorithm of Sanchis [3, 6] by up to 86.2%
and outperforms the recursive FM partitioning algorithm by up to
17.3%. Nevertheless, all of the above partitioners tend to produce
solutions that are inferior to those produced by the state-of-the-art
multilevel recursive bisection algorithms, especially when they are
used to optimize an objective that can directly be optimized by the
recursive bisection framework (e.g., minimize the hyperedge cut)
[16].

In this paper we present a newk-way partitioning algorithm
that is based on the multilevel paradigm. The multilevel paradigm

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

can be used to directly construct ak-way partitioning of a hyper-
graph using the framework illustrated in Figure 1. The hypergraph
is coarsened successively as before. But the coarsest hypergraph
is now directly partitioned intok parts, and thisk-way partitioning
is successively refined as the partitioning is projected back into the
original hypergraph. A key contribution of our work is a simple
and yet powerful scheme for refining ak-way partitioning in the
multilevel context. Thisk-way partitioning refinement scheme is
substantially simpler and faster than either thek-way FM [3], or
theK-PM/LR algorithm [17], but is equally effective in the multi-
level context.

G
G

1G

2G

3G

4G

O

3G

O

1G

2G

C
oa

rs
en

in
g

P
ha

se

U
ncoarsening P

hase

Initial Partitioning Phase

Multilevel k-way partitioning

Figure 1: The various phases of the multilevelk-way partitioning
algorithm.

We evaluate the performance of our multilevelk-way partition-
ing algorithm both in terms of the partitioning quality as well as
computational requirements on the ISPD98 benchmark [16]. Our
experiments show that the multilevelk-way hypergraph partition-
ing algorithm produces high quality partitioning in a relatively small
amount of time. The quality of the partitionings produced by our
scheme are on the average 15% to 23% better than those produced
by theK-PM/LR [17] algorithm, both in terms of the hyperedge cut
as well as the(K�1) metric. Furthermore, our algorithm is signif-
icantly faster, requiring 4 to 5 times less time than that required
by K-PM/LR and provides partitions that adhere to tighter balanc-
ing constraints. Compared to the state-of-the-art multilevel recur-
sive bisection, our experiments show that with respect to the hyper-
edge cut, our algorithm produces partitions of comparable quality,
whereas with respect to the SOED, our algorithm produces parti-
tions that are up to 18% better. Furthermore, our multilevelk-way
partitioning algorithm is in general two times faster than multilevel
recursive bisection, and this ratio increases with the size of the hy-
pergraph.

2 Multilevel k-way Hypergraph Partitioning

Formally, a hypergraphG= (V;E) is defined as a set of verticesV
and a set of hyperedgesE, where each hyperedge is a subset of the
vertex setV [22], and the size of a hyperedge is the cardinality of
this subset. Thek-wayhypergraph partitioning problem is defined
as follows: Given a hypergraphG= (V;E) and an overall load im-
balance tolerancec such thatc� 1:0, the goal is to partition the
setV into k disjoint subsets,V1;V2; : : : ;Vk such that the number of

vertices in each setVi is bounded byjVj=(ck)� jVi j � cjVj=k, and
a function defined over the hyperedges is optimized. The require-
ment that the size of each partition is bounded is referred to as the
partitioning constraint, and the requirement that a certain function
is optimized is referred to as thepartitioning objective.

One of the most commonly used objective function is tomini-
mize the hyperedge-cutof the partitioning;i.e., the total number of
hyperedges that span multiple partitions. Another objective that is
often used is tominimize the sum of external degrees(SOED) of all
hyperedges that span multiple partitions. Given ak-way partition-
ing and a hyperedgee, the external degree ofe is defined to be 0, if
e is not cut by the partitioning, otherwise it is equal to the number
of partitions that is spanned bye. An objective related to SOED is
to minimize the(K�1) metric [9, 17]. In the case of the(K�1)
metric, the cost of a hyperedge that spansK partitions is(K�1),
whereas for the SOED metric, the cost isK.

