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This article combines procedures for single-level mediational analysis with multilevel

modeling techniques in order to appropriately test mediational effects in clustered data.  A

simulation study compared the performance of these multilevel mediational models with

that of single-level mediational models in clustered data with individual- or group-level

initial independent variables, individual- or group-level mediators, and individual level

outcomes.  The standard errors of mediated effects from the multilevel solution were

generally accurate, while those from the single-level procedure were downwardly biased,

often by 20% or more.  The multilevel advantage was greatest in those situations involving

group-level variables, larger group sizes, and higher intraclass correlations in mediator and

outcome variables.  Multilevel mediational modeling methods were also applied to data

from a preventive intervention designed to reduce intentions to use steroids among players

on high school football teams.  This example illustrates differences between single-level and

multilevel mediational modeling in real-world clustered data and shows how the multilevel

technique may lead to more accurate results.

Mediational analysis is a method that can help researchers understand

the mechanisms underlying the phenomena they study.  The basic

mediational framework involves a three variable system in which an initial

independent variable affects a mediational variable, which, in turn, affects an

outcome variable (Baron & Kenny, 1986).  The aim of mediational analysis

is to determine whether the relation between the initial variable and the

outcome is due, wholly or in part, to the mediator.  Mediational analysis is

applicable across a wide range of experimental and non-experimental
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research situations, including both process-oriented laboratory research and

field studies.

Mediational analysis is particularly useful in prevention research, where

it allows researchers to explore the mechanisms through which experimental

interventions have their effects.  Often preventive interventions are

designed to affect certain key process variables (i.e., mediators) which are

believed to affect the outcome measure of interest.  For example, drug use

intervention programs often target mediational variables such as knowledge

of the effects of particular drugs, beliefs about the prevalence of drug use,

and resistance skills (Hansen, 1992; MacKinnon & Dwyer, 1993).   Changes

in these mediators are believed to affect change in intentions to use drugs as

well as change in actual drug use.

Often preventive interventions are delivered within an organizational

system, such as a school system, which provides ready access to intact

groups of subjects.  With students nested within classrooms and schools, the

data are inherently clustered.  Clustered data is frequently encountered in

other areas of psychological research as well.  For example, health

researchers may study the outcomes of patients nested within clinics or

hospitals, industrial/organizational researchers may be interested in

individual workers nested within work groups or companies, and survey

researchers may encounter respondents nested within various geographical

areas, such as census tracts, neighborhoods, or countries.  It is likely that the

students who attend a particular school or the individuals who reside within

a particular geographic area are more similar to each other than a randomly

selected group of students or individuals would be.  Such similarity may be

due to shared group experiences, reciprocal influence resulting from group

interaction, or non-randomly distributed background variables.  When

modeling data gathered from these clustered individuals, the within-group

homogeneity (indexed by the intraclass correlation or ICC) results in

positively correlated error terms among the individuals within a particular

group.  In such a situation (i.e., with positive ICC), mediational analysis

suffers from the same difficulty as other traditional analytic techniques,

namely the unit of analysis problem (Palmer, Graham, White, & Hansen,

1998).

Because traditional analyses are not designed to accommodate clustered

data, their application requires the researcher to make a decision about

whether the analysis should be based on individual level responses, ignoring

the clustering, or on aggregate measures for each group, eliminating the

individual scores.  In other words, should the unit of the analysis be the

individual or the group?  If the individual was chosen as the unit of analysis,

the analysis would proceed as if the data were unclustered and any group
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level variables were, in fact, individual level variables.  However, with

positive ICC frequently found in clustered data, the correlated errors among

the individuals within a group violate the independent observations

assumption of ordinary least squares (OLS) estimation, resulting in

downwardly biased standard error estimates, overly large test statistics, and

inflated Type I error rates (Barcikowski, 1981; Moulton, 1986; Scariano &

Davenport, 1987; Scott & Holt, 1982; Walsh, 1947).  If the analysis were to

proceed at the group level, all individual level data would be aggregated into

group means, and groups, not individuals, would be treated as the

observations in the analysis (see, for an example, MacKinnon et al., 1991).

Though this eliminates the correlation among individual error terms, this

approach is not ideal for a number of reasons.  First, the power of statistical

tests is reduced because the number of observations is limited to the number

of groups, rather than the number of individuals, and the degrees of freedom

for the analysis are correspondingly decreased.  Second, this procedure

discards the individual variability in scores, which may comprise the majority

of the variability present in the data (de Leeuw, 1992).  In addition, primary

interest in prevention studies typically centers on the individual, but the group

level relationships explored by an aggregate analysis do not necessarily

parallel individual level effects, making inferences about individual behavior

potentially misleading (Robinson, 1950; Pedhazur, 1982, p. 529).  Thus

conducting an analysis of clustered data by aggregating all individual level

information to the group level is often not an optimal solution to the correlated

error problem.

Multilevel modeling was developed in response to the challenge of

appropriately analyzing clustered data.  This technique preserves the original

data structure (i.e., individual level variables need not be aggregated to group

means) while explicitly modeling the within-group homogeneity of errors by

allowing the estimation of error terms for both the individual and the group.

Because of the complex structure of the model and the nature of the error

terms, multilevel models are estimated using iterative Empirical Bayes/

maximum likelihood (EB/ML) techniques, rather than the OLS methods

typically employed to estimate the parameters of single-level models.  The

standard error estimates for a multilevel model are more accurate than those

for a single-level individual-as-unit-of-analysis model.  In addition to the

correction of standard error estimates and the more appropriate significance

tests that result, multilevel models also provide other advantages over

traditional analytic techniques.  Prominent among these is the ability to

simultaneously examine the effects of variables at both individual and group

levels, as well as possible cross-level interaction effects (Bryk &

Raudenbush, 1992).
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In the field of prevention research, school-based interventions are often

randomized at the classroom or school level (i.e., intact classes or schools are

assigned to either control or intervention conditions), yet the outcome

measures of primary interest involve characteristics or behaviors of individual

students (e.g., drug use).  Prevention researchers have recognized the

appropriateness of multilevel models for estimating the overall effect of the

group level intervention on individual level drug use outcomes (e.g., Hedeker,

Gibbons, & Flay, 1994; Murray, 1998; Palmer et al., 1998).  Multilevel modeling

corrects the standard error associated with the estimate of the program effect,

resulting in a more accurate test of its significance.  In addition to this primarily

statistical advantage, prevention researchers have also recognized that the

multilevel framework provides an opportunity to examine possible interactions

between the intervention and both individual and group level variables.  For

example, Kreft (1997) used multilevel models to examine individual

rebelliousness as a possible moderator of the effect of a class-level drug use

intervention on individual alcohol and cigarette use.  Other researchers

speculate that the effectiveness of a classroom-based alcohol and drug use

prevention program may depend on the receptiveness of the individual student,

the ability of the teacher to implement the program in the classroom, and

community resources (Palmer et al., 1998).  The multilevel framework allows

researchers to consider such moderational effects at any level of their data,

knowing that appropriate statistical tests are available.

In addition to multilevel moderation, the ability of the multilevel

framework to examine the effects of both individual and group level variables

also opens up the possibility of conducting analyses to examine multilevel

mediation.  Just as moderational effects can involve interactions between

variables at either level, the processes involved in mediation may also

operate at either (or both) of the levels of a clustered dataset.  For example,

examination of the processes which underlie a drug use prevention program

may involve testing the mediational role of both individual variables, such as

individual knowledge of the effects of various drugs, and group level

variables, such the group norm regarding drug use.  Multilevel modeling

techniques can be incorporated into the framework of mediational analysis

to provide tests of the mediated effects in models of this general type, with

data nested within clusters and/or key variables measured at different levels.

The basic prerequisites for the appropriate application of multilevel

mediational analysis include (a) clustered data with positive ICC, and (b) a

proposed three-variable mediational model in which the outcome variable is

measured at the lowest level of the data (in the examples presented here, the

individual level).  Additionally, the structure of multilevel models dictates that

each link in the mediational chain may involve a variable affecting another
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measured at the same level or at a lower level, but not at a higher level.  In

other words, a group level variable may affect either a group level variable

or an individual level variable;  an individual level variable may affect another

individual level variable, but not a group level variable.  The simplest situation

that meets these criteria would involve a dataset in which individuals are

nested within intact groups and a hypothesis involving a proposed mediational

chain in which all three variables (initial, mediator, and outcome) are

individual characteristics or behaviors.  Such a case is pictured in the top

panel of Figure 1.  The model is labeled 1 → 1 → 1, the three numbers

indicating that the initial (X
ij
), mediator (M

ij
), and outcome (Y

ij
) variables in

the model, respectively, are measured at Level 1, or the lowest level of the

data.  The ij subscript on each variable indicates that the variable can take

on a unique value for each individual i within each group j.  In this simplest

case with all three variables measured at the same level, it is only the

clustered nature of the data that requires multilevel modeling to appropriately

model the error structure.  If the initial variable in the chain were continuous,

this model might apply to process-oriented survey research in which the

predictor variable was a construct measured on a Likert-type scale or to an

experimental study where a treatment was administered at a number of

different dosing levels.  If the initial variable were dichotomous, this model

might apply to an experimental study in which individual subjects are

assigned to control or treatment conditions or to an observational study in

which the measured initial variable can take on only two different values.

Mediational models that include group level initial or mediator variables

may also be analyzed with multilevel mediational models.  Consider, for

example, a 2 → 1 → 1 model, as depicted in the center panel of Figure 1.  Here,

an initial level 2 variable (X
j
), representing a characteristic of the group, affects

an individual level mediator (M
ij
), which, in turn, affects an individual level

outcome (Y
ij
).  The single subscript j on the X variable indicates that this

variable may take on a unique value for each group j.  Such a scenario fits the

typical preventive evaluation example with a group-based intervention

designed to change individual knowledge or perceptions in order to reduce

individual drug use.  A combination of single-level and multilevel modeling also

makes possible the analysis of a 2 → 2 → 1 model, in which both the initial (X
j
)

and mediator (M
j
) variables are measured at the group level, but the outcome

(Y
ij
) is an individual behavior.  Such a model is depicted in the bottom panel of

Figure 1.  An example of such a model is provided by Sampson, Raudenbush,

and Earls (1997), who hypothesized that neighborhood level measures of social

composition (which reflect economic disadvantage and immigrant

concentration) affect neighborhood level measures of collective efficacy

(social cohesion and informal social control), which, in turn, influence individual



J. Krull and D. MacKinnon

254 MULTIVARIATE BEHAVIORAL RESEARCH

Figure 1

Three Types of Mediational Models
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level measures of violence (such as perceived level of neighborhood violence

and individual violent victimization).

The analysis of multilevel mediational effects is somewhat complicated

by the fact that many variables can be conceptualized at more than one level.

Any individual level measure can be aggregated to the group level, simply by

taking the mean for each group.  Effects involving the variable may operate

at either or both levels.  Moreover, individual and aggregate measures of the

same variable may reflect quite different constructs at the various levels.

For example, individual student level responses regarding parental

occupation and education may serve as indicators of home background and

reflect parental commitment to the student’s learning, while school level

aggregates of the same responses more likely indicate the wealth and

urbanism of the community, which may determine the level of school

resources (Burstein, 1980; 1985).  In general, individual level variables tend

to be more psychological in nature than group aggregates, which may be

more indicative of organizational or normative aspects of the environment.

Aggregate measures may also represent contextual influences, which can

operate differently than the individual measures on which they were based.

For example, rebelliousness as an individual characteristic may encourage

risk-taking and make an intervention less likely to be effective.  Moreover,

a group with a high average level of rebelliousness may create an

environment in which discipline issues would make program delivery

difficult, decreasing program effectiveness even for non-rebellious

individuals (Palmer et al., 1998).

Multilevel mediational modeling is a flexible technique which allows

researchers to appropriately test mediated effects in clustered datasets and

can accommodate initial and mediator variables measured at either the group

or the individual level.  The basic model can be extended to include multiple

mediators operating at different levels, which could potentially disentangle

the mediational effects of individual and aggregate mediational effects of the

same variable.  The following section of this article describes in detail the

general structure of multilevel mediational models as a combination of single-

level mediational analysis procedures and multilevel modeling techniques.

The performance of multilevel mediational models relative to single-level

mediational models is then evaluated in a simulation study.  Finally, multilevel

mediational modeling techniques are applied to data from a steroid use

prevention study in order to illustrate the differences between single-level

and multilevel mediational approaches in real-world data.
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Mediational Analysis Procedures

In single-level mediational models, algebraically equivalent point

estimates of the mediated effect can be calculated in two ways (MacKinnon,

Warsi, & Dwyer, 1995), each of which involves the estimation of two

regression equations.  The straightforward reformulation of these regression

equations in the multilevel framework allows for the analogous estimation of

mediated effects in clustered multilevel data.

The first method for obtaining a point estimate of the mediated effect for

single-level data requires the estimation of a regression equation predicting

the outcome measure (Y
i
) from the initial variable (X

i
)

(1) Y
i 
= �

0
+ �

c
X

i
 + r

i

and the estimation of a regression equation predicting the outcome measure

from the initial variable and the mediator (M
i
)

(2) Y
i
 = �

0
 + �

c�
X

i
 + �

b
M

i
 + r

i
.

The difference between the estimates of the coefficients associated with the

initial variable (X
i
) in these two equations, $ $� �c c−

′
, estimates the mediated

effect as the extent to which the mediator accounts for the relationship

between the initial and outcome variables (Judd & Kenny, 1981).

The second method for calculating point estimates of mediated effects

requires estimating a regression equation predicting the mediator from the

initial variable

(3) M
i
 = �

0
 + �

a
X

i
 + r

i

and a regression equation identical to Equation 2 above predicting the

outcome measure from the initial variable and the mediator

(4) Y
i
 = �

0
 + �

c�
X

i
 + �

b
M

i
 + r

i
.

The product $ $� �a b
 is a second point estimate of the mediated effect, which

evaluates the extent to which the initial variable affects the mediator and the

extent to which the mediator, in turn, affects the outcome.  In single-level

models, the two expressions, $ $� �c c−
′
 and $ $� �a b , produce algebraically

equivalent estimates of the mediated effect (MacKinnon, Warsi, & Dwyer,

1995).
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In single-level mediational models, methods for estimating the variance

of a product of random variables are often used to estimate the standard

error of the mediated effect for use in interval estimation and significance

testing (Sobel, 1982).  A number of such methods exist (e.g., Goodman, 1960;

Mood, Graybill, & Boes, 1974), and previous work involving both single-level

and multilevel mediational models suggests that the expression for the square

root of the asymptotic variance based on the multivariate delta method

(Sobel, 1982; 1986) or the first order Taylor series

(5) $ $ $ $ $s s s
a b a bb a� � � �� �= +

2 2 2 2

performs well across a range of sample sizes (Krull & MacKinnon, 1999;

MacKinnon, Warsi, & Dwyer, 1995).  The expression within the radical may

be derived by pre- and post-multiplying the covariance matrix of the random

variables (�
a
 and �

b
) by the partial derivatives of the desired function (�

a
 �

b
)

of the random variables, or by using Taylor series expansion to develop a

polynomial approximation of the desired function and then calculating the

variance of this polynomial.  The estimates used in calculating this result may

be obtained from regression analyses of Equations 2 and 3, simply adding the

squared estimates of the effects �
a
 and �

b
,
 
each multiplied by the squared

standard error of the other.

Each of the three unique single-level mediational equations (Equations 1

through 3) may be recast as a multilevel equation, generating multilevel

coefficients and standard error estimates that may be used to calculate

multilevel $ $� �c c−
′
 or $ $� �a b  estimates of the mediated effect, as well as a

multilevel approximation for the standard error of the mediated effect, using

the formula provided in Equation 5.  Table 1 shows the multilevel

reexpressions of each of the three unique single level equations for three

different types of models.  The simplest case is the 1 → 1 → 1 model in which

all variables are measured at the individual level.  Such a model would be

applicable, for example, to a experimental intervention study where students

within classes (rather than the classes) were randomly assigned to

treatments believed to change individual perceptions about a particular

behavior (e.g., smoking) which would then affect the extent to which the

students engaged in the behavior.  The single-level and multilevel mediational

equations for this type of model are shown in the top section of Table 1.  The

multilevel specification for Equation 1, and for Equations 2 and 3 as well,

includes an individual level (Level 1) equation and a related group level

(Level 2) equation.  The individual level equation is very similar to the single-



J. Krull and D. MacKinnon

258 MULTIVARIATE BEHAVIORAL RESEARCH

level equation, with the individual level outcome Y
ij
 predicted by an intercept

term, the individual level initial variable X
ij
, and an individual level error term.

However, the intercept in the multilevel specification is indexed by the

subscript j, which indicates that the intercept is treated as a random

coefficient and each group j may have a unique intercept value.  Each group

intercept is then predicted in the group level equation from an overall

intercept term, �
00

, and a group level error term, u
0j
.  It is this second error

term that allows the multilevel model to accommodate the correlated error

Table 1

Single-level and Multilevel Equations for Mediational Analysis for the Three

Types of Models

Analysis Type

Single-Level Multilevel

1→ 1→ 1

Equation 1 Y
ij
 = �

0
 + �

c
X

ij
 + r

ij
Level 1: Y

ij
 = �

0j
 + �

c
X

ij
 + r

ij

Level 2: �
0j
 = �

00
 + u

0j

Equation 2 Y
ij
 = �

0
 + �

c�
X

ij
 + �

b
M

ij
 + r

ij
Level 1: Y

ij
 = �

0j
 + �

c�
X

ij
 + �

b
M

ij
 + r

ij

Level 2: �
0j
 = �

00
 + u

0j

Equation 3 M
ij
 = �

0
 + �

a
X

ij
 + r

ij
Level 1: M

ij
 = �

0j
 + �

a
X

ij
 + r

ij

Level 2: �
0j
 = �

00
 + u

0j

2→ 1→ 1

Equation 1 Y
ij
 = �

0
 + �

c
X

j
 + r

ij
Level 1: Y

ij
 = �

0j
 + r

ij

Level 2: �
0j
 = �

00
 + �

c
X

j
 + u

0j

Equation 2 Y
ij
 = �

0
 + �

c�
X

j
 + �

b
M

ij
 + r

ij
Level 1: Y

ij
 = �

0j
 + �

b
M

ij
 + r

ij

Level 2: �
0j
 = �

00
 + �

c�
X

j
 + u

0j

Equation 3 M
ij
 = �

0
 + �

a
X

j
 + r

ij
Level 1: M

ij
 = �

0j
 + r

ij

Level 2: �
0j
 = �

00
 + �

a
X

j
 + u

0j

2→ 2→ 1

Equation 1 Y
ij
 = �

0
 + �

c
X

j
 + r

ij
Level 1: Y

ij
 = �

0j
 + r

ij

Level 2: �
0j
 = �

00
 + �

c
X

j
 + u

0j

Equation 2 Y
ij
 = �

0
 + �

c�
X

j
 + �

b
M

j
 + r

ij
Level 1: Y

ij
 = �

0j
 + r

ij

Level 2: �
0j
 = �

00
 + �

c�
X

j
  + �

b
M

ij
  + u

0j

Equation 3 M
j
 = �

0
 + �

a
X

j
 + r

j
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structure inherent in clustered data.  Equations 2 and 3 are restructured

similarly.  In each case, the intercept is specified as a random coefficient, and

error terms are included at each level of the model.

The 2 → 1 → 1 model differs in that the initial variable in the mediational

chain is a group level variable.  Such a data structure is frequently

encountered in prevention research in which intact groups are randomly

assigned to treatment conditions designed to change individual mediators

(e.g., perceptions, knowledge, beliefs about drug use) which in turn affect

individual outcomes (e.g., drug use behaviors).  The single-level and

multilevel mediational equations for this model are shown in the center

section of Table 1.  In the multilevel specification, the group level initial

variable is incorporated into the group level equations.  For example, in

Equation 1, the X
j
 variable is included as a predictor of the group intercept

in the Level 2 equation.  The associated coefficient is $�c
, rather than the $�c

of the single-level specification, but this notational change does not impact

the way in which the coefficient is used in the mediational analysis.  Inclusion

of the X
j
 predictor in the group level specification of Equation 2 produces the

multilevel estimate of $�
′c , and $ $� �c c−

′
 is the multilevel equivalent of the

$ $� �c c−
′
 mediated effect.  Similarly, Equation 3 produces the multilevel

coefficient $�a
, which can be substituted for $�a

 in calculating the multilevel

mediated effect $ $� �a b
 analogous to the single-level $ $� �a b

 estimate.

The 2 → 2 → 1 model includes both initial and mediator variables at the

group level.  This might represent intact groups randomized to treatments

designed to affect global measures of group functioning, which would then

impact individual behavior.  For such a model, Equation 1 is formulated as for

the previous model, with the X
j
 variable predicting the group intercept in the

Level 2 equation.  Equation 2 includes both the group level initial variable X
j

and the group level mediator M
j
 in the group level equation.  Equation 3,

which predicts the mediator from the initial variable, involves only group level

variables.  Therefore, a single-level (i.e., group level only) specification is

appropriate, and estimates of $�a
 obtained via OLS estimation should be used

in calculating the multilevel $ $� �a b
 estimate of the mediated effect.

In this set of multilevel equations, only the intercept term has been

specified as a random coefficient.  It would be possible in those models

involving an individual level mediator to specify the � coefficient associated

with the mediator as random as well and predict this variation in the

relationship between mediator and outcome in an additional group level

equation.   However, the simulation and example analyses reported here are

based on the specifications in Table 1 with the single random incercept

coefficient, in order to provide the most direct comparison between fixed

coefficient single-level and multilevel mediational models.  Moreover, the
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equations are formulated using uncentered variables.  In multilevel models,

centering decisions impact the interpretation of intercepts, the variance of

random intercepts across groups, and the covariance of intercepts with

random slopes (Bryk & Raudenbush, 1992, p. 28).   In these random-

intercept-only models, the interpretation of these particular parameters is not

crucial to obtaining and interpreting estimates of �
 
or � coefficients to be

used in calculating estimates of mediated effects, and thus it is possible to

work with the variables in their original form.

The $ $� �c c−
′
 and $ $� �a b

 estimates of the mediