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Multilevel Markov Chain Monte Carlo∗
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Abstract. In this paper we address the problem of the prohibitively large computational cost of existing Markov
chain Monte Carlo methods for large-scale applications with high-dimensional parameter spaces, e.g.,
in uncertainty quantification in porous media flow. We propose a new multilevel Metropolis–Hastings
algorithm and give an abstract, problem-dependent theorem on the cost of the new multilevel estima-
tor based on a set of simple, verifiable assumptions. For a typical model problem in subsurface flow,
we then provide a detailed analysis of these assumptions and show significant gains over the stan-
dard Metropolis–Hastings estimator. Numerical experiments confirm the analysis and demonstrate
the effectiveness of the method with consistent reductions of more than an order of magnitude in
the cost of the multilevel estimator over the standard Metropolis–Hastings algorithm for tolerances
ε < 10−2.
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1. Introduction. The parameters in mathematical models for real world processes are
often impossible to determine fully or accurately, and are hence subject to uncertainty. Sim-
ulations with these models are frequently used to inform decisions and assess risk, and it is
hence of great importance to quantify the uncertainty in the model outputs induced by the
uncertainty in the model parameters. A popular way to achieve this is stochastic modelling.
Based on available information coming from, for example, expert knowledge, a probability
distribution is assigned to the input parameter θ. This distribution is known as the prior
distribution in the Bayesian framework. If, in addition, some dynamic data (or observations)
Fobs of the model outputs are available, it is possible to reduce the overall uncertainty in the
input parameters and to get a better representation of the model by conditioning their prior
distribution on this data, leading to the posterior distribution of θ in the Bayesian framework.

The goal of simulations is often to compute expected values (or higher order moments)
of quantities of interest under the posterior distribution. This can be achieved by sampling
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from the posterior and taking a sample average. In most situations, however, the posterior
distribution is intractable in the sense that exact sampling from it is impossible. One way
to circumvent this problem is to generate a Markov chain of samples using a Metropolis–
Hastings-type Markov chain Monte Carlo (MCMC) approach [38, 51, 52], which consists of
two main steps: (i) given the current state of the chain, a proposal for the next state is
generated according to some proposal distribution, such as a random walk; (ii) the likelihood
of this new sample (i.e., the fit of the proposed sample to the observed data Fobs) is compared
to the likelihood of the current sample. Based on this comparison, the proposed sample is
either accepted and used for inference, or rejected and the current sample is used again. This
procedure leads to a Markov chain of samples, and under mild conditions (including ergodicity
of the chain), the sample average will converge to the desired expected value.

A major problem with MCMC is the high cost of the likelihood calculation for large-
scale applications, e.g., in subsurface flow where, for accuracy reasons, a partial differential
equation (PDE) with highly varying coefficients needs to be solved numerically on a fine spatial
grid. This means that the generation of each single sample is computationally very expensive.
Furthermore, the number of samples required to achieve a given accuracy is typically large,
easily in the order of 106, due to the slow convergence of the sampling error in Monte Carlo
averaging. Altogether, this often leads to an intractably high overall complexity, particularly
in the context of high-dimensional parameter spaces (typical in subsurface flow), where the
acceptance rate of proposed samples in MCMC methods can be very low.

We show here how the computational cost of the standard Metropolis–Hastings algorithm
can be reduced significantly by using a multilevel approach. This has already proved highly
successful in the context of computing expected values under tractable distributions for sub-
surface flow problems [11, 2, 33, 8, 60], i.e. in cases where it is possible to generate independent
and identically distributed (i.i.d.) samples from the distribution of interest. The multilevel
Monte Carlo (MLMC) method was first introduced by Heinrich for the computation of high-
dimensional, parameter-dependent integrals [41], and then rediscovered by Giles [30] in the
context of stochastic differential equations in finance. Similar ideas were also used in [4, 5] to
accelerate statistical mechanics calculations. Multilevel methods reduce the total simulation
cost by utilising different discretisations of the underlying model. Most simulations are done
with a low cost, low accuracy discretisation to capture the bulk behaviour, while a few high
cost, high accuracy simulations are added to increase the overall accuracy. A more detailed
introduction to the multilevel methodology is given in section 1.1 and section 3.

The main contributions of this work are the following:
(i) The development of a multilevel Metropolis-Hastings algorithm that is generally ap-

plicable to Bayesian inference problems in computationally expensive models. The
practical algorithm is given in Algorithm 3.

(ii) A complexity theorem (cf. Theorem 3.4) that quantifies, for an abstract inference
problem, the gains in the ε-cost of the multilevel Metropolis–Hastings algorithm over
the standard version, i.e., the cost to achieve a root mean square error less than ε, in
terms of powers of the tolerance ε.

(iii) Verification of the assumptions of Theorem 3.4 for a particular application in station-
ary, single phase subsurface flow with log-normal permeability prior and exponential
covariance; it is shown that the ε-cost of the new multilevel version is indeed one order
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of ε lower than its single-level counterpart (cf. Theorem 4.9), i.e., O(ε−(d+1)−δ) instead
of O(ε−(d+2)−δ), for any δ > 0, where d is the spatial dimension of the problem.

(iv) Numerical experiments that confirm the theoretical results for d = 2. For ε around
10−3, the absolute cost is about O(10–50) times lower than that of single-lvevel
MCMC, which is a vast improvement and brings the cost of the multilevel MCMC
estimator down to the level of multilevel MC estimators based on i.i.d. samples, pro-
viding real hope for practical applications of MCMC analyses in subsurface flow and
other large-scale PDE applications. In fact, in practice the cost for the multilevel
estimator grows only like O(ε−d), but this is most likely a preasymptotic effect.

The outline of the rest of the paper is as follows. In section 1.1, we start with a simple
introduction to multilevel Monte Carlo methods, before providing some further context in
sections 1.2–1.4. In section 2, we recall, in a very general context, the Metropolis–Hastings
algorithm, together with results on its convergence. In section 3, we then present a new
multilevel version and give a general convergence analysis under a set of problem-dependent,
but verifiable, assumptions. A typical model problem arising in subsurface flow modelling
is then presented in section 4. We briefly describe the application of the new multilevel
algorithm to this application and give a rigorous convergence analysis and cost estimate of
the new multilevel estimator by verifying the abstract assumptions from section 3. Finally, in
section 5, we present some numerical results for the model problem discussed in section 4.

1.1. Background on multilevel Monte Carlo methods. Let A(θ) be some quantity of
interest that depends on a random parameter θ. Suppose that we want to compute the ex-
pected value E[A] with respect to the distribution of θ, which here is assumed to be tractable,
such that we can sample from it exactly. Furthermore, suppose that A(θ) cannot be computed
exactly for a given value of θ, but that we only have access to a hierarchy of approximations
{Aℓ}∞ℓ=0 with A = limℓ→∞Aℓ. The parameter ℓ is referred to as the level and we assume that
the computational cost to compute a sample of Aℓ grows exponentially while the approxima-
tion error decreases exponentially with ℓ→ ∞. For values of ℓ close to 0, samples from Aℓ are
inaccurate but computationally cheap, while for larger values of ℓ, they are more accurate but
significantly more expensive. This situation arises, for example, in the context of PDEs where
the hierarchy relates to different computational grids used in the numerical approximation,
but is not restricted to that case.

Choosing L large enough such that AL is a sufficiently accurate approximation of A, and
using a sample average, we obtain the Monte Carlo (MC) estimator

E[A] ≈ E[AL] ≈
1

N

N∑

i=1

AL(θ
i) =: ÂMC

N,L

where {θi}Ni=1 is a set of i.i.d. samples of the random parameter θ. This Monte Carlo estimator
can quickly become computationally infeasible, since evaluating AL for a given value θi is
typically expensive and a large number N of samples are required due to the slow O(N−1/2)
convergence rate of the statistical (or sampling) error.
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The basic idea in multilevel Monte Carlo is to exploit the linearity of expectation, to write

E[AL] = E[A0] +

L∑

ℓ=1

E[Aℓ −Aℓ−1]

and to estimate each of the expected values on the right hand side independently with a level-
dependent number of samples Nℓ, resulting in the multilevel Monte Carlo (MLMC) estimator

ÂMLMC
{Nℓ},L

=
1

N0

N0∑

i=1

A0(θ
(i,0)) +

L∑

ℓ=1

1

Nℓ

Nℓ∑

i=1

(
Aℓ(θ

(i,ℓ))−Aℓ−1(θ
(i,ℓ))

)
.

This can be seen as a systematic use of a hierarchy of control variates.
It may not be immediately clear how the MLMC estimator offers computational savings

compared to the standard MC estimator, since we now need to compute L+1 individual MC
estimators, but the crucial observation is that each of these estimators is cheap to compute.
The first estimator only involves samples from the cheapest approximation A0 (rather than
from AL), leading to huge computational savings. On the other hand, if Aℓ → A sample-wise
then the difference terms Aℓ − Aℓ−1 tend to zero in mean-square. This convergence is again
exponential in ℓ, leading to a huge variance reduction on the higher levels. Since the mean-
square error of a sample average is proportional to its variance, the number of samples Nℓ,
which is necessary to estimate E[Aℓ−Aℓ−1] accurately via a sample average, can then also be
chosen to decrease exponentially as ℓ → ∞. A crucial point to note here is that, in order to
make the variance V[Aℓ −Aℓ−1] small, the same sample θ(i,ℓ) is used on both levels.

Under suitable assumptions on the hierarchy {Aℓ}∞ℓ=0, one can prove a general theorem on
the computational complexity of MLMC estimators, and hence quantify the gains compared
to standard MC estimators (cf. [30, Thm. 3.1], [11, Thm. 1]:

Theorem 1.1. Let ε < e1 and suppose there are constants α, β, γ > 0 with α ≥ 1
2 min(β, γ)

such that, for all ℓ ≥ 0,

(i) |E[Aℓ −A]| = O(2−αℓ), (ii) V[Aℓ+1 −Aℓ] = O(2−βℓ) and (iii) Cost (Aℓ(θ
i)) = O(2γℓ).

Then there exists L ∈ N and {Nℓ}Lℓ=0 ⊂ N, such that E
[
ÂMLMC

{Nℓ},L
− E[A]

]
< ε2 and

Cost
(
ÂMLMC

{Nℓ},L

)
=





O
(
ε−2
)
, for δ > 0,

O
(
ε−2 log(ε)2

)
, for δ = 0,

O
(
ε−2− γ−β

α

)
, for δ < 0.

The extension of the multilevel approach to MCMC methods is not straightforward. As
mentioned, in general the posterior distribution is intractable since the likelihood evaluation
for each proposal requires a model evaluation and the model was assumed to be available only
in the form of a hierarchy of approximations indexed by the approximation level ℓ. Thus, on
each level ℓ, in order to maintain the same cost assumption, the samples θ(i,ℓ) have to come
from a different distribution. In order to avoid introducing extra bias in the estimator, we
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construct two parallel Markov chains {θnℓ }n≥0 and {Θn
ℓ−1}n≥0 on levels ℓ and ℓ− 1, each from

the correct posterior distribution on the respective level. To be able to choose Nℓ small, we
need to make sure that the variance of Aℓ(θ

n
ℓ ) − Aℓ−1(Θ

n
ℓ−1) is small, i.e. we need to ensure

that θnℓ and Θn
ℓ−1 are suitably correlated. The coarser of the two chains is constructed using

the standard Metropolis–Hastings algorithm, for example, using a (preconditioned) random
walk. The main innovation of the paper is the introduction of a new proposal distribution for
the finer of the two chains, {θnℓ }n≥0, which involves the coarse chain {Θn

ℓ−1}n≥0.

1.2. Relation to Delayed Acceptance and the Surrogate Transition Method. The idea
of using computationally cheaper approximations of the underlying model to speed up MCMC
computations is not new. Similar two-level sampling strategies had been investigated before
[50, Sect. 9.4.3] (see also [9, 25, 27]). However, the computationally cheaper coarse models
were used only to accelerate the MCMC sampling, and not as control variates in the estimator.

1.3. Recent developments. This section provides an overview over recent developments
in multilevel methods in the context of this article. The multilevel methodology is an ex-
tremely powerful tool to reduce the computational cost of uncertainty quantification and risk
assessment in computationally intensive simulations. This is a very active area of research,
and for a full overview of developments, we refer the reader to the multilevel community
web-page [31] maintained by Mike Giles.

A significant recent research direction in multilevel methods has been the move away
from standard Monte Carlo based on i.i.d. random sampling towards more sophisticated
sampling methods. To improve on the standard Monte Carlo convergence rate of N−1/2 of
the sampling error of estimators based on N samples, one can make use of Quasi-Monte Carlo
and sparse grid quadrature methods [48, 37, 22, 47, 59]. Both of these methodologies are well-
established in the context of high-dimensional quadrature, and can achieve faster convergence
rates, independent of the underlying parameter dimension, for a large class of problems.

A particular focus has been the situation where i.i.d. sampling is simply not available, due
to the complexity of the sampling distribution. The motivation is typically the application to
Bayesian inference problems or to sequential inference problems arising in the context of data
assimilation and filtering. This includes the Metropolis-Hastings type Markov chain Monte
Carlo estimators considered in this work, as well as importance sampling based multilevel
Markov chain Monte Carlo methods [42], multilevel sequential Monte Carlo methods and
multilevel particle filters [35, 3, 45, 20, 49, 46], multilevel ensemble Kalman filters [44], mul-
tilevel approximate Bayesian computation [61], multilevel stochastic gradient Markov chain
Monte Carlo algorithms [32] and multilevel methods based on ratio estimators [54, 21]. We
would also like to point out here that the ”levels” in the references above are not necessarily
defined through a hierarchy of meshes, but can also involve different numbers of particles (e.g.
[35, 44]) or different subsets of the observed data (e.g. [32]).

There have also been several developments following directly from this work, applying the
developed methodology in new application areas such as decision making in reservoir sim-
ulation [26] or deformable registration in medical imaging [55]. On the methodology side,
[14] examine the use of more advanced proposal distributions in the multilevel Metropolis–
Hastings estimator. Using dimension-independent likelihood-informed (DILI) proposal distri-
butions [15], the authors show significant gains in the practical performance of the algorithm.
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Finally, the authors in [1] use coupled Markov chains, similar to the ones used in this work,
for unbiased estimation in intractable distributions.

1.4. Changes to original publication. This article was originally published as the refer-
ence [23], and the following changes have been made to this SIGEST version:

The introduction has been expanded to include more background material and a section
on recent developments in the field. In accordance with the erratum [24], we have further
corrected the statements of Lemma 4.6 and Lemma 4.7, in which the original claims about
symmetric proposal distributions were incorrect. Furthermore, the rates of convergence in
equations (4.23) and (4.25) have been corrected. As a result of the corrections above, equations
(4.14) and (4.19) were removed, so these equation numbers no longer exist in this reprint.

2. Standard Markov chain Monte Carlo. We will start with a review of the standard
Metropolis–Hastings algorithm, described in a general context. For ease of presentation, we
leave a precise mathematical description of our model problem until section 4. We denote by
θ := (θi)

R
i=1 the R

R-valued random input vector to the model, and denote by X := (Xj)
M
j=1 =

X(θ) the RM -valued random output. Further, we letQM,R = G(X) be some linear or nonlinear
functional of X. In the context of groundwater flow modelling, this could, for example, be
the value of the pressure or the Darcy flux at or around a given point in the computational
domain, or the outflow over parts of the boundary. In practice, both θ and X are often finite-
dimensional approximations of infinite-dimensional objects, and an underlying “true” model
is recovered as M,R → ∞. We shall therefore refer to M as the discretization level of the
model. For more details see section 4.

We consider the setting where we have some real-world data (or observations) Fobs avail-
able and want to incorporate this information into our simulation in order to reduce the
overall uncertainty. The data Fobs is assumed to be finite-dimensional, with Fobs ∈ R

m for
some m ∈ N, and usually corresponds to another linear or nonlinear functional F(X) of the
model output.

Let us denote the density of the conditional distribution of θ given Fobs by P(θ |Fobs).
Using Bayes’ theorem, we have

P(θ |Fobs) =
L(Fobs | θ)πR0 (θ)

P(Fobs)
h L(Fobs | θ)πR0 (θ).

In the Bayesian framework, one usually refers to the conditional distribution P(θ |Fobs) as the
posterior distribution, to L(Fobs | θ) as the likelihood, and to πR0 (θ) as the prior distribution.
Since the normalizing constant P(Fobs) is not known in general, the conditional distribution
P(θ |Fobs) is generally intractable, and exact sampling is not available.

The likelihood L(Fobs | θ) gives the probability of observing the data Fobs given a particular
value of θ. In practice, this usually involves computing the model response FM,R := F (X(θ))
and comparing this to the observed data Fobs. Note that since the model response depends
on the discretization parameter M , in practice we compute an approximation LM (Fobs | θ) of
the true likelihood L(Fobs | θ). We will denote the corresponding density of the approximate
posterior distribution by

πM,R(θ) h LM (Fobs | θ)πR0 (θ).
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Now let νM,R(θ) := πM,R(θ) dθ denote the probability measure corresponding to the den-
sity πM,R. We assume that as M,R → ∞, we have EνM,R [QM,R] → Eρ [Q] for some (in-
accessible) random variable Q and measure ρ. The goal of the simulation is to estimate
EνM,R [QM,R] for M , R sufficiently large. Hence, we compute approximations (or estimators)

Q̂M,R of EνM,R [QM,R]. To estimate this with a Monte Carlo–type estimator, or, in other
words, by a finite sample average, we need to generate samples from the conditional distri-
bution νM,R, which is usually intractable, as already mentioned. Instead, we will use the
Metropolis–Hastings MCMC algorithm in Algorithm 1.

Algorithm 1 (Metropolis–Hastings MCMC).

Choose θ0. For n ≥ 0:
• Given θn, generate a proposal θ′ from a given proposal distribution q(θ′|θn).
• Accept θ′ as a sample with probability

(2.1) αM,R
(
θ′|θn

)
= min

{
1,
πM,R(θ′) q(θn|θ′)
πM,R(θn) q(θ′|θn)

}
,

i.e., θn+1 = θ′ with probability αM,R and θn+1 = θn with probability 1− αM,R.

Algorithm 1 creates a Markov chain {θn}n∈N, and the states θn are used as samples for
inference in a Monte Carlo sampler in the usual way. The proposal distribution q(θ′|θn) is
what defines the algorithm. A common choice is a simple random walk. However, as outlined
in [36], the basic random walk does not lead to a convergence that is independent of the input
dimension R. A better choice is a preconditioned Crank–Nicholson (pCN) algorithm [13],
which is also a crucial ingredient in the multilevel Metropolis–Hastings algorithm applied to
the subsurface flow model problem below.

Under reasonable assumptions, one can show that θn ∼ νM,R as n→ ∞, and that sample
averages computed with these samples converge to expected values with respect to the desired
target distribution νM,R (see Theorem 2.2). The first few samples of the chain, say θ0, . . . , θn0 ,
are not usually used for inference to allow the chain to get close to the target distribution
νM,R. This is referred to as the burn-in of the MCMC algorithm. Although the length
of the burn-in is crucial for practical purposes, and largely influences the behavior of the
resulting MCMC estimator for finite sample sizes, asymptotic statements about the estimator
are usually independent of the burn-in. We will denote our MCMC estimator by

(2.2) Q̂MC
N :=

1

N

N+n0∑

n=n0+1

QnM,R =
1

N

N+n0∑

n=n0+1

G (X(θn))

for any n0 ≥ 0, and only explicitly state the dependence on n0 where needed.

2.1. Convergence analysis of standard Metropolis–Hastings MCMC. Let us give a brief
overview of the convergence properties of Algorithm 1, which we will need below in the analysis
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of the multilevel variant. For more details we refer the reader to, e.g., [52]. Let

K(θ′|θ) := αM,R(θ′|θ) q(θ′|θ) +
(
1−

∫

RR

αM,R(θ′′|θ) q(θ′′|θ) dθ′′
)
δ(θ − θ′)

denote the transition kernel of the Markov chain {θn}n∈N, with δ(·) the Dirac delta function,
and let

E = {θ : πM,R(θ) > 0},
D = {θ : q(θ|θ∗) > 0 for some θ∗ ∈ E}.

The set E contains all parameter vectors which have a positive posterior probability and
is the set that Algorithm 1 should sample from. The set D, on the other hand, consists of
all samples which can be generated by the proposal distribution q and hence contains the
set that Algorithm 1 will actually sample from. For the algorithm to fully explore the target
distribution, we therefore crucially require E ⊂ D. The following results are classical and can
be found in [52].

Lemma 2.1. Provided that E ⊂ D, νM,R is a stationary distribution of the chain {θn}n∈N.
Note that the condition E ⊂ D is also sufficient for the transition kernel K(·|·) to satisfy

the usual detailed balance condition K(θ|θ∗)πM,R(θ∗) = K(θ∗|θ)πM,R(θ).
Theorem 2.2. Suppose that EνM,R [|QM,R|] <∞ and

(2.3) q(θ|θ∗) > 0 for all (θ, θ∗) ∈ E × E .

Then

lim
N→∞

Q̂MC
N = EνM,R [QM,R] for any θ0 ∈ E and n0 ≥ 0.

The condition (2.3) is sufficient for the chain {θn}n∈N to be irreducible, and it is satisfied,
for example, for the random walk sampler or for the pCN algorithm (cf. [36]). Lemma 2.1
and Theorem 2.2 above ensure that asymptotically, sample averages computed with samples
generated by Algorithm 1 converge to the desired expected value. In particular, we note that
stationarity of {θn}n∈N is not required in Theorem 2.2, and the estimator converges for any
burn-in n0 ≥ 0 and for all initial values θ0 ∈ E .

Now that we have established the (asymptotic) convergence of the MCMC estimator (2.2),
let us bound its cost. We will quantify the accuracy of our estimator via the mean square
error (MSE)

(2.4) e(Q̂MC
N )2 := EΘ

[(
Q̂MC
N − Eρ(Q)

)2]
,

where EΘ denotes the expected value with respect to the joint distribution of Θ := {θn}n∈N
as generated by Algorithm 1 (not with respect to the target measure νM,R). We denote
by Cε(Q̂MC

N ) the computational ε-cost of the estimator, i.e., the number of floating point

operations needed to achieve an MSE e(Q̂MC
N )2 < ε2.

Classically, the MSE can be written as the sum of the variance of the estimator and its
bias squared,

e(Q̂MC
N )2 = VΘ

[
Q̂MC
N

]
+
(
EΘ

[
Q̂MC
N

]
− Eρ [Q]

)2
.
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Here, VΘ is again the variance with respect to the approximating measure generated by
Algorithm 1. Using the triangle inequality and linearity of expectation, we can further bound
this by

(2.5) e(Q̂MC
N )2 ≤ VΘ

[
Q̂MC
N

]
+2
(
EΘ

[
Q̂MC
N

]
− EνM,R

[
Q̂MC
N

])2
+2 (EνM,R [QM,R]− Eρ [Q])2 .

The three terms in (2.5) correspond to the three sources of error in the MCMC estimator.
The third (and last) term in (2.5) is the discretization error due to approximating Q by QM,R

and ρ by νM,R. The other two terms are the errors introduced by using an MCMC estimator
for the expected value; the first term is the error due to using a finite number of samples, and
the second term is due to the samples not all being perfect (i.i.d.) samples from the target
distribution νM,R.

Let us first consider the two MCMC related error terms. Quantifying, or even bounding,
the variance and bias of an MCMC estimator in terms of the number of samples N is not an
easy task, and is in fact still a very active area of research. The main issue with bounding the
variance is that the samples used in the MCMC estimator are not independent, which means
that knowledge of the covariance structure is required in order to bound the variance of the
estimator. Asymptotically, the behavior of the MCMC related errors (i.e., terms 1 and 2 on
the right-hand side of (2.5)) can be described using the following central limit theorem, which
again can be found in [52].

Let θ̃0 ∼ νM,R. Then the auxiliary chain Θ̃ := {θ̃n}n∈N constructed by Algorithm 1
starting from θ̃0 is stationary; i.e., θ̃n ∼ νM,R for all n ≥ 0. The covariance structure of Θ̃
is still implicitly defined by Algorithm 1 as for Θ. However, now V

Θ̃
[Q̃nM,R] = VνM,R [Q̃M,R],

E
Θ̃
[Q̃nM,R] = EνM,R [Q̃M,R], and

Cov
Θ̃

[
Q̃0
M,R, Q̃

n
M,R

]
= E

Θ̃

[(
Q̃0
M,R − EνM,R [QM,R]

)(
Q̃nM,R − EνM,R [QM,R]

)]

for any n ≥ 0, where Q̃nM,R := G(X(θ̃n)). The so-called asymptotic variance of the MCMC
estimator is now defined as

(2.6) σ2Q := VνM,R

[
Q̃M,R

]
+ 2

∞∑

n=1

Cov
Θ̃

[
Q̃0
M,R, Q̃

n
M,R

]
.

Note that stationarity of the chain is assumed only in the definition of σ2Q, i.e., for Θ̃, and it

is not necessary for the samples Θ actually used in the computation of Q̂MC
N .

Theorem 2.3 (central limit theorem). Suppose (2.3) holds, σ2Q <∞, and

(2.7) P
[
αM,R = 1

]
< 1.

Then we have, for any n0 ≥ 0 and θ0 ∈ E,
√
N
(
Q̂MC
N − EνM,R [QM,R]

)
D−→ N (0, σ2Q),

where
D−→ denotes convergence in distribution.
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The condition (2.7) is sufficient for the chain Θ to be aperiodic. It is difficult to prove
theoretically. In practice, however, this condition is always satisfied, since not all proposals in
Algorithm 1 will agree with the observed data and thus be accepted. Theorem 2.3 shows that
asymptotically, the sampling error of the MCMC estimator decays at the same rate as the
sampling error of an estimator based on i.i.d. samples. Note that this includes both sampling
errors, and so the constant σ2Q is in general larger than in the i.i.d. case, where it is simply
VνM,R [QM,R].

Since we are interested in a bound on the MSE of our MCMC estimator for a fixed number
of samples N , we make the following assumption.

A1. For any N ∈ N,

(2.8) VΘ

[
Q̂MC
N

]
+
(
EΘ

[
Q̂MC
N

]
− EνM,R

[
Q̂MC
N

])2
.

VνM,R [QM,R]

N
,

with a constant that is independent of M , N , and R.
Such nonasymptotic bounds on the sampling errors are difficult to obtain but have recently

been proved for certain Metropolis–Hastings algorithms (see, e.g., [36, 53, 42]), provided that
the chain is sufficiently burned in. The implied constant in assumption A1 usually depends on
quantities such as the covariances appearing in the asymptotic variance σ2Q and will in general
only be independent of the dimension R for judiciously chosen proposal distributions such as
the pCN algorithm. For the simple random walk, for example, the hidden constant grows
linearly in R. It is possible to relax assumption A1 and prove convergence for algorithms also
in this case, but we choose not to do this for ease of presentation.

To complete the error analysis, let us now consider the last term in the MSE (2.5), the
discretization bias. As before, we assume EνM,R [QM,R] → Eρ [Q] forM,R→ ∞ with a certain
order of convergence

(2.9) |EνM,R [QM,R]− Eρ [Q]| .M−α +R−α′

for some α, α′ > 0. The rates α and α′ will be problem dependent. Now let R = Mα/α′
such

that the two error contributions in (2.9) are balanced. Then it follows from (2.5), (2.8), and
(2.9) that the MSE of the MCMC estimator can be bounded by

(2.10) e(Q̂MC
N )2 .

VνM,R [QM,R]

N
+M−α.

Under the assumption that VνM,R [QM,R] can be bounded independently of M and R, it is
hence sufficient to choose N & ε−2 and M & ε−1/α to get an MSE of O(ε2).

To bound the computational cost to achieve this error, the so-called ε-cost, we assume
that one sample QnM,R can be obtained at cost C(QnM,R) . Mγ for some γ > 0. Thus, with

N & ε−2 and M & ε−1/α, the ε-cost of our MCMC estimator can be bounded by

(2.11) Cε(Q̂MC
N ) . NMγ . ε−2−γ/α.

In many practical applications, especially in subsurface flow, both the discretization pa-
rameterM and the length of the input R need to be very large in order for EνM,R [QM,R] to be
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a good approximation to Eρ [Q]. Moreover, as outlined above, we need to use a large number
of samples N in order to get an accurate MCMC estimator with a small MSE. Since each
sample requires the evaluation of the likelihood LM (Fobs|θn), and this is very expensive when
M and R are large, the standard MCMC estimator (2.2) is often too expensive in practical
situations. Additionally, the acceptance rate of the algorithm can be very low when R is large.
This means that the covariance between the different samples will decay more slowly, which
again makes the hidden constant in assumption A1 larger, and the number of samples we have
to take increases even further.

To overcome the prohibitively large computational cost of the standard MCMC estimator
(2.2), we will now introduce a new multilevel version of the estimator.

3. Multilevel Markov chain Monte Carlo algorithm. The main idea of multilevel Monte
Carlo (MLMC) simulation is very simple. We sample not just from one approximation QM,R

of Q but from several. Let us recall the main ideas from [30, 11].
Let {Mℓ}Lℓ=0 ⊂ N be an increasing sequence in N, i.e., M0 < M1 < · · · < ML =: M , and

assume for the sake of simplicity that there exists an s ∈ N\{1} such that

(3.1) Mℓ = sMℓ−1 for all ℓ = 1, . . . , L.

We also choose a (not necessarily strictly) increasing sequence {Rℓ}Lℓ=0 ⊂ N, i.e., Rℓ ≥ Rℓ−1

for all ℓ = 1, . . . , L. For each level ℓ, denote correspondingly the parameter vector by θℓ ∈ R
Rℓ ,

the quantity of interest by Qℓ := QMℓ,Rℓ
, the posterior distribution by νℓ := νMℓ,Rℓ , and the

posterior density by πℓ := πMℓ,Rℓ . For the sake of simplicity we assume that the parameter
vectors {θℓ}Lℓ=0 are nested, i.e., that θℓ−1 is a subset of θℓ, and that the elements of θℓ are
independent.

As for multigrid methods applied to discretized (deterministic) PDEs, the key is to avoid
estimating the expected value of Qℓ directly on level ℓ, but instead to estimate the correction
with respect to the next lower level. Since in the context of MCMC simulations, the target
distribution νℓ depends on ℓ, the new multilevel MCMC (MLMCMC) estimator has to be
defined carefully. We will use the identity

(3.2) EνL [QL] = Eν0 [Q0] +

L∑

ℓ=1

(Eνℓ [Qℓ]− Eνℓ−1 [Qℓ−1])

as a basis. Note that in the case where the distributions are the same, the above reduces to
the telescoping sum used for MLMC estimators based on i.i.d. samples.

The idea is now to estimate each of the terms on the right-hand side of (3.2) separately,
in such a way that the variance of the resulting multilevel estimator is small. In particular,
we will estimate each term in (3.2) by an MCMC estimator. The first term, Eν0 [Q0], can be
estimated using the standard MCMC estimator in Algorithm 1, i.e., Q̂MC

0,N0
as in (2.2) with N0

samples. We need to be more careful in estimating the differences Eνℓ [Qℓ]− Eνℓ−1 [Qℓ−1] and
build an effective two-level version of Algorithm 1. For every ℓ ≥ 1, we denote Yℓ := Qℓ−Qℓ−1

and define the estimator on level ℓ as

(3.3) Ŷ MC
ℓ,Nℓ

:=
1

Nℓ

nℓ
0+Nℓ∑

n=nℓ
0
+1

Y n
ℓ =

1

Nℓ

nℓ
0+Nℓ∑

n=nℓ
0
+1

Qℓ(θ
n
ℓ )−Qℓ−1(Θ

n
ℓ−1),
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where nℓ0 again denotes the burn-in of the estimator, Nℓ is the number of samples on level ℓ,
and Θℓ−1 has the same dimension as θℓ−1. The main ingredient in this two-level estimator
is a judicious choice of the two Markov chains {θnℓ } and {Θn

ℓ−1} (see section 3.1). The full
MLMCMC estimator is defined as

(3.4) Q̂ML
L,{Nℓ}

:= Q̂MC
0,N0

+

L∑

ℓ=1

Ŷ MC
ℓ,Nℓ

,

where it is important that the two chains {θnℓ }n∈N and {Θn
ℓ }n∈N, which are used in Ŷ MC

ℓ,Nℓ
and

in Ŷ MC
ℓ+1,Nℓ+1

, respectively, are drawn from the same posterior distribution νℓ, so that Q̂ML
L,{Nℓ}

is an unbiased estimator of EνL [QL].
There are two main ideas in [30, 11] underlying the reduction in computational cost asso-

ciated with the multilevel estimator. First, samples of Qℓ, for ℓ < L, are cheaper to compute
than samples of QL, reducing the cost of the estimators on the coarser levels for any fixed
number of samples. Second, if the variance of Yℓ = Qℓ(θℓ)−Qℓ−1(Θℓ−1) tends to 0 as ℓ→ ∞,
we need only a small number of samples to obtain a sufficiently accurate estimate of the ex-
pected value of Yℓ on the fine grids, and so the computational effort on the fine grids is also
greatly reduced.

By using the telescoping sum (3.2) and by sampling from the posterior distribution νℓ

on level ℓ, we ensure that a sample of Qℓ, for ℓ < L, is indeed cheaper to compute than a
sample of QL. It remains to ensure that the variance of Yℓ = Qℓ(θℓ) − Qℓ−1(Θℓ−1) tends to
0 as ℓ → ∞. This will be ensured by the choice of θℓ and Θℓ−1. Note that crucially, this
requires the two chains {θnℓ } and {Θn

ℓ−1} to be correlated. However, as long as the stationary

marginal distributions of {θnℓ } and {Θn
ℓ−1} are νℓ and νℓ−1, respectively, this correlation does

not introduce any bias in the telescoping sum (3.2).

3.1. The estimator for Qℓ − Qℓ−1. Let us fix 1 ≤ ℓ ≤ L. The challenge is now to
generate the chains {θnℓ }n∈N and {Θn

ℓ−1}n∈N such that the variance of Yℓ is small. To this end,
we partition the chain θℓ into two parts, the entries which are present already on level ℓ − 1
(the “coarse” modes) and the new entries on level ℓ (the “fine” modes):

θℓ = [θℓ,C , θℓ,F ],

where θℓ,C has length Rℓ−1, i.e., the same length as Θℓ−1. The vector θℓ,F has length Rℓ−Rℓ−1.
An easy way to construct θnℓ and Θn

ℓ−1 such that the variance of Yℓ is small would be to
generate θnℓ first and then simply use Θn

ℓ−1 = θnℓ,C . However, since we require Θn
ℓ−1 to come

from a Markov chain with stationary distribution νℓ−1, and θnℓ comes from the distribution νℓ,
this approach would lead to additional bias. We do, however, use a similar idea in Algorithm 2.

Let us for the moment assume that we have a way of producing i.i.d. samples from the
posterior distribution νℓ−1. Since the distributions νℓ−1 and νℓ are both approximations of the
true posterior distribution ρ and differ only in the choice of approximation parameters M and
R, the distributions νℓ−1 and νℓ will, for sufficiently large ℓ, be very similar. The distribution
νℓ−1 is hence an ideal candidate for the proposal distribution on level ℓ, and this is what is
used in Algorithm 2. First, we generate a sample Θn+1

ℓ−1 from the distribution νℓ−1, which is
independent of the previous sample Θn

ℓ−1. We will use the independence of these samples in
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Algorithm 2 (Metropolis–Hastings MCMC for Qℓ −Qℓ−1).

Choose initial states Θ0
ℓ−1 ∼ νℓ−1 and θ0ℓ := [Θ0

ℓ−1 , θ
0
ℓ,F ]. For n ≥ 0:

• On level ℓ − 1: Generate an independent sample Θn+1
ℓ−1 from the distribution

νℓ−1.
• On level ℓ: Given θnℓ and Θn+1

ℓ−1 , generate θ
n+1
ℓ using Algorithm 1 with the specific

proposal distribution qℓML(θ
′
ℓ | θnℓ ) induced by taking θ′ℓ,C := Θn+1

ℓ−1 and by gener-

ating a proposal for θ′ℓ,F from some proposal distribution qℓ,FML(θ
′
ℓ,F | θnℓ,F ) that is

independent of the coarse modes. The acceptance probability is

αℓML(θ
′
ℓ | θnℓ ) = min

{
1,
πℓ(θ′ℓ) q

ℓ
ML(θ

n
ℓ |θ′ℓ)

πℓ(θnℓ ) q
ℓ
ML(θ

′
ℓ|θnℓ )

}
.

Lemma 3.1. Based on Θn+1
ℓ−1 , we then generate θn+1

ℓ using a new two-level proposal density

qℓML in conjunction with the usual Metropolis–Hastings accept/reject step in Algorithm 1. In
particular, to make a proposal on level ℓ, we take θ′ℓ,C = Θn+1

ℓ−1 and independently generate

θ′ℓ,F from a proposal distribution qℓ,FML for the fine modes, which can again be a simple random
walk or the pCN algorithm.

At each step in Algorithm 2, there are two different outcomes, depending on whether we
accept or reject on level ℓ. The different possibilities are given in Table 1. Observe that when
we accept on level ℓ, we have θn+1

ℓ,C = Θn+1
ℓ−1 , i.e., the coarse modes are the same. If, on the

other hand, we reject on level ℓ, we crucially return to the previous state θnℓ on that level,
which means that the coarse modes of the two states may differ.

Table 1

Possible states of Θn+1

ℓ−1
and θn+1

ℓ,C in Algorithm 2.

Level ℓ test Θn+1

ℓ−1
θn+1

ℓ,C

accept Θn+1

ℓ−1
Θn+1

ℓ−1

reject Θn+1

ℓ−1
θnℓ,C

In general, this “divergence” of the coarse modes may mean that the variance of Yℓ does
not go to 0 as ℓ→ ∞ for a particular application. But, provided that the modes are ordered
according to their relative “influence” on the likelihood L(Fobs|θ), we can guarantee that
αℓML(θ

′
ℓ|θnℓ ) → 1 and thus that the variance of Yℓ does in fact tend to 0 as ℓ → ∞. We will

show this for a subsurface flow application in section 4.
The specific proposal distribution qℓML in Algorithm 2 can be computed very easily and at

no additional cost, leading to a simple formula for the “two-level” acceptance probability αℓML.
Lemma 3.1. Let ℓ ≥ 1. Then

αℓML(θ
′
ℓ | θnℓ ) = min

{
1,
πℓ(θ′ℓ)π

ℓ−1(θnℓ,C) q
ℓ,F
ML(θ

n
ℓ,F |θ′ℓ,F )

πℓ(θnℓ )π
ℓ−1(θ′ℓ,C) q

ℓ,F
ML(θ

′
ℓ,F |θnℓ,F )

}
,

and the induced transition kernel Kℓ
ML satisfies detailed balance.
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Furthermore, if the distribution qℓ,FML is either (i) symmetric, or (ii) the pCN proposal
distribution, then

αℓML(θ
′
ℓ | θnℓ ) =





min

{
1,
πℓ(θ′ℓ)π

ℓ−1(θnℓ,C)

πℓ(θnℓ )π
ℓ−1(θ′ℓ,C)

}
, case (i),

min

{
1,

Lℓ(Fobs | θ′ℓ)Lℓ−1(Fobs | θnℓ,C)
Lℓ(Fobs | θnℓ )Lℓ−1(Fobs | θ′ℓ,C)

}
, case (ii).

Proof. Since the proposals for the coarse modes θℓ,C and for the fine modes θℓ,F are
generated independently, the proposal density qℓML(θ

′
ℓ |θnℓ ) can be written as a product of

densities on the two parts of θℓ, i.e., qℓ,CML and qℓ,FML. For the coarse part of the proposal

distribution, we simply have qℓ,CML(θ
′
ℓ,C |θnℓ,C) = πℓ−1(θ′ℓ,C) and q

ℓ,C
ML(θ

n
ℓ,C |θ′ℓ,C) = πℓ−1(θnℓ,C).

This completes the proof of the first result. Detailed balance for Kℓ
ML follows triv-

ially due to the Metropolis–Hastings construction. The corollary for symmetric distribu-
tions qℓ,FML follows by definition. The corollary for pCN proposals follows from the identity

qℓ,FML(θ
n
ℓ,F |θ′ℓ,F )/q

ℓ,F
ML(θ

′
ℓ,F |θnℓ,F ) = πℓ,F0 (θnℓ,F )/π

ℓ,F
0 (θ′ℓ,F ) (see, e.g., [13]), together with the factor-

ization πℓ0(θℓ) = πℓ−1
0 (θℓ,C)π

ℓ,F
0 (θℓ,F ).

3.2. Recursive subsampling to generate i.i.d. samples from νℓ−1. In practice, it will
not be possible to generate independent samples of the coarse level posterior distribution νℓ−1

directly. We instead suggest approximating independent samples of νℓ−1 using Algorithm 1
in the following manner: After a sufficiently long burn-in period, Algorithm 1 will produce
samples which are (approximately) distributed according to νℓ−1. Although the samples
produced in this way are correlated, the correlation between the nth and (n + j)th sample
decays as j increases, and for sufficiently large j, the samples Θn

ℓ−1 and Θn+j
ℓ−1 will be nearly

uncorrelated. Hence, an i.i.d. sequence of samples of νℓ−1 can be approximated by subsampling
a chain {Θn

ℓ−1}n∈N generated by Algorithm 1 with, e.g., the pCN proposal distribution.
This procedure can be applied very naturally in a recursive manner. Starting on the

coarsest level, burning in a Markov chain of samples and subsampling this chain to produce
(nearly) independent samples from ν0, we can then apply Algorithm 2 to produce a Markov
chain of samples from ν1. This can then be subsampled again to apply Algorithm 2 on level 2.
Continuing in this way, we can recursively produce independent samples from νℓ−1 for any
ℓ > 0. See Algorithm 3 in section 5 for details.

Although in general the i.i.d. samples of νℓ−1 will in practice have to be approximated, for
the analysis of our multilevel algorithm we will assume that the chains {Θn

ℓ−1}n∈N and {θnℓ }n∈N
are generated as in Algorithm 2. The additional bias introduced in the practical Algorithm 3
below is in fact so small that we initially did not detect it in our numerical experiments, even
for very short subsampling rates.

3.3. Convergence analysis of the multilevel MCMC estimator. Let us now move on
to convergence properties of the multilevel estimator. As in section 2.1, we define, for all



MULTILEVEL MARKOV CHAIN MONTE CARLO 15

ℓ = 0, . . . , L, the sets

Eℓ = {θℓ : πℓ(θℓ) > 0},
Dℓ = {θℓ : qℓML(θℓ | θ∗ℓ ) > 0 for some θ∗ℓ ∈ Eℓ}.

The following convergence results follow from the classical results, due to the telescoping
sum property (3.2) and the algebra of limits.

Lemma 3.2. Provided that Eℓ ⊂ Dℓ, νℓ is a stationary marginal distribution of the chain
{θnℓ }n∈N.

Theorem 3.3. Suppose that for all ℓ = 0, . . . , L, Eνℓ [|Qℓ|] <∞ and

(3.5) qℓML(θℓ | θ∗ℓ ) > 0 for all θℓ, θ
∗
ℓ ∈ Eℓ.

Then
lim

{Nℓ}→∞
Q̂ML
L,{Nℓ}

= EνL [QL] for any θ0ℓ ∈ Eℓ and nℓ0 ≥ 0.

Let us have a closer look at the irreducibility condition (3.5). As in the proof of Lemma 3.1,
we have

qℓML(θℓ|θ∗ℓ ) = πℓ−1(θℓ,C) q
ℓ,F
ML(θℓ,F |θ∗ℓ,F ),

and thus (3.5) holds if and only if πℓ−1(θℓ,C) and qℓ,FML(θℓ,F |θ∗ℓ,F ) are both positive for all

(θℓ, θ
∗
ℓ ) ∈ Eℓ × Eℓ. Both terms are positive for common choices of likelihood, prior, and

proposal distributions.
We finish the abstract discussion of the new, hierarchical multilevel Metropolis–Hastings

MCMC algorithm with the main theorem that establishes a bound on the ε-cost of the mul-
tilevel estimator under certain assumptions on the MCMC error, on the (weak) model error,
and on the strong error between the states on level ℓ and on level ℓ − 1 (in the two-level
estimator for Yℓ), as well as on the cost Cℓ to advance Algorithm 2 by one state from n to
n+ 1 (i.e., one evaluation of the likelihood on level ℓ and one on level ℓ− 1). As in the case
of the standard MCMC estimator, this bound is obtained by quantifying and balancing the
decay of the bias and the sampling errors of the estimator.

To state our assumption on the MCMC error and to define the MSE of the estimator,
we introduce the following notation. We define Θℓ := {θnℓ }n∈N ∪ {Θn

ℓ−1}n∈N, for ℓ ≥ 1, and
Θ0 := {θn0 }n∈N and define by EΘℓ

(resp., VΘℓ
) the expected value (resp., variance) with

respect to the distribution of Θℓ generated by Algorithm 2. Furthermore, let us denote by
νℓ,ℓ−1 the joint distribution of θℓ and Θℓ−1, for ℓ ≥ 1, which is defined by the marginals of θℓ
and Θℓ−1 being νℓ and νℓ−1, respectively, and the correlation being determined by Algorithm
2. For the sake of convenience, we define Y0 := Q0, ν

0,−1 := ν0, and M−1 = R−1 = 1.
Theorem 3.4. Let ε < exp[−1], and suppose there are positive constants α, α′, β, β′, γ > 0

such that α ≥ 1
2 min(β, γ). Under the following assumptions, for ℓ = 0, . . . , L,

M1. |Eνℓ [Qℓ]− Eρ[Q]| ≤ CM1(M
−α
ℓ +R−α′

ℓ ),

M2. Vνℓ,ℓ−1 [Yℓ] ≤ CM2 (M−β
ℓ−1 +R−β′

ℓ−1),

M3. VΘℓ
[Ŷ MC
ℓ,Nℓ

] + (EΘℓ
[Ŷ MC
ℓ,Nℓ

]− Eνℓ,ℓ−1 [Ŷ MC
ℓ,Nℓ

])2 ≤ CM3 N
−1
ℓ Vνℓ,ℓ−1 [Yℓ],

M4. Cℓ ≤ CM4 M
γ
ℓ ,
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and, provided that Rℓ & M
max{α/α′,β/β′}
ℓ , there exist a number of levels L and a sequence

{Nℓ}Lℓ=0 such that

e(Q̂ML
L,{Nℓ}

)2 := E∪ℓΘℓ

[(
Q̂ML
L,{Nℓ}

− Eρ[Q]
)2]

< ε2

and

Cε(Q̂ML
L,{Nℓ}

) ≤ CML





ε−2 | log ε| if β > γ,

ε−2 | log ε|3 if β = γ,

ε−2−(γ−β)/α | log ε| if β < γ.

Proof. The proof of this theorem is very similar to the proof of the complexity theorem
in the case of multilevel estimators based on i.i.d. samples (cf. [11, Theorem 1]), which can
be found in the appendix of [11]. First note that by assumption we have R−α′

ℓ . M−α
ℓ and

R−β′

ℓ .M−β
ℓ .

Furthermore, in the same way as in (2.5), we can expand

e(Q̂ML
L,{Nℓ}

)2 ≤ V∪ℓΘℓ

[
Q̂ML
L,{Nℓ}

]
+2
(
E∪ℓΘℓ

[
Q̂ML
L,{Nℓ}

]
− EνL

[
Q̂ML
L,{Nℓ}

])2

︸ ︷︷ ︸
(I)

+2
(
EνL [QL]−Eρ[Q]

)2
.

It follows from the Cauchy–Schwarz inequality that

V∪ℓΘℓ

[
Q̂ML
L,{Nℓ}

]
=

L∑

l=0

VΘℓ
[Ŷ MC
ℓ,Nℓ

] + 2
∑

0≤ℓ<ℓ′≤L

Cov∪ℓΘℓ
[Ŷ MC
ℓ,Nℓ

, Ŷ MC
ℓ′,Nℓ′

] . (L+ 1)
L∑

l=0

VΘℓ
[Ŷ MC
ℓ,Nℓ

].

We can bound the second term in the MSE above by

(I) =

( L∑

l=0

(
EΘℓ

[
Ŷ MC
ℓ,Nℓ

]
− Eνℓ,ℓ−1

[
Ŷ MC
ℓ,Nℓ

]))2

≤ (L+1)
L∑

l=1

(
EΘℓ

[
Ŷ MC
ℓ,Nℓ

]
− Eνℓ,ℓ−1

[
Ŷ MC
ℓ,Nℓ

])2
,

and thus it follows from assumption M3 that

(3.6) e(Q̂ML
L,{Nℓ}

)2 . (L+ 1)

L∑

ℓ=0

N−1
ℓ Vνℓ,ℓ−1 [Yℓ] +

(
EνL [QL]− Eρ[Q]

)2
.

In contrast to the i.i.d. case, we have an additional factor (L + 1) multiplying the sampling
error term on the right-hand side of (3.6). Hence, in order to make this term less than ε2/2,
the number of samples Nℓ needs to be increased by a factor of (L+ 1) compared to the i.i.d.
case, which also increases the cost of the multilevel estimator by a factor of (L + 1). The
remainder of the proof remains identical.

Since L is chosen such that the second term in (3.6) (the bias of the multilevel estimator)
is less than ε2/2, it follows from assumption M1 that L + 1 . | log ε|. The bounds on the
ε-cost then follow as in [11, Theorem 1], but with an extra | log ε| factor.
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Note that in our proof we do not require the estimators Ŷ MC
ℓ,Nℓ

, ℓ = 0, . . . , L, to be inde-
pendent. However, in practice we found that independent estimators lead to a faster absolute
performance of the multilevel estimator (in terms of cost versus error).

Assumptions M1 and M4 are the same assumptions as in the single-level case and are
related to the bias in the model (e.g., due to discretization) and to the cost per sample,
respectively. Assumption M3 is similar to assumption A1 in that it is a nonasymptotic bound
for the sampling errors of the MCMC estimator Ŷ MC

ℓ,Nℓ
. For this assumption to hold, it is in

general necessary that the chains have been sufficiently burned in, i.e., that the values nℓ0 are
sufficiently large.

4. Model problem. In this section, we will apply the proposed MLMCMC algorithm
to a simple model problem arising in subsurface flow modelling. Probabilistic uncertainty
quantification in subsurface flow is of interest in a number of situations, as, for example,
in risk analysis for radioactive waste disposal or in oil reservoir simulation. The classical
equations governing (steady state) single-phase subsurface flow consist of Darcy’s law coupled
with an incompressibility condition (see, e.g., [19, 12]):

(4.1) w + k∇p = g and div w = 0 in D ⊂ R
d, d = 1, 2, 3,

subject to suitable boundary conditions. In physical terms, p denotes the pressure head of
the fluid, k is the permeability tensor, w is the filtration velocity (or Darcy flux), and g is the
source term.

4.1. Uncertainty quantification. A typical approach to quantifying uncertainty in p and
w is to model the permeability as a random field k = k(x, ω) on D × Ω for some probability
space (Ω,A,P). The mean and covariance structures of k have to be inferred from the (limited)
geological information available. This means that (4.1) becomes a system of PDEs with
random coefficients, which can be written in second order form as

(4.2) −∇ · (k(x, ω)∇p(x, ω)) = f(x) in D,

with f := −div g. This means that the solution p itself will also be a random field on D×Ω.
For simplicity, we shall restrict ourselves to Dirichlet conditions p(ω, x) = ψ(x) on ∂D and
assume that the boundary data ψ and the source term g are known (and thus deterministic).

In this general form, solving (4.2) is extremely challenging computationally, and so in
practice it is common to use relatively simple models for k that are as faithful as possible to
the measurements. One model that has been studied extensively is a log-normal distribution
for k, i.e., replacing the permeability tensor by a scalar-valued field whose log is Gaussian. It
guarantees that k > 0 almost surely (a.s.) in Ω, and it allows the permeability to vary over
many orders of magnitude, which is typically the case.

When modelling a whole oil reservoir or a sufficiently large region around a potential
radioactive waste repository, the correlation length scale for k is typically significantly smaller
than the size of the computational region. In addition, typical sedimentation processes lead
to fairly irregular structures and pore networks. Faithful models should therefore also assume
only limited spatial regularity of k. A covariance function that has been proposed in the
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application literature (cf. [43]) is the following exponential two-point covariance function for
log k:

(4.3) C(x, y) := σ2exp

(
−‖x− y‖r

λ

)
, x, y ∈ D,

where ‖·‖r denotes the ℓr-norm in R
d and typically r = 1 or 2. The parameters σ2 and λ denote

variance and correlation length, respectively. In subsurface flow applications, typically only
σ2 ≥ 1 and λ ≤ diamD will be of interest. The choice of covariance function in (4.3) implies
that k is homogeneous, and it follows from Kolmogorov’s theorem [16] that k(·, ω) ∈ C0,t(D)
a.s. for any t < 1/2.

For the purpose of this paper, we will assume that k is a log-normal random field, where
log k has mean zero and exponential covariance function (4.3) with r = 1. However, other
models for k are possible, and the required theoretical results can be found in [8, 60, 57].

Let us now put model problem (4.2) into context for the MCMC and MLMCMC methods
described in sections 2 and 3. The quantity of interest Q is in this case some functional G of
the PDE solution p, and QM,R is the same functional G evaluated at a discretized solution
pM,R. The discretization level M denotes the number of degrees of freedom for the numerical
solution of (4.2) for a given sample, and the parameter R denotes the number of random
variables used to model the permeability k. The random vector X will contain the M degrees
of freedom of the discrete pressure pM,R.

For the spatial discretization of model problem (4.2), we will use standard, continuous,
piecewise linear finite elements (FEs); see, e.g., [6, 10] for more details. Other spatial dis-
cretization schemes are possible; see, for example, [11] for a numerical study with finite volume
methods, and [34] for a theoretical treatment of mixed FEs. We choose a regular triangulation
Th of mesh width h of our spatial domain D, which results in M = O(h−d) degrees of freedom
for the numerical approximation.

In order to apply the proposed MCMC methods to model problem (4.2), we need to
represent the permeability k in terms of a set of random variables. For this, we will use the
Karhunen–Loève (KL)-expansion. For the Gaussian field log k, this is an expansion in terms
of a countable set of independent, standard Gaussian random variables {ξn}n∈N. It is given
by

log k(ω, x) =

∞∑

n=1

√
µnφn(x)ξn(ω),

where {µn}n∈N are the eigenvalues and {φn}n∈N are the corresponding L2-normalized eigen-
functions of the covariance operator with kernel function C(x, y). For more details on its
derivation and properties; see, e.g., [29]. Here we will mention only that the eigenvalues
{µn}n∈N are nonnegative with

∑
n≥0 µn < ∞. For the particular covariance function (4.3)

with r = 1, we have µn . n−2, and hence there is an intrinsic ordering of importance in the
KL-expansion. Truncating the KL-expansion after R terms gives an approximation of k in
terms of R standard normal random variables,

(4.4) kR(ω, x) = exp

[
R∑

n=1

√
µnφn(x)ξn(ω)

]
.
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Denote by ϑ := {ξn}n∈N ∈ R
N the vector of independent random variables appearing in

the KL-expansion of log k. We will work with prior and posterior measures on the space R
N.

To this end, we equip R
N with the product sigma algebra B :=

⊗
n∈N B1(R), where B1(R)

denotes the sigma algebra of Borel sets of R. We denote by ρ0 the prior measure on R
N,

defined by {ξn}n∈N being i.i.d. N (0, 1) random variables such that

(4.5) ρ0 =
⊗

n∈N

g(ξn) dξn,

where g : R → R
+ is the Lebesgue density of an N (0, 1) random variable and dξn denotes the

one-dimensional Lebesgue measure.
We assume that the observed data is finite-dimensional, i.e., Fobs ∈ R

m for some m ∈ N,
and that

(4.6) Fobs = F(p(ϑ)) + η,

where F : H1(D) → R
m is a continuous function of p, the (weak) solution to model problem

(4.1) which depends on ϑ through k. The observational noise η is assumed to be a realization of
an N (0, σ2F Im) random variable (independent of ϑ). The parameter σ2F is a fidelity parameter
that indicates the level of observational noise present in Fobs.

With ρ0 as in (4.5), we have ρ0(R
N) = 1. Furthermore, since p depends continuously on

ϑ (see [7, Propositions 3.6 and 4.1] or [58, Lemmas 2.20 and 5.13]), the map F ◦ p : RN → R
m

is also continuous (by assumption). The posterior distribution, which we will denote by ρ, is
then known to be absolutely continuous with respect to the prior and satisfies

(4.7)
∂ρ

∂ρ0
(ϑ) h exp

[
−‖Fobs −F(p(ϑ))‖2

2σ2F

]
=: exp [−Φ(ϑ;Fobs)] ,

where ‖·‖ denotes the Euclidean norm on R
m. The hidden constant depends only on Fobs and

is generally not known (for more details, see [56] and the references therein). The right-hand
side of (4.7) is referred to as the likelihood.

Since the exact solution p(ϑ) is not available, the likelihood exp [−Φ(ϑ;Fobs)] needs to be
approximated in practical computations. We use a truncation of the KL-expansion of log k
after R terms and a spatial approximation pM,R of p(ϑ) by piecewise linear FEs. The value
of σ2F may also be changed to σ2F,M . We denote the resulting approximate posterior measure

correspondingly by ρM,R, with

(4.8)
∂ρM,R

∂ρ0
(ϑ) h exp

[
−‖Fobs −F(pM,R(ϑ))‖2

2σ2F,M

]
=: exp

[
−ΦM,R(ϑ;Fobs)

]
.

Since F ◦ pR,M depends only on θ := {ξn}Rn=1, the first R components of ϑ, and since the
prior measure factorizes as ρ0 = ρR0 ⊗ ρ⊥0 , the approximate posterior measure also factorizes
as ρM,R = νM,R ⊗ ρ⊥, where

(4.9)
∂νM,R

∂ρR0
(θ) h exp

[
−ΦM,R(θ;Fobs)

]
,



20 DODWELL, KETELSEN, SCHEICHL, AND TECKENTRUP

and ρ⊥ = ρ⊥0 [17]. Note that νM,R is a measure on the finite-dimensional space RR. Denoting
by πM,R and πR0 the densities with respect to the R-dimensional Lebesgue measure of νM,R

and ρR0 , respectively, it follows from (4.9) that

(4.10) πM,R(θ) h exp
[
−ΦM,R(θ;Fobs)

]
πR0 (θ) .

Our goal is to approximate the expected value of a quantity Q = G(p(ϑ)) with respect
to the posterior ρ for some continuous G : H1(D) → R. We denote this expected value by
Eρ[Q] :=

∫
RN G(p(ϑ)) ρ(dϑ) and assume that, as M,R→ ∞,

EνM,R [QM,R] → Eρ[Q],

where EνM,R [QM,R] :=
∫
RR G(pM,R(θ)) ν

M,R(dθ) is a finite-dimensional integral.
Finally, let us set the notation for our MLMCMC algorithm. To achieve a level-dependent

representation of k, we simply truncate the KL-expansion after a sufficiently large, level-
dependent number of terms Rℓ such that the truncation error on each level is bounded by the
discretization error, and set θℓ := {ξn}Rℓ

n=1. A sequence of discretization levels Mℓ satisfying
(3.1) can be constructed by choosing a coarsest mesh width h0 for the spatial approximation
and choosing hℓ := s−ℓh0. A common (but not necessarily optimal) choice is s = 2 and
uniform refinement between the levels. We denote the resulting (truncated) FE solution by
pℓ := pMℓ,Rℓ

.
The prior density πℓ0 of θℓ is simply a standard Rℓ-dimensional Gaussian:

(4.11) πℓ0(θℓ) =
1

(2π)Rℓ/2
exp


−

Rℓ∑

j=1

ξ2j
2


 .

For the likelihood, we have

(4.12) Lℓ(Fobs | θℓ) h exp

[
−‖Fobs − F ℓ(θℓ)‖2

2σ2F,ℓ

]
,

where F ℓ(θℓ) = F(pℓ(θℓ)). Recall that the coarser levels in our multilevel estimator are
introduced only to accelerate the convergence, and that the multilevel estimator is still an
unbiased estimator of the expected value of QL with respect to the posterior νL on the finest
level L. Hence, the posterior distributions on the coarser levels νℓ, ℓ = 0, . . . , L − 1, do not
have to model the measured data as faithfully as νL. In particular, this means that we can
choose larger values of the fidelity parameter σ2F,ℓ on the coarse levels, which will increase the

acceptance probability on the coarser levels. The growth in σ2F,ℓ has to be controlled, as we
will see below (cf. assumption A3).

4.2. Convergence analysis. We now perform a rigorous convergence analysis of the MLM-
CMC estimator Q̂ML

L,{Nℓ}
introduced in section 3 applied to model problem (4.1). We will first

verify that the multilevel estimator is indeed an unbiased estimator of EνL [QL]. To achieve
this, we need only verify the irreducibility condition (3.5) in Theorem 3.3. As already noted,
for common choices of proposal distributions, the condition holds true if πℓ−1(θℓ,C) > 0 for all
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θℓ such that πℓ(θℓ) > 0. The conclusion follows, since both the prior and the likelihood were
chosen as normal distributions and normal distributions have infinite support.

Theorem 4.1. Suppose that for all ℓ = 0, . . . , L, Eνℓ [|Qℓ|] <∞. Then

lim
{Nℓ}→∞

Q̂ML
L,{Nℓ}

= EνL [QL] for any θ0ℓ ∈ Eℓ and nℓ0 ≥ 0.

Let us now move on to quantifying the cost of the multilevel estimator, and verify the
assumptions in Theorem 3.4 for our model problem. As mentioned earlier, assumption M3
involves bounding the MSE of an MCMC estimator, and a proof of M3 is beyond the scope of
this paper. Results of this kind can be found in, e.g., [53, 36]. We will also not address M4,
which is an assumption on the cost of obtaining one sample of Qℓ. In the best case, with an
optimal linear solver to solve the discretized (FE) equations for each sample, M4 is satisfied
with γ = 1.

We will address assumptions M1 and M2, which are the assumptions related to the dis-
cretization errors in the quantity of interest Q and the measure ρ. For ease of presentation, we
will for the remainder of this section assume that log k has mean zero and exponential covari-
ance function (4.3) with r = 1, and that ψ and f in (4.2) are deterministic, with ψ ∈ H1(∂D)
and f ∈ H−1/2(D). This implies that the solution p to (4.2) is in Lq(Ω, H3/2−δ) for any δ > 0
and q < ∞ (cf. [60]). In the Metropolis–Hastings algorithm we will consider only the pCN
algorithm.

Since they will become useful later, let us recall some of the main results in the conver-
gence analysis of (“plain vanilla”) MLMC estimators based on i.i.d. samples. An extensive
convergence analysis of FE multilevel estimators based on i.i.d. samples for model problem
(4.2) with log-normal coefficients can be found in [8, 60, 57]. We first have the following result
on the convergence of the FE error in the natural H1-norm.

Theorem 4.2. Let g be a Gaussian field with constant mean and covariance function (4.3)
with r = 1, and let k = exp[g] in model problem (4.2). Suppose D ⊂ R

d is Lipschitz polygonal
(polyhedral). Then

Eρ0

[
|p− pℓ|qH1(D)

]1/q
≤ Ck,f,ψ,q

(
M

−1/2d+δ
ℓ +R

−1/2+δ
ℓ

)

for any q < ∞ and δ > 0, where the (generic) constant Ck,f,ψ,q (here and below) depends on
k, f , ψ, and q, but is independent of any other parameters.

Proof. The proof follows from [60, Proposition 4.1].
Convergence results for functionals of the solution p can now be derived from Theorem 4.2

using a duality argument. Here, for the sake of simplicity, we will consider only bounded, linear
functionals, but the results extend to continuously Frèchet differentiable functionals (see [60,
section 3.2]). We make the following assumption on the functional G (cf. Assumption F1 in
[60]).

A2. Let G : H1(D) → R be linear, and suppose there exists CG ∈ R such that

|G(v)| ≤ CG‖v‖H1/2−δ for all δ > 0.

An example of a functional which satisfies A2 is a local average of the pressure, 1
|D∗|

∫
D∗ p dx

for some D∗ ⊂ D. The main result on the convergence for functionals is the following.
Corollary 4.3. Let the assumptions of Theorem 4.2 be satisfied, and suppose G satisfies A2.
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Then

Eρ0 [|G(p)− G(pℓ)|q]1/q ≤ Ck,f,ψ,q

(
M

−1/d+δ
ℓ +R

−1/2+δ
ℓ

)

for any q <∞ and δ > 0.
Proof. This follows from [60, Corollary 4.1].
Note that assumption A2 is crucial in order to get the faster convergence rates of the

spatial discretization error in Corollary 4.3. For multilevel estimators based on i.i.d. samples,
it follows immediately from Corollary 4.3 that the (corresponding) assumptions M1 and M2
are satisfied, with α = 1/d+ δ, α′ = 1/2+ δ, and β = 2α, β′ = 2α′, for any δ > 0 (see [60] for
details).

The aim is now to generalize the result in Corollary 4.3 to the new MLMCMC estimator.
Two issues need to be addressed. First, the bounds in assumptions M1 and M2 in Theorem 3.4
involve moments with respect to the posterior distributions νℓ and ρ, which are not known
explicitly, but are related to the prior distributions ρℓ0 and ρ0 through Bayes’ theorem. Second,
the samples on levels ℓ and ℓ − 1 that are used to compute samples of the differences Yℓ =
Qℓ − Qℓ−1 are generated by Algorithm 2 and may differ not only due to discretization and
truncation order, but also because they come from different Markov chains (i.e., Θn

ℓ−1 is not
necessarily equal to θnℓ,C , as seen in Table 1).

To circumvent the problem of the intractability of the posterior distribution, we have the
following lemma, which relates moments with respect to the posterior distribution to moments
with respect to the prior distribution.

Lemma 4.4. For any random variable Z = Z(θℓ) and for any q such that Eρℓ
0
[|Z|q] < ∞,

we have

|Eνℓ [Zq] | . Eρℓ
0
[|Z|q] .

Similarly, for any random variable Z = Z(ϑ) and for any q such that Eρ0 [|Z|q] <∞, we have

∣∣Eρℓ [Zq]
∣∣ . Eρ0 [|Z|q] .

Proof. Using (4.10), we have

|Eνℓ [Zq] | h

∣∣∣∣
∫

R
Rℓ

Zq(θℓ) exp
[
−ΦM,R(θℓ;Fobs)

]
πℓ0(θℓ) dθℓ

∣∣∣∣

. sup
θℓ

{
exp

[
−ΦM,R(θℓ;Fobs)

]} ∫

R
Rℓ

|Z(θℓ)|q πℓ0(θℓ) dθℓ.

The first claim of the lemma then follows, since the above supremum can be bounded by 1.
The proof of the second claim is analogous, using the Radon–Nikodym derivative (4.7).

We are now ready to prove assumption M1 under the following assumption on the param-
eters σ2F,ℓ in the likelihood model (4.12).

A3. The sequence of fidelity parameters {σ2F,ℓ}∞ℓ=0 satisfies

σ−2
F − σ−2

F,ℓ . max
(
R

−1/2+δ
ℓ ,M

−1/d+δ
ℓ

)
for all δ > 0.
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Lemma 4.5. Let the assumptions of Corollary 4.3 be satisfied. Suppose F satisfies A2, and
A3 holds. Then

|Eνℓ [Qℓ]− Eρ[Q]| ≤ Ck,f,ψ

(
M

−1/d+δ
ℓ +R

−1/2+δ
ℓ

)
.

Proof. Since Qℓ depends only on θℓ, we have Eνℓ [Qℓ] = Eρℓ [Qℓ], and so, using the triangle
inequality,

(4.13) |Eνℓ [Qℓ]− Eρ[Q]| ≤ |Eρℓ [Qℓ]− Eρℓ [Q]|+ |Eρℓ [Q]− Eρ[Q]|.

The first term can be bounded using Corollary 4.3 and Lemma 4.4, i.e.,

|Eρℓ [Qℓ]− Eρℓ [Q]| ≤ Ck,f,ψ

(
M

−1/d+δ
ℓ +R

−1/2+δ
ℓ

)
.

For the second term, we will prove a bound on the Hellinger distance dHell(ρ, ρ
ℓ). This

proof follows closely the proof of [42, Proposition 10]. Denote by Z and Zℓ the normalizing
constants of ρ and ρℓ:

Z =

∫

RN

exp

[
−1

2
Φ(ϑ;Fobs)

]
dρ0(ϑ) and Zℓ =

∫

RN

exp

[
−1

2
Φℓ(ϑ;Fobs)

]
dρ0(ϑ), respectively.

Since F satisfies assumption A2, it follows from the results in [56] that both Z and Zℓ can be
bounded away from zero. Next, we have

2 d2Hell(ρ, ρ
ℓ) =

∫

RN

(
Z−1/2 exp

[
−1

2
Φ(ϑ;Fobs)

]
− Z

−1/2
ℓ exp

[
−1

2
Φℓ(ϑ;Fobs)

])2

dρ0(ϑ) ≤ I+II,

where

I :=
2

Z

∫

RN

(
exp

[
−1

2
Φ(ϑ;Fobs)

]
− exp

[
−1

2
Φℓ(ϑ;Fobs)

])2

dρ0(ϑ),

II := 2 |Z−1/2 − Z
−1/2
ℓ |2

∫

RN

exp
[
−Φℓ(ϑ;Fobs)

]
dρ0(ϑ).

To estimate I, note that both exp
[
−1

2Φ(ϑ;Fobs)
]
and exp

[
−1

2Φ
ℓ(ϑ;Fobs)

]
are bounded above

by 1, so that

exp

[
−1

2
Φ(ϑ;Fobs)

]
− exp

[
−1

2
Φℓ(ϑ;Fobs)

]
≤ |Φ(ϑ;Fobs)− Φℓ(ϑ;Fobs)|.

Denoting F := F(p(ϑ)) and Fℓ := F(pℓ(θ)), and using the triangle inequality, we have that

∣∣∣∣∣
‖Fobs − F‖2

σ2F
− ‖Fobs − Fℓ‖2

σ2F,ℓ

∣∣∣∣∣ ≤

∣∣∣∣∣∣∣

(
‖Fobs − Fℓ‖+ ‖F − Fℓ‖

)2

σ2F
− ‖Fobs − Fℓ‖2

σ2F,ℓ

∣∣∣∣∣∣∣

= ‖Fobs − Fℓ‖2
(
σ−2
F − σ−2

F,ℓ

)
+

2‖Fobs − Fℓ‖+ ‖F − Fℓ‖
σ2F

‖F − Fℓ‖.
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Since F was assumed to satisfy A2, it follows from Corollary 4.3 that

Eρ0 [‖F − Fℓ‖q]1/q ≤ Ck,f,ψ

(
M

−1/d+δ
ℓ + R

−1/2+δ
ℓ

)
.

Moreover, since ‖Fℓ‖ can be bounded independently of ℓ (again courtesy of assumption A2)
and since ‖Fobs − Fℓ‖ ≤ ‖Fobs‖+ ‖Fℓ‖, we use assumption A3 to deduce that

I . Eρ0 [|Φ(ϑ;Fobs)− Φℓ(ϑ;Fobs)|2] ≤ Ck,f,ψ

(
M

−1/d+δ
ℓ + R

−1/2+δ
ℓ

)2
.

For the second term II, we note that |Z−1/2 − Z
−1/2
ℓ |2 . max{Z−3, Z−3

ℓ } |Z − Zℓ|2, and an
analysis similar to the above shows that

II . Eρ0 [|Φ(ϑ;Fobs)− Φℓ(ϑ;Fobs)|]2 ≤ Ck,f,ψ

(
M

−1/d+δ
ℓ + R

−1/2+δ
ℓ

)2
.

The claim of the theorem then follows, since |Eρℓ [Q]− Eρ[Q]| ≤ Ck,f,ψdHell(ρ, ρ
ℓ).

In order to prove M2, we further have to analyze the situation where the two samples θn+1
ℓ

and Θn+1
ℓ−1 used to compute Y n+1

ℓ “diverge,” i.e., when Θn+1
ℓ−1 6= θn+1

ℓ,C .

Lemma 4.6. Let θn+1
ℓ and Θn+1

ℓ−1 have joint distribution νℓ,ℓ−1, and set Y n+1
ℓ = Qℓ(θ

n+1
ℓ )−

Qℓ−1(Θ
n+1
ℓ−1 ). If qℓ,FML is a pCN proposal distribution, then

Vνℓ,ℓ−1

[
Y n+1
ℓ

]
≤ Ck,f,ψ

(
M

−1/d+δ
ℓ−1 +R

−1/2+δ
ℓ−1

)
for any δ > 0.

To prove Lemma 4.6, we first need some preliminary results. First, note that Θn+1
ℓ−1 6= θn+1

ℓ,C

only if the proposal θ′ℓ generated for θn+1
ℓ was rejected. Given the states θnℓ and θ′ℓ, the

probability of this rejection is given by 1 − αℓML(θ
′
ℓ|θnℓ ). The total probability of a rejection

is then Eζ [(1− αℓML], where ζ denotes the joint distribution of the two variables. We need to
quantify this probability.

Before we can do so, we need to specify the (marginal) distribution of the proposal θ′ℓ,
which we denote by ζ ′ℓ. The first Rℓ−1 entries of θ′ℓ are distributed as νℓ−1, since they come
from Θℓ−1. The remaining Rℓ − Rℓ−1 dimensions are distributed according to the proposal
density qℓ,FML(θ

′
ℓ,F | θnℓ,F ) (independent of the first Rℓ−1 dimensions). The same proof technique

as in Lemma 4.4 shows again that |Eζ′ℓ [Z
q]| . Eρℓ

0
[|Z|q] for any random variable Z = Z(θ′ℓ).

Lemma 4.7. Let θnℓ and θ′ℓ be as generated by Algorithm 2 at the (n + 1)th step. Denote
their joint distribution by ζ, with marginal distributions νℓ and ζ ′ℓ, respectively. Suppose F
satisfies A2, and that A3 and the assumptions of Corollary 4.3 hold. If qℓ,FML is a pCN proposal
distribution, then

Eζ

[
(1− αℓML(θ

′
ℓ|θnℓ ))

]
≤ Ck,f,ψ

(
M

−1/d+δ
ℓ−1 +R

−1/2+δ
ℓ−1

)
for any δ > 0.

Proof. For the sake of brevity, denote Lℓ(Fobs | ·) =: Lℓ(·). We will first derive a bound on

1− αℓML(θ
′
ℓ | θnℓ ) for ℓ > 1 and for θ′ℓ and θ

n
ℓ given. First note that if

Lℓ(θ
′
ℓ)Lℓ−1(θ

n
ℓ,C)

Lℓ(θ
n
ℓ )Lℓ−1(θ

′
ℓ,C)

≥ 1, then
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1− αℓ(θ′ℓ | θnℓ ) = 0. Otherwise, we have

1− αℓML(θ
′
ℓ | θnℓ ) =

(
1− Lℓ(θ′ℓ)

Lℓ−1(θ
′
ℓ,C)

)
+

(
Lℓ(θ′ℓ)Lℓ−1(θ

n
ℓ,C)

Lℓ(θnℓ )Lℓ−1(θ
′
ℓ,C)

)(
1− Lℓ(θnℓ )

Lℓ−1(θ
n
ℓ,C)

)

≤
∣∣∣∣∣1−

Lℓ(θ′ℓ)
Lℓ−1(θ

′
ℓ,C)

∣∣∣∣∣+
∣∣∣∣∣1−

Lℓ(θnℓ )
Lℓ−1(θ

n
ℓ,C)

∣∣∣∣∣ .(4.15)

Let us consider either of these two terms and set θℓ = (ξj)
Rℓ
j=1 to be either θ′ℓ or θ

n
ℓ . Using the

definition (4.12) of the likelihood, we have

(4.16)
Lℓ(θℓ)

Lℓ−1(θℓ,C)
= exp

(
− ‖Fobs − Fℓ(θℓ)‖2

σ2F,ℓ
+

‖Fobs − Fℓ−1(θℓ,C)‖2
σ2F,ℓ−1

)
.

Denoting Fℓ := F (θℓ) and Fℓ−1 := F (θℓ,C), we get as in the proof of Lemma 4.5 that

∣∣∣∣∣
‖Fobs − Fℓ‖2

σ2F,ℓ
− ‖Fobs − Fℓ−1‖2

σ2F,ℓ−1

∣∣∣∣∣ ≤ ‖Fobs − Fℓ−1‖2
∣∣∣σ−2
F,ℓ − σ−2

F,ℓ−1

∣∣∣

+
2‖Fobs − Fℓ−1‖+ ‖Fℓ − Fℓ−1‖

σ2F,ℓ
‖Fℓ − Fℓ−1‖.(4.17)

Using the inequality |1 − exp(x)| ≤ |x| for 0 ≤ |x| ≤ 1, it follows immediately from (4.17),
assumption A3, Corollary 4.3, Lemma 4.4, and Hölder’s inequality that

(4.18) Eζ

[∣∣∣∣1−
Lℓ(θℓ)

Lℓ−1(θℓ,C)

∣∣∣∣
]

≤ Ck,f,ψ

(
M

−1/d+δ
ℓ−1 + R

−1/2+δ
ℓ−1

)
.

A bound on the expected value of 1− αℓML(θ
′
ℓ | θnℓ ) follows from Minkowski’s inequality.

We will further need the following result.
Lemma 4.8. For any θℓ, let kℓ(θℓ) := exp(

∑Rℓ
j=1

√
µjφj(θℓ)j) and κ(θℓ) := minx∈D kℓ(·, x).

Then

(4.20) |pℓ(θℓ)− pℓ(θ
∗
ℓ )|H1(D) .

‖f‖H−1(D)

κ(θℓ)κ(θ
∗
ℓ )

‖kℓ(θℓ)− kℓ(θ
∗
ℓ )‖C0(D) for almost all θℓ, θ

∗
ℓ ,

and

(4.21) Eρℓ
0

[
|pℓ(θℓ)|qH1(D)

]
≤ constant

for any q <∞, where the hidden constants are independent of ℓ and pℓ.
Proof. Using the definition of κ(θℓ), as well as the identity

∫

D
kℓ(θℓ)∇pℓ(θℓ) · ∇v dx =

∫

D
fv dx =

∫

D
kℓ(θ

∗
ℓ )∇pℓ(θ∗ℓ ) · ∇v dx for all v ∈ H1

0 (D),
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we have

κ(θℓ)|pℓ(θℓ)− pℓ(θ
∗
ℓ )|2H1(D) ≤

∫

D
kℓ(θℓ)∇ (pℓ(θℓ)− pℓ(θ

∗
ℓ )) · ∇ (pℓ(θℓ)− pℓ(θ

∗
ℓ )) dx

≤
∫

D
(kℓ(θℓ)− kℓ(θ

∗
ℓ )) ∇pℓ(θ∗ℓ ) · ∇ (pℓ(θℓ)− pℓ(θ

∗
ℓ )) dx.

Due to the standard estimate |pℓ(θ∗ℓ )|H1(D) ≤ ‖f‖H−1(D)/κ(θ
∗
ℓ ), (4.20) follows from an appli-

cation of the Cauchy–Schwarz inequality, and (4.21) follows from the fact that Eρℓ
0
[κ(·)−q] is

bounded independent of ℓ ([7, Prop. 3.10]).
Using Lemmas 4.7 and 4.8, we are now ready to prove Lemma 4.6.
Proof of Lemma 4.6. Let θn+1

ℓ and Θn+1
ℓ−1 be as generated by Algorithm 2 at the (n+1)th

step, with joint distribution νℓ,ℓ−1. As before, denote the proposal generated for θn+1
ℓ by θ′ℓ.

First, since θ′ℓ,C = Θn+1
ℓ−1 , it follows from Minkowski’s inequality that

Vνℓ,ℓ−1

[
Y n+1
ℓ

]
≤ Eνℓ,ℓ−1

[(
Qℓ(θ

n+1
ℓ )−Qℓ−1(Θ

n+1
ℓ−1 )

)2]

. E
ζ̃

[(
Qℓ(θ

n+1
ℓ )−Qℓ(θ

′
ℓ)
)2]

+ Eζ′ℓ

[(
Qℓ(θ

′
ℓ)−Qℓ−1(θ

′
ℓ,C)
)2]

.(4.22)

Here, ζ̃ denotes the joint distribution of θ′ℓ and θ
n+1
ℓ , and ζ ′ℓ is the marginal distribution of θ′ℓ.

A bound on the second term follows immediately from Corollary 4.3 and Lemma 4.4; i.e.,
(4.23)

Eζ′ℓ

[(
Qℓ(θ

′
ℓ)−Qℓ−1(θ

′
ℓ,C)
)2]

. Eρℓ
0

[(
Qℓ(θ

′
ℓ)−Qℓ−1(θ

′
ℓ,C)
)2] ≤ Ck,f,ψ

(
M

−2/d+δ
ℓ−1 +R−1+δ

ℓ−1

)
.

The first term in (4.22) is nonzero only if θn+1
ℓ 6= θ′ℓ. We will now use Lemmas 4.7 and 4.8, as

well as the characteristic function I{θn+1

ℓ 6=θ′ℓ}
∈ {0, 1} to bound it. First, Hölder’s inequality

gives

E
ζ̃

[(
Qℓ(θ

n+1
ℓ )−Qℓ(θ

′
ℓ)
)2]

= E
ζ̃

[(
Qℓ(θ

n+1
ℓ )−Qℓ(θ

′
ℓ)
)2

I{θn+1

ℓ 6=θ′ℓ}

]

≤ E
ζ̃

[(
Qℓ(θ

n+1
ℓ )−Qℓ(θ

′
ℓ)
)2q1]1/q1

E
ζ̃

[
I{θn+1

ℓ 6=θ′ℓ}

]1/q2
(4.24)

for any q1, q2 such that q−1
1 + q−1

2 = 1. Since G satisfies assumption A2, it follows from

Lemmas 4.4 and 4.8 that the term E
ζ̃

[ (
Qℓ(θ

n+1
ℓ )−Qℓ(θ

′
ℓ)
)2q1 ]1/q1 in (4.24) can be bounded

by a constant independent of ℓ for any q1 <∞:

E
ζ̃

[ (
Qℓ(θ

n
ℓ )−Qℓ(θ

′
ℓ)
)2q1 ] . Eνℓ

[
(Qℓ(θ

n+1
ℓ ))2q1

]
+ Eζ′ℓ

[
(Qℓ(θ

′
ℓ))

2q1
]

. Eρℓ
0

[
|pℓ(θℓ)|2q1H1(D)

]
≤ constant.

Since θn+1
ℓ 6= θ′ℓ only if the proposal θ′ℓ has been rejected on level ℓ at the (n + 1)th step,

the probability that this happens can be bounded by Eζ [1 − αℓML(θ
′
ℓ|θnℓ )], where the joint

distribution ζ is as in Lemma 4.7. It follows by Lemma 4.7 that

(4.25) E
ζ̃

[
I{θn+1

ℓ 6=θ′ℓ}

]
= P[θn+1

ℓ 6= θ′ℓ] ≤ Ck,f,ψ

(
M

−1/d+δ
ℓ−1 +R

−1/2+δ
ℓ−1

)
.
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Combining (4.22)–(4.25), the claim of the lemma then follows.
We now collect the results in the preceding lemmas to state our main result of this section.
Theorem 4.9. Under the same assumptions as in Lemma 4.6, assumptions M1 and M2 of

Theorem 3.4 are satisfied, with α = β = 1/d− δ and α′ = β′ = 1/2− δ for any δ > 0.
If we assume that we can obtain individual samples in optimal cost Cℓ .Mℓ log(Mℓ), e.g.,

via a multigrid solver, we can satisfy assumption M4 with γ = 1 + δ for any δ > 0. It follows
from Theorems 3.4 and 4.9 that we can get the following theoretical upper bounds for the
ε-costs of classical and multilevel MCMC applied to model problem (4.2) with log-normal
coefficients k:

(4.26) Cε(Q̂MC
N ) . ε−(d+2)−δ and Cε(Q̂ML

L,{Nℓ}
) . ε−(d+1)−δ for any δ > 0.

We clearly see the advantages of the multilevel method, which provides savings of one power
of ε−1 compared to the standard MCMC method. Note that for multilevel estimators based on
i.i.d. samples, the savings of the multilevel method over the standard method are two powers
of ε−1 for d = 2, 3. The larger savings stem from the fact that β = 2α in this case, compared
to β = α in the MCMC analysis above. The numerical results in the next section for d = 2
show that, in practice, we do seem to observe β ≈ 1 ≈ 2α, leading to Cε(Q̂ML

L,{Nℓ}
) = O(ε−2).

However, we do not believe that this is a lack of sharpness in our theory, but rather a pre-
asymptotic phase. The constant in front of the leading order term in the bound of Vνℓ,ℓ−1 [Y n

ℓ ],

namely the term E
ζ̃

[ (
Qℓ(θ

n+1
ℓ )−Qℓ(θ

′
ℓ)
)2q1 ]1/q1 in (4.24), depends on the difference between

Qℓ(θ
n+1
ℓ ) and Qℓ(θ

′
ℓ). In the case of the pCN algorithm for the proposal distributions qℓ−1 and

qℓ,FML (as used in section 5 below), this difference will be small, since θnℓ and θ′ℓ will, in general,
be very close to each other. However, the difference is bounded from below, and so we should
eventually see the slower convergence rate for the variance as predicted by our theory.

5. Numerics. In this section we describe the implementation details of the MLMCMC
algorithm and examine the performance of the method in estimating the posterior expectation
of some quantity of interest for our model problem (4.2). We consider (4.2) on the domain
D = (0, 1)2 with f ≡ 1. On the lateral boundaries of the domain we choose Dirichlet boundary
conditions; on the top and bottom we choose Neumann conditions:

(5.1) p|x1=0 = 0, p|x1=1 = 1,
∂p

∂n

∣∣∣
x2=0

= 0, and
∂p

∂n

∣∣∣
x2=1

= 0.

The quantity of interest is the flux across the boundary at x1 = 1, given by

(5.2) Q := −
∫ 1

0
k
∂p

∂x

∣∣∣
x1=1

dx2.

The (prior) permeability field k is modelled as a log-normal random field, with covariance
function (4.3) with r = 1, σ2 = 1, and λ = 0.5. The log-normal distribution is approximated
using truncated KL-expansion (4.4) with an increasing number Rℓ of terms as ℓ increases. For
r = 1, the KL eigenfunctions in (4.4) are known explicitly [11].

The model problem is discretized using piecewise linear FEs on a uniform triangular
mesh. The coarsest mesh consists of m0+1 grid points in each direction, with refined meshes
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containing mℓ + 1 = 2ℓm0 + 1 points, so that the total number of grid points on level ℓ is
Mℓ = (mℓ+1)2. All of our algorithms have been implemented within FreeFem++ [39]. As the
linear solver for the resulting linear equation system for each sample we used UMFPACK [18].

5.1. Implementation details. Let us first define two important quantities for the conver-
gence analysis of Metropolis–Hastings MCMC.

Effective sample size and integrated autocorrelation time. Let {θn}n≥0 be the Markov chain

produced by Algorithm 1 and Q̂MC
N the resulting MCMC estimator defined in (2.2). The

integrated autocorrelation time τQ of the correlated samples QnM,R := G(X(θn)) produced by

Algorithm 1 is defined to be the ratio of the asymptotic variance σ2Q of the MCMC estimator

Q̂MC
N , defined in (2.6), and the actual variance VνM,R [QM,R] of QM,R. If

s2Q :=
1

N

N∑

j=0

(
QnM,R − Q̂MC

N

)2

denotes the sample variance, then a good estimate for τQ, used, e.g., in the statistical software
package R, is given by τQ = s2Q/ρ(0), where ρ(0) is the so-called spectral density at frequency
zero. Details of a method for approximating the spectral density are given in [40] (included in
R under the package coda). The effective sample size is defined as N eff := N/τQ. It represents
the number of i.i.d. samples from νM,R that would lead to a Monte Carlo estimator with the

same variance as Q̂MC
N . The statistical error in this estimate is computed using the diagnostics

set out by Gelman & Rubin [28], which is a weighted average of variances of the means across
all chains, and average in-chain variances.

Recursive independence sampling. The final ingredient for our hierarchical MLMCMC algo-
rithm is an efficient practical algorithm to obtain independent samples Θn

ℓ−1 from the coarse

posterior νℓ−1 which we need in Algorithm 2 in section 3 to estimate Eνℓ [Qℓ] − Eνℓ−1 [Qℓ−1].
The algorithm is summarized in Algorithm 3.

We start on level 0 by creating a sufficiently long Markov chain {Θ̃j
0}j≥0 using Algorithm 1

with pCN proposal distribution q0 [13] (see (5.3) below for details). Let Q̃j0 := G(p0(Θ̃j
0)) be

the sample of the output quantity of interest associated with the jth sample of the auxiliary
chain {Θ̃j

0}j≥0 on level 0. The samples in this chain are correlated, but by subsampling it with
a sufficiently large rate t0 ∈ N, we obtain independent samples. The typical rule in statistics
to achieve independence is to choose t0 to be twice the integrated autocorrelation time τ̃0 of
the Markov chain {Q̃j0}j≥0. In practice, we found that much shorter subsampling rates were
sufficient (see below).

Then, on level 0 < k ≤ ℓ − 1, we use the independent samples created on level k − 1 in
Algorithm 2 to recursively create a Markov chain {Θ̃j

k}j≥0 on level k. The proposal distribution
qk,F for the modes that are added on level k is again chosen to be a pCN random walk (see (5.4)
below for details). We subsample this chain again with sufficiently large rate tk ∈ N to obtain

independent samples on level k. Finally, we set Θn
ℓ−1 := Θ̃

ntℓ−1

ℓ−1 . In summary, to produce one

independent sample Θn
ℓ−1 on level ℓ− 1, we need to compute Tk :=

∏ℓ−1
k′=k tk′ samples on each

of levels k = 0, . . . , ℓ − 1. Since the acceptance probability αkML(Θ̃
′
k|Θ̃

j
k) converges to 1 as k

increases (cf. Lemma 4.7), and since we are using independent proposals from level k− 1, the
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Algorithm 3 (recursive independence sampling).

Choose initial states Θ0
ℓ−1 = Θ̃0

ℓ−1, . . . , Θ̃
0
0 such that Θ̃0

k,C = Θ̃0
k−1 and subsampling rates

tk for all k = 1, . . . , ℓ− 1. Then, for j ≥ 0:
• On level 0:

– Given Θ̃j
0, generate Θ̃′

0 from a pCN proposal distribution.
– Compute

α0(Θ̃′
0|Θ̃j

0) = min

{
1,

L0(Fobs | Θ̃′
0)

L0(Fobs | Θ̃j
0)

}
.

– Set Θ̃j+1
0 = Θ̃′

0 with probability α0(Θ̃′
0|Θ̃j

0). Set Θ̃j+1
0 = Θ̃j

0 otherwise.
• On level k = 1, . . . , ℓ− 1:

– Given Θ̃j
k, let Θ̃′

k,C = Θ̃
(j+1)tk−1

k−1 and generate Θ̃′
k,F from a pCN proposal

distribution.
– Compute

αℓML(Θ̃
′
k | Θ̃j

k) = min

{
1,

Lk(Fobs | Θ̃′
k)Lk−1(Fobs | Θ̃j

k,C)

Lk(Fobs | Θ̃j
k)Lk−1(Fobs | Θ̃′

k,C)

}
.

– Set Θ̃j+1
k = Θ̃′

k with probability αkML(Θ̃
′
k|Θ̃

j
k). Set Θ̃j+1

k = Θ̃j
k otherwise.

• Set Θj+1
ℓ−1 = Θ̃

(j+1)tℓ−1

ℓ−1 .

integrated autocorrelation times τ̃k of the auxiliary chains {Θ̃j
k}j≥0, k = 1, . . . , ℓ− 1, converge

to 1; i.e., the samples are essentially independent for large k. As a consequence Tk is actually
of the same order as the autocorrelation time of samples that Algorithm 1 with pCN proposals
would produce on level k (see below for more details).

At the jth state of the auxiliary chain on level 0, the pCN proposal from the standard
multivariate normal prior distribution is generated as follows:

(5.3) (Θ̃′
0)i =

√
1− β20 (Θ̃

j
0)i + β0Ψi , i = 1, . . . , R0 .

Here, Ψi ∼ N (0, 1), and β0 is a tuning parameter used to control the size of the step in the
pCN random walk [13]. Similarly, the proposal Θ̃′

k,F for the fine modes at the jth state of the
auxiliary chain on level k ∈ {1, . . . , L} is generated by

(5.4) (Θ̃′
k,F )i =

√
1− β2k (Θ̃

j
k,F )i + βkΨi , i = 1, . . . , Rk −Rk−1 .

The actual values of βk = 0.1, for all k = 0, . . . , L, that are used in the following calculations
were chosen after carrying out a series of preliminary tests to achieve “good” mixing properties.

As in (2.2), in practice, the first j0k samples from each of the auxiliary chains are discarded
by prescribing a burn-in period. We choose the length j0k of the burn-in period on level k to
be twice the integrated autocorrelation time τ̃k.
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Multilevel estimator. We can now use the independent samples Θn
ℓ−1 ∼ νℓ−1 produced by

Algorithm 3 in Algorithm 2 to produce samples θnℓ of the fine chain on level ℓ, and thus

samples Y n
ℓ := G(pℓ(θnℓ ))− G(pℓ−1(Θ

n
ℓ−1)) for the estimator Ŷ MC

ℓ,Nℓ
of Eνℓ [Qℓ]− Eνℓ−1 [Qℓ−1] in

(3.3). The samples for the estimator Q̂MC
0,N0

on level 0 are produced with Algorithm 1 again

using pCN proposals. This completes the definition of the MLMCMC estimator Q̂ML
L,{Nℓ}

in

(3.4). It remains only to decide on an optimal sample size Nℓ on each level that will ensure
that the total sampling error is below the prescribed tolerance, and that the total cost of the
estimator is minimized.

Let τℓ be the integrated autocorrelation time of the chain Y n
ℓ (resp., Qn0 ) for ℓ = 1, . . . , L

(resp., ℓ = 0), and let s2ℓ be the sample variance on level ℓ. Then N eff
ℓ := Nℓ/τℓ is the effective

sample size on level ℓ, and s2ℓ/N
eff
ℓ is an estimate of the variance of the estimator Ŷ MC

ℓ,Nℓ
. Our

aim is to achieve the following bound on the total sampling error for the MLMCMC estimator:

(5.5)
L∑

ℓ=0

s2ℓ
N eff
ℓ

≤ ε2

2

for some prescribed tolerance ε. In what follows, we will choose ε such that the bias error on
level L is ε2

2 and thus the two contributions to the MSE in (3.6) are balanced.
To decide on a cost-optimal strategy for the choice of the Nℓ, we first need to discuss the

cost per sample. Recall that Cℓ denotes the cost to evaluate Qℓ for a single sample Θℓ from
the prior on level ℓ. However, to quantify the cost of the estimator Ŷ MC

ℓ,Nℓ
on level ℓ, we also

need to take all the samples in the auxiliary chains on the coarser levels in Algorithm 3 into
account, as well as the integrated autocorrelation time τℓ of the chain {Y n

ℓ }. Recalling that

tk is the subsampling rate on level k in Algorithm 3 and that Tk =
∏ℓ−1
k′=k tk′ , the total cost

to produce one independent (effective) sample is

(5.6) Ceff
ℓ := ⌈τℓ⌉

(
Cℓ +

ℓ−1∑

k=1

Tk Ck
)
.

As in the case of standard multilevel MC with i.i.d. samples, the total cost of the multilevel
estimator is minimized, subject to the constraint (5.5), when the effective number of samples
on each level satisfies

(5.7) N eff
ℓ =

2

ε2

(
L∑

ℓ=0

√
s2ℓCeff

ℓ

)√
s2ℓ
Ceff
ℓ

as described in [30, 11]. In practice, the optimal number of samples can be estimated adap-
tively after an initial number of samples to get an estimate for s2ℓ (see again [30, 11] for
standard MLMC).

In all calculations which follow we simultaneously run P parallel chains. This allows for
an efficient parallelization and aids exploration of multimodal posterior distributions. Fur-
thermore the calculation of the total sampling error (5.5) is simplified. The parallel chains
provide P independent estimates for Ŷ MC

ℓ . Therefore, using standard statistical tools, the
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Figure 1. Left: Autocorrelation function for a typical (burned in) coarse level chain {Qn
0 } with an integrated

autocorrelation time of τ0 ≈ 86. Right: Plot of E
[
Ŷ MC
1

]
against subsampling rate t0; the solid line shows the

computed results, while the dashed lines give the two-sided 95% confidence interval.

sampling error on each level can be calculated without the need for accurate estimates of the
integrated autocorrelation times. For the implementation considered here we chose P = 128
and distributed the computations across 128 processors.

5.2. Two-level results. We start with a two level test to investigate the additional bias
created in Algorithm 2 due to the dependence of the coarse samples from the recursive sub-
sampling procedure in Algorithm 3 and how that bias depends on the subsampling rate tk.
We choose two grids with m0 = 8 and m1 = 16 and fix the numbers of KL modes to be
R0 = R1 = 20. The data is generated synthetically from a single random sample from the
prior distribution computed on grid level 4, i.e. with m4 = 128. The observations Fobs are
taken to be the pressure values at 16 uniformly spaced points interior to the domain. The
data fidelity is set to σ2F = 10−4 on both levels.

We first computed the autocorrelation function for a typical (burned in) coarse level chain
{Qn0} (see Figure 1(left)) and note that the integrated autocorrelation time is approximately
τ0 ≈ 86 in this case. We then ran Algorithms 2 and 3, for different subsampling rates from
t0 = 1 to 100 > τ0, until the standard error for the estimator Ŷ MC

1 reached a prescribed

tolerance of ε = 2.5 × 10−4. Figure 1(right) shows the expected value of EΘ1
[Ŷ MC

1 ] as a

function of t0, as well as the two-sided 95% confidence interval, i.e., EΘ1
[Ŷ MC

1 ] ± 1.96 ε. We

note that Eν1 [Q1] − Eν0 [Q0] ≈ E{Θn
1
}[Q̂

MC
1 ] − E{Θn

0
}[Q̂

MC
0 ] ≈ 0.0222, calculated from two

independent standard MCMC runs to a tolerance of ε = 2.5× 10−5 on each level.
We note that, for the example considered here, the additional bias error due to the depen-

dence of the samples is less than 30% even if no subsampling is used (i.e., t0 = 1). In practice,
a value of t0 = 50 would be sufficient to reduce the bias to a negligible amount (< 1%), given
all the other bias errors due to FE discretization, KL truncation, and Metropolis–Hastings
sampling. However, to be on the safe side for all the calculations that follow, we take the sub-
sampling rate equal to the smallest integer that is bigger than our estimate of the integrated
autocorrelation time, i.e., tℓ = ⌈τ̃ℓ⌉.
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Figure 2. Left: Synthetic data used in section 5.3. Right: Posterior sample created by our algorithm on
grid level 4. For both plots, data points are marked by crosses.

5.3. Comparison of MLMCMC with a standard single-level MCMC estimator. We now
test the full MLMCMC algorithm, using the same coarsest grid with m0 = 8 and considering
up to five levels in our method with a uniformly increasing number of KL modes across the
levels from R0 = 50 to R4 = 150. As for the two-level example, the data is generated synthet-
ically from a single random sample from the prior distribution on level 4; see Figure 2(left).
We note that since R4 = 150 here, the data differs slightly from that used in the two-level
results in section 5.2 (although we used the same random numbers for the first 20 KL modes).
The fidelity parameter was again chosen to be σ2F,ℓ = 10−4 for all ℓ = 0, . . . , 4. A typical
sample from the posterior distribution on grid level 4, produced by our multilevel algorithm,
is shown in Figure 2(right).

We compare the performance of our new multilevel method to standard Metropolis–
Hastings MCMC with pCN proposal distribution (again with tuning parameter βℓ = 0.1).
The cost Cℓ to compute one individual sample of Qℓ on level ℓ with our code is shown in
actual CPU time in Figure 3(left), obtained on a 2.4GHz Intel Core i7 processor. The cost
in FreeFem++ is dominated by the assembly of the FE stiffness matrix, and so it grows like
O(h−2

ℓ ) = O(Mℓ). We believe that this behavior is representative for problems of this size
when the uniform grid structure is not exploited in the assembly process, and that these CPU
times are competitive. For larger problem sizes, the cost of the linear solver will become the
dominant part. However, for the MLMCMC algorithm we are really interested in the cost Ceff

ℓ

defined in (5.6) to compute one independent sample on level ℓ using Algorithms 2 and 3 with
tk = ⌈τ̃k⌉. These costs are shown in Figure 3(right). They are compared to the cost to produce
one independent sample on level ℓ using Algorithm 1. The integrated autocorrelation times
τ̃ℓ for the auxiliary chains {Q̃nℓ } on each level in our example are given in Table 2. Note that
since the coarse samples are (essentially) independent, the integrated autocorrelation times
τℓ for the chains {Y n

ℓ } are almost identical, i.e., τℓ ≈ τ̃ℓ. However, what is more important,
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Figure 3. Left: Cost (CPU time in seconds) to compute one sample of Qh as a function of h. Right: Cost
Ceff
ℓ per independent sample on level ℓ.

the integrated autocorrelation times on the finer levels ℓ > 0 are very small and tend to one,
such that N eff

L ≈ NL, which due to the exponential growth of the cost with ℓ → ∞ leads
to huge cost savings. Thus, the subsampling on the coarser levels, which seemed to be a
necessary “evil” to obtain the required (quasi) independence is actually leading to significant
cost savings and should be employed in any case.

Table 2

Integrated autocorrelation times of the auxiliary chains {Q̃n
ℓ } on levels ℓ = 0, . . . , 4.

Level 0 1 2 3 4

τ̃ℓ 136.23 3.66 2.93 1.46 1.23

In Figure 4 we now compare the performance of our MLMCMC method with finest level L
varying from 1 to 4 with standard MCMC on the same level. The tolerance εL for each of the
cases is chosen such that the bias error is less than εL/

√
2, leading to ε1 = 0.04, ε2 = 0.017,

ε3 = 0.013, and ε4 = 0.0067, respectively. The estimated bias error decays with about O(h),
which is faster than what we would expect for the functional in (5.2) which does not satisfy
assumption A2 (see [60]). It is likely that this is because the second term in (4.13), i.e.,
the bias error in the posterior distribution, dominates. That bias error is due to the FE
approximation of pressure evaluations at points here, which are expected to converge with
O(h log |h|)) (see [58]). The slight variation in the convergence rate could mean that some
features in the posterior were only picked up on a sufficiently fine grid. The optimal numbers
N eff
ℓ of (independent) samples on each level are chosen according to formula (5.7). They are

plotted in Figure 4(left). Please note that these are numbers of independent samples. The
total number of samples computed on the coarser levels is much larger. For example, for the
four-level estimator we needed about 4 × 107 actual PDE solves for all the auxiliary chains
on level 0 combined. However, each of these solves is about 250 times cheaper than a solve
on level 4. Because τ4 ≈ τ̃4 = 1.23, we see from Figure 4(left) that we need only about 562
PDE solves on level 4. These are huge savings against standard MCMC, which requires about
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4 × 106 solves on level 4 to achieve the same sampling error. We can see this clearly in the
overall cost comparison in Figure 4(right). The gains are even more pronounced if we relax
the overly conservative choice of tk = ⌈τ̃k⌉ for the subsampling rates.

In our final figure, Figure 5, we confirm our theoretical results and plot our estimates for
Vνℓ,ℓ−1 [Y n

ℓ ] (left) and for Eζ

[
(1−αℓML(θ

′
ℓ|θnℓ ))

]
(right). Ignoring the last data point in each of

the plots, which seem to be outliers, the variance seems to converge with almost O(h2), and
the multilevel rejection probability slightly faster than O(h). We are not sure whether this
means that the bounds in Lemmas 4.6 and 4.7 are both slightly pessimistic or whether this is
just some preasymptotic behavior.

Remark 5.1. It is worth pointing out that the recursive independence sampling in Algo-
rithm 3 also brings significant savings if it is used to produce proposals for a standard MCMC
algorithm, as the comparison of the cost per independent sample in Figure 3(right) clearly
shows. This is related to the delayed acceptance method of [9]. The multilevel approach also



MULTILEVEL MARKOV CHAIN MONTE CARLO 35

provides a very efficient burn-in method, due to the significantly reduced integrated autocor-
relation times on the finer levels and since most of the burn-in happens on the coarsest level.
This is related to the approach in [25].

6. Conclusion. Bayesian inverse problems in large-scale applications are often too costly
to solve using conventional Metropolis–Hastings MCMC algorithms due to the high dimen-
sion of the parameter space and the large cost of computing the likelihood. In this paper,
we employed a hierarchy of computational models to define a novel multilevel version of a
Metropolis–Hastings algorithm, leading to significant reductions in computational cost. The
main idea underlying the cost reduction is to build estimators for the difference in the quan-
tity of interest between two successive models in the hierarchy, rather than estimators for the
quantity itself. The new algorithm was then analyzed and implemented for a single-phase
Darcy flow problem in groundwater modelling, confirming the effectiveness of the algorithm.

The algorithm presented in this paper is not reliant on the specific computational model
underlying the simulations and is generally applicable. The underlying computational model
will in general influence the convergence rates α, α′, β, and β′ of the discretization errors, and
the growth rate γ of the cost of the likelihood computation (cf. Theorem 3.4), which in turn
govern the cost of the standard and multilevel Metropolis–Hastings algorithms. The gain to
be expected from employing the multilevel algorithm is always significant, and the gain is, in
fact, larger for more challenging model problems, where the values of α, α′, β, and β′ are small
and γ is large.

The algorithm also allows for the use of a variety of proposal distributions. The cru-
cial result in this context is the convergence of the multilevel acceptance probability to 1
(cf. Lemma 4.7), which, in general, has to be verified for each proposal distribution individu-
ally, but is expected to hold for most proposal distributions.
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