Next we describe the three phases of the multilevelk-way par-
titioning algorithm in detail.

Coarsening Phase During the coarsening phase, a sequence of
successively smaller hypergraphs is constructed. As in the case
of the multilevel hypergraph bisection algorithm [24], the coarsen-
ing phase serves the following three purposes. First it leads to a
small hypergraph such that a goodk-way partitioning of the small
hypergraph is not significantly worse than thek-way partitioning
directly obtained for the original hypergraph. Second, the differ-
ent successively coarsened versions of the hypergraph allow local
refinement techniques such as FM to become effective. Third, hy-
pergraph coarsening also helps in successively reducing the sizes
of the hyperedges. That is, at each level of coarsening, large hy-
peredges are contracted to smaller hyperedges. This is particularly
helpful, since iterative refinement heuristics (e.g., KL or FM) are
very effective in refining small hyperedges but are quite ineffective
in refining hyperedges with a large number of vertices belonging to
different partitions.

Three primary schemes have been developed for selecting what
groups of vertices will be merged together to form single vertices
in the next level coarse hypergraphs. The first scheme callededge-
coarsening(EC) [24, 14, 21], selects the groups by finding a max-
imal set of pairs of vertices (i.e., matching) that belong in many
hyperedges. In this scheme, each group consists of at most two
vertices (some vertices are not combined at all), and each vertex
belongs to exactly one group. The second scheme that is called
hyperedge-coarsening(HEC) [24] finds a maximal independent set
of hyperedges, and the sets of vertices that belong to each hyper-
edge becomes a group of vertices to be merged together. In this
scheme, each group can have an arbitrary number of vertices (even
though preference is given to smaller groups), and each vertex also
belongs to exactly one group. Finally, the third scheme called
FirstChoice(FC) [20] groups together vertices, such that each ver-
tex in the group is highly connected with at least one other vertex
in the same group (i.e., both vertices are present in many hyper-
edges). In this scheme, each group consists of an arbitrary number
of vertices, and each vertex belongs to exactly one group.

The coarsening phase ends when the coarsest hypergraph has a
small number of vertices. Since our goal is to compute ak-way par-
titioning, the number of vertices in this smaller hypergraph should
be a function ofk, to ensure that a reasonably balanced partitioning
can be computed by the initial partitioning algorithm. In our exper-
iments, for ak-way partition, we stop the coarsening process when
the number of vertices becomes less thanck, wherec= 100.

Initial Partitioning Phase The second phase of the multilevel
k-way partitioning algorithm is to compute ak-way partitioning of
the coarsest hypergraph such that the balancing constraint is satis-
fied and the partitioning objective is optimized. Since during coars-

ening, the weights of the vertices and hyperedges of the coarser hy-
pergraph were set to reflect the weights of the vertices and hyper-
edges of the finer hypergraph, the coarsest hypergraph contains suf-
ficient information to intelligently enforce the balancing constraint
and optimize the partitioning objective. In our algorithm, thek-way
partitioning of the coarsest hypergraph is computed using our mul-
tilevel hypergraph bisection algorithm [24], that is available in the
hMETIS package [18].

Uncoarsening Phase During the uncoarsening phase, a parti-
tioning of the coarser hypergraph is successively projected to the
next level finer hypergraph, and a partitioning refinement algorithm
is used to optimize the objective function without violating the par-
titioning balancing constraints. Since the next level finer hyper-
graph has more degrees of freedom, such refinement algorithms
tend to improve the solution quality.

In the case of bisection refinement, the FM algorithm [2] has
been shown to produce very good results [24]. However, refin-
ing ak-way partitioning is significantly more complicated because
vertices can move from a partition to many other partitions; thus,
increasing the optimization space combinatorially. An extension
of the FM refinement algorithm in the case ofk-way refinement is
described in [3]. This algorithm usesk(k�1) priority queues, one
for each type of move. In each step of the algorithm, the moves
with the highest gain are found from each of thesek(k�1) queues,
and the move with the highest gain that preserves or improves the
balance, is performed. After the move, all of thek(k�1) priority
queues are updated. The complexity ofk-way refinement is sig-
nificantly higher than that of 2-way refinement, and is only practi-
cal for small values ofk. Furthermore, as the experiments in [17]
suggest, thek-way FM algorithm is also very susceptible of being
trapped into a local minima that is far from being optimal.

The hill-climbing capability of the FM algorithm serves a very
important purpose. It allows movement of an entire cluster of ver-
tices across a partition boundary. Note that it is quite possible that
as the cluster is moved across the partition boundary, the value of
the objective function increases, but after the entire cluster of ver-
tices moves across the partition, then the overall value of the ob-
jective function comes down. In the context of multilevel schemes,
this hill-climbing capability becomes less important. The reason is
that these clusters of vertices are often coarsened into a single ver-
tex at successive coarsening phases. Hence, movement of a vertex
at a coarse level really corresponds to the movement of a group of
vertices in the original hypergraph.

If the hill-climbing part of the FM algorithm is eliminated (i.e.,
if vertices are moved only if they lead to positive gain), then it
becomes less useful to maintain a priority queue. This is because
vertices whose move results in a large positive gain will most likely
be moved anyway even if they are not moved earlier (in the priority
order). Hence, a variation of the FM algorithm that simply visits
the vertices in a random order and moves them if they result in a
positive gain is likely to work well in the multilevel context. Fur-
thermore, the complexity of this algorithm will be independent of
the number of partitions being refined, leading to a fast algorithm.
This observation has lead to us to develop agreedy refinemental-
gorithm. It consists of a number of iterations. In each iteration all
the vertices are checked to see if they can be moved so that the par-
titioning objective function is optimized, subject to the partitioning
balancing constraint (as described in Section 2). As the results in
Section 3 show, despite the simplicity of our refinement algorithms,
they produce high quality partitionings in small amount of time.

More precisely, our greedyk-way refinement algorithm works
as follows. Consider a hypergraphGi = (Vi ;Ei), and its partitioning
vectorPi . The vertices are visited in a random order. Letv be such
a vertex, letPi [v] = a be the partition thatv belongs to. Ifv is a node
internal to partitiona thenv is not moved. Ifv is at the boundary

of the partition, thenv can potentially be moved to one of the parti-
tionsN(v) that vertices adjacent tov belong to (the setN(v) is often
refer to as theneighborhoodof v). Let N0(v) be the subset ofN(v)
that contains all partitionsb such that movement of vertexv to par-
tition b does not violate the balancing constraint. Now the partition
b2 N0(v) that leads to the greatest positive reduction (gain) in the
objective function is selected andv is moved to that partition.

The above greedy refinement algorithm can be used to compute
a partitioning that minimizes a variety of objective functions, by
appropriately computing the gain achieved in moving a vertex. Our
current implementation allows a choice of two different objective
functions. The first minimizes the hyperedge cut and the second
minimizes the SOED.

Experiments with this greedyk-way refinement algorithm show
that it converges after a small number of iterations. In our exper-
iments, we found that for most hypergraphs, the algorithm con-
verged within four to eight iterations.

3 Experimental Results

We experimentally evaluated the quality of the partitionings pro-
duced by our multilevelk-way hypergraph partitioning algorithm
(hMETIS-Kway) on the 18 hypergraphs that are part of the ISPD98
circuit partitioning benchmark suite [16]. The characteristics of
these hypergraphs are shown in Table 1. In addition to the circuits,
the ISPD98 benchmark also contains the actual areas for each one
of the cell. However, to make it easy to compare our results with
those of other researchers [17], we used only unit cell-areas in our
experiments. Furthermore, for some circuits, the actual areas of
some cells is higher than 1/8 of the overall area, making it impos-
sible to produced balanced 8-, 16-, and 32-way partitionings. We
performed all of our experiments on a 300MHz Pentium II–based
Linux workstation.

Benchmark No. of vertices No. of hyperedges
ibm01 12506 14111
ibm02 19342 19584
ibm03 22853 27401
ibm04 27220 31970
ibm05 28146 28446
ibm06 32332 34826
ibm07 45639 48117
ibm08 51023 50513
ibm09 53110 60902
ibm10 68685 75196
ibm11 70152 81454
ibm12 70439 77240
ibm13 83709 99666
ibm14 147088 152772
ibm15 161187 186608
ibm16 182980 190048
ibm17 184752 189581
ibm18 210341 201920

Table 1: The characteristics of the various hypergraphs used to
evaluate the multilevel hypergraph partitioning algorithms.

3.1 Comparison with the Multilevel Recursive Bisection

In our first set of experiments, we compare the performance of our
multilevelk-way partitioning algorithm to that of the multilevel re-
cursive bisection algorithm for computing 8-, 16-, and 32-way par-
titionings. Our multilevelk-way partitioning algorithm was com-
pared against the multilevel bisection algorithm [24] that is part
of the hMETIS [18] hypergraph partitioning package. For the rest
of this paper, we will refer to this recursive bisection algorithm as

hMETIS-RB, and we will refer to our multilevelk-way partitioning
algorithm ashMETIS-Kway.

Both hMETIS-RB and hMETIS-Kway used the FC scheme for
coarsening [20]. For refinement,hMETIS-RB used the FM algo-
rithm whereas thehMETIS-Kway used the greedy refinement algo-
rithm described in Section 2. To compute a bisection usinghMETIS-
RB, we performed a total of 20 different runs, and then we further
improved the best bisection using the V-cycle refinement technique
[24]. To ensure that the overallk-way partitioning does not be-
come significantly unbalanced, each bisection was computed using
a [48;52] balancing constraint (i.e., the smaller part must contain at
least 48% of the vertices). Consequently, the effective overall bal-
ancing constraints for the 8-, 16-, and 32-way partitionings were
[0:483 = 0:111; :523 = 0:141], [0:484 = 0:053; :524 = 0:073], and
[0:485 = 0:025; :525 = 0:038], respectively. In other words, these
balancing constraints allow an overall maximum load imbalance of
12.5%, 17.0%, and 21.7%, for the 8-, 16-, and 32-way partition-
ings, respectively. We also performed a total of 20 different runs
for hMETIS-Kway, and we also used the V-cycle refinement tech-
nique to further improve the quality of the bestk-way partitioning.
In all the experiments,hMETIS-Kway used an overall load imbal-
ance tolerance of 1.10, meaning that the weight of the heaviest par-
tition will be less than 10% higher than the average weight of thek
partitions.

hMETIS-RB hMETIS-Kway
Circuit 8-way 16-way 32-way 8-way 16-way 32-way
ibm01 760 1258 1723 795 1283 1702
ibm02 1720 3150 4412 1790 3210 4380
ibm03 2503 3256 4064 2553 3317 4120
ibm04 2857 3989 5094 2902 3896 5050
ibm05 4548 5465 6211 4464 5612 5948
ibm06 2452 3356 4343 2397 3241 4231
ibm07 3454 4804 6300 3422 4764 6212
ibm08 3696 4916 6489 3544 4718 6154
ibm09 2756 3902 5502 2680 3968 5490
ibm10 4301 6190 8659 4263 6209 8612
ibm11 3592 5260 7514 3713 5371 7534
ibm12 5913 8540 11014 6183 8569 11392
ibm13 3042 5522 7541 2744 5329 7610
ibm14 5501 8362 12681 5244 8293 12838
ibm15 6816 8691 13342 6855 9201 13853
ibm16 6871 10230 15589 6737 10250 15335
ibm17 9341 15088 20175 9420 15206 19812
ibm18 5310 8860 13410 5540 9025 13102

ARQ 1.002 0.996 1.006 0.998 1.004 0.994

Run-time 21872.22 25941.12 30325.48 10551.7 14227.52 19572.45

Table 2: The number of hyperedges that are cut by the multilevel
recursive bisection algorithm (hMETIS-RB) and the multilevelk-
way partitioning algorithm (hMETIS-Kway) for 8-, 16-, and 32-way
partitionings, and the amount of time that is required.

Table 2 shows the number of hyperedges that are cut by both
hMETIS-RB and hMETIS-Kway for an 8-, 16-, and 32-way parti-
tioning for all the circuits of the ISPD98 benchmark. For this set
of experiments, the objective ofhMETIS-Kway algorithm was to
minimize the hyperedge cut. As can be seen from Table 2,hMETIS-
Kway produces partitions whose cut is comparable to those pro-
duced byhMETIS-RB. The row labeled “ARQ” shows theAver-
age Relative Qualityof one scheme versus the other. For exam-
ple, the ARQ value of 1.002 for the 8-way partitioning ofhMETIS-
RB means that the cuts produced byhMETIS-RB are on the aver-
age 0.2% higher than the corresponding cuts produced byhMETIS-
Kway. An ARQ value that is less than 1.0 indicates that the par-
ticular scheme on the average performs better. Looking at the var-
ious ARQ values, we see that on average,hMETIS-Kway performs
0.2% and 0.6% better thanhMETIS-RB for the 8- and 32-way par-

titionings, respectively, and 0.4% worse for the 16-way partition-
ing. The fact thathMETIS-Kway cuts the same number of hyper-
edges ashMETIS-RB, is especially interesting if we consider (i) the
simplicity of the greedy refinement scheme used byhMETIS-Kway
as opposed to the much more sophisticated FM algorithm used
by hMETIS-RB, and (ii) the fact that compared tohMETIS-Kway,
hMETIS-RB operates under more relaxed balancing constraints.

The last row of Table 2 shows the total amount of time required
by the two algorithms in order to compute the 8-, 16-, and 32-way
partitionings. As we can see,hMETIS-Kway is 2.07, 1.82, and 1.55
times faster thanhMETIS-RB for computing an 8-, 16-, and a 32-
way partitioning, respectively. Note that this relative speed advan-
tage ofhMETIS-Kway decreases ask increases. This is primarily
due to the fact that the recursive bisection algorithm used in the ini-
tial partitioning takes a larger fraction of the overall time (as the size
of the coarsest hypergraph is proportional to the number of parti-
tions).hMETIS-Kway will continue running faster thanhMETIS-RB
if the size of the hypergraph is increased proportionally to the num-
ber of partitions.

hMETIS-RB hMETIS-Kway
Circuit 8-way 16-way 32-way 8-way 16-way 32-way
ibm01 1768 2938 4566 1750 2883 4149
ibm02 3940 8040 13039 3850 7556 11821
ibm03 5909 8719 11667 5820 8205 11077
ibm04 6461 9595 13008 6214 8992 12495
ibm05 11572 16070 22708 10749 15206 20020
ibm06 6160 9631 13988 5784 8661 12779
ibm07 7885 12116 16806 7586 11040 15559
ibm08 9031 13040 18819 7979 10976 15327
ibm09 6073 9016 13193 5822 8634 12460
ibm10 9458 14543 21060 9144 13130 19941
ibm11 7940 12023 17857 7874 11706 17118
ibm12 12975 19563 27026 12910 17848 25228
ibm13 7010 12792 18484 6079 11819 17350
ibm14 12360 19189 30484 11258 18232 29699
ibm15 15198 21314 32039 14586 20826 31874
ibm16 14853 23237 37234 14616 22924 34879
ibm17 20423 34177 48256 19930 33344 45961
ibm18 12940 21765 34069 12177 19598 30558

ARQ 1.048 1.068 1.076 0.954 0.936 0.929

Table 3: The sum of external degrees (SOED) of the hyperedges
that are cut by the partitionings produced by the multilevel recur-
sive bisection algorithm (hMETIS-RB) and the multilevelk-way par-
titioning algorithm (hMETIS-Kway) for 8-, 16-, and 32-way parti-
tionings, and the amount of time that is required.

To test the effectiveness ofhMETIS-Kway for optimizing the
SOED, we ran another set of experiments in which the objective of
hMETIS-Kway was to minimize the SOED. Table 3 shows the sum
of external degrees (SOED) of the partitionings produced by both
hMETIS-RB andhMETIS-Kway for an 8-, 16-, and 32-way partition-
ing for all the circuits of the ISPD98 benchmark. From this table
we can see that for all cases,hMETIS-Kway produces partitionings
whose SOEDs are better than those produced byhMETIS-RB. On
the average,hMETIS-Kway performs 4.8%, 6.8%, and 7.6% better
thanhMETIS-RB for the 8-way, 16-way, and 32-way partitionings,
respectively. These results show thathMETIS-Kway is effective in
incorporating global objective functions which can only be opti-
mized in the context of ak-way refinement algorithm.

3.2 Comparison with K-PM/LR

We compared the performance of our multilevelk-way partitioning
algorithm against the multi-way partitioning algorithmK-PM/LR
developed by Cong and Lim [17].

Table 4 shows the number of hyperedges that are cut by both

hMETIS-Kway andK-PM/LR for an 8- and a 16-way partitioning1.
In these experiments, for bothhMETIS-Kway and K-PM/LR, the
partitioning objective was to minimize the hyperedge cut. The re-
sults forhMETIS-Kway are the same as shown in Table 2, whereas
the results fromK-PM/LR are taken from [17]. Note that the re-
sults forK-PM/LR were obtained by using balancing constraints
that correspond to those obtained by recursive bisection if it used
a [0:45;0:55] balancing constraint at each level. Consequently,
the balancing constraints for the 8- and 16-way partitioning are
[0:453 = 0:091;0:553 = 0:166] and[0:454 = 0:041;0:554 = 0:092],
respectively. Note that these balancing constraints are consider-
ably more relaxed than the 10% overall load imbalanced used by
hMETIS-Kway. If we translate the balancing constraints enforced
by K-PM/LR to maximum allowable load imbalances fork-way
partitioning, we see thatK-PM/LR allows up to 32.8% and 47.2%
load imbalance, for the 8-, and 16-way partitionings, respectively.

From Table 4 we can see thathMETIS-Kway produces partition-
ings that cut significantly fewer hyperedges than those cut byK-
PM/LR. In fact, on the average,hMETIS-Kway cuts 20% and 23%
fewer hyperedges thanK-PM/LR for the 8- and 16-way partition-
ings, respectively. Thus, even thoughhMETIS-Kway operates under
tighter balancing constraints, it is able to produce partitionings that
cut substantially fewer hyperedges thanK-PM/LR.

hMETIS-Kway K-PM/LR
Circuit 8-way 16-way 8-way 16-way
ibm01 795 1283 1020 1699
ibm02 1790 3210 1751 3592
ibm03 2553 3317 3882 5736
ibm04 2902 3896 3559 5349
ibm05 4464 5612 4834 6419
ibm06 2397 3241 3198 4815
ibm07 3422 4764 4398 6854
ibm08 3544 4718 4466 6477
ibm09 2680 3968 4115 6046
ibm10 4263 6209 5252 8559
ibm11 3713 5371 6086 8871
ibm12 6183 8569 7736 11000
ibm13 2744 5329 3570 7066
ibm14 5244 8293 6753 9854
ibm15 6855 9201 8965 11345
ibm16 6737 10250 7543 10456
ibm17 9420 15206 10654 17653
ibm18 5540 9025 5765 9653

ARQ 0.802 0.771 1.247 1.297

Run-time 10551.7 14227.52 105840 134640

Table 4: The number of hyperedges that are cut byhMETIS-Kway
and theK-PM/LR partitioning algorithms for 8- and 16-way parti-
tionings, and the amount of time required. Note thathMETIS-Kway
was run on a Pentium II@300Mhz, whereasK-PM/LR was run on
a Ultra Sparc1@143Mhz.

The last row of Table 4 shows the amount of time required by
hMETIS-Kway andK-PM/LR. Note that theK-PM/LR was run on a
Sun Ultra Sparc1 running at 143Mhz. Our experiments have shown
that the Sun Ultra Sparc1 running at 143Mhz is about twice as slow
than the Pentium II running at 300Mhz that we used for ourhMETIS-
Kway experiments). Taking this CPU performance difference into
account, we see thathMETIS-Kway is 5 times faster for the 8-way
partitioning, and 4.7 times faster for the 16-way partitioning. Thus,
compared toK-PM/LR, hMETIS-Kway not only cuts substantially
fewer hyperedges but it is also significantly faster thanK-PM/LR.

Finally, Cong and Lim [17] also reported results using the min-
imization of the(K � 1) metric as the objective function ofK-
PM/LR. Table 5 shows the cost of the solutions with respect to the

1We were not able to compare results for 32-way partitioning, because they are not
reported in [17].

hMETIS-Kway K-PM/LR
Circuit 8-way 16-way 8-way 16-way
ibm01 930 1592 1109 1821
ibm02 1750 4058 1892 4152
ibm03 3083 4745 4119 5662
ibm04 3320 4956 3671 5766
ibm05 5958 8982 6543 9344
ibm06 3300 5248 3988 5900
ibm07 4115 5948 4707 6854
ibm08 4312 6102 5426 7364
ibm09 3043 4564 4187 5978
ibm10 4763 6944 5518 8525
ibm11 4174 6303 5321 8420
ibm12 6598 9358 7530 10495
ibm13 3319 6394 3667 7382
ibm14 5962 9734 7427 12476
ibm15 8104 11182 11008 14448
ibm16 7529 12052 9322 14901
ibm17 10510 17740 11818 20830
ibm18 6410 10498 6982 11692

ARQ 0.840 0.849 1.191 1.178

Table 5: The(K � 1) metric of the partitionings obtained by
hMETIS-Kway and theK-PM/LR partitioning algorithms for 8- and
16-way partitionings.

(K�1) metric obtained by bothhMETIS-Kway andK-PM/LR for
an 8- and a 16-way partitioning. Note that forhMETIS-Kway, the
value for the(K�1) metric was obtained by performing the parti-
tioning using the minimization of the SOED as the objective. From
this table we can see thathMETIS-Kway also produces partitionings
that are consistently and significantly better than those produced by
K-PM/LR. In particular, the(K�1)-metric cost ofhMETIS-Kway
is, on the average, 15% and 14% smaller than the cost ofK-PM/LR
for the 8- and 16-way partitionings, respectively.

4 Conclusions

The multilevelk-way partitioning scheme presented in this paper
substantially outperforms the state-of-the-artK-PM/LR algorithm
for multi-way partitioning [17] both for minimizing the hyperedge
cut as well as minimizing the(K�1) metric. The power ofhMETIS-
Kway is primarily derived from the robustness of the multilevel
paradigm that allows the use of a simplek-way partitioning refine-
ment heuristic instead of theO(k2) complexityk-way FM refine-
ment [3] or a sequence of pair-wise FM refinements [17]. The
simplek-way refinement heuristic is able to perform an excellent
job in optimizing the objective function, as it is applied to succes-
sively finer hypergraphs. Furthermore, as our experiments indicate,
the multilevelk-way paradigm offers the additional benefit of pro-
ducing high quality partitionings while enforcing tight balancing
constraints.

References

[1] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs.The Bell System Technical Journal, 49(2):291–307, 1970.

[2] C. M. Fiduccia and R. M. Mattheyses. A linear time heuristic for improving
network partitions. InIn Proc. 19th IEEE Design Automation Conference, pages
175–181, 1982.

[3] L. A. Sanchis. Multiple-way network partitioning.IEEE Transactions on Com-
puters, pages 62–81, 1989.

[4] C. W. Yeh, C. K. Cheng, and T. T. Lin. A general purpose multiple-way partition-
ing algorithm. InProc. of the Design Automation Conference, pages 421–426,
1991.

[5] P. Chan, M. Schlag, and J. Zien. Spectralk-way ratio-cut partitioning and clus-
tering. InProc. of the Design Automation Conference, pages 749–754, 1993.

[6] L. A. Sanchis. Multiple-way network partitioning with different cost functions.
IEEE Transactions on Computers, pages 1500–1504, 1993.

[7] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? Tech-
nical Report RNR-93-012, NAS Systems Division, NASA, Moffet Field, CA,
1993.

[8] C. J. Alpert and A. B. Kahng. Multi-way partitioning via space-filling curves and
dynamic programming. InProc. of the Design Automation Conference, pages
652–657, 1994.

[9] Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist partitioning.
Integration, the VLSI Journal, 19(1-2):1–81, 1995.

[10] S. Hauck and G. Borriello. An evaluation of bipartitioning technique. InProc.
Chapel Hill Conference on Advanced Research in VLSI, 1995.

[11] J. Cong, W. Labio, and N. Shivakumar. Multi-way VLSI circuit partitioning
based on dual net representation.IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, pages 396–409, 1996.

[12] B. Mobasher, N. Jain, E.H. Han, and J. Srivastava. Web mining: Pattern discov-
ery from world wide web transactions. Technical Report TR-96-050, Department
of Computer Science, University of Minnesota, Minneapolis, 1996.

[13] S. Shekhar and D. R. Liu. Partitioning similarity graphs: A framework for
declustering problmes.Information Systems Journal, 21(4), 1996.

[14] C. J. Alpert, J. H. Huang, and A. B. Kahng. Multilevel circuit partitioning. In
Proc. of the 34th ACM/IEEE Design Automation Conference, 1997.

[15] George Karypis and Vipin Kumar. A coarse-grain parallel multilevelk-way par-
titioning algorithm. InProceedings of the eighth SIAM conference on Parallel
Processing for Scientific Computing, 1997.

[16] C. J. Alpert. The ISPD98 circuit benchmark suite. InProc. of the Intl. Symposium
of Physical Design, pages 80–85, 1998.

[17] Jason Cong and Sung Kyu Lim. Multiway Partitioning with Pairwise Movement.
In Intl. Conference on Computer Aided Design, 1998.

[18] G. Karypis and V. Kumar.hMETIS 1.5: A hypergraph partitioning package. Tech-
nical report, Department of Computer Science, University of Minnesota, 1998.
Available on the WWW at URLhttp://www.cs.umn.edu/˜metis.

[19] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph par-
titioning. In Proceedings of Supercomputing, 1998. Also available on WWW at
URL http://www.cs.umn.edu/˜karypis.

[20] G. Karypis and V. Kumar. Multilevelk-way hypergraph partitioning. Technical
Report TR 98-036, Department of Computer Science, University of Minnesota,
1998.

[21] Sverre Wichlund and Einar J. Aas. On Multilevel Circuit Partitioning. InIntl.
Conference on Computer Aided Design, 1998.

[22] C. Berge.Graphs and Hypergraphs. American Elsevier, New york, 1976.

[23] Michael R. Garey and David S. Johnson.Computers and Instractability: A Guide
to the Theory of NP–Completeness. W.H Freeman, San Francisco, CA, 1979.

[24] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multi-
level hypergraph partitioning: Application in vlsi domain.IEEE Transactions
on VLSI Systems, 1998 (to appear). A short version appears in the proceedings
of DAC 1997.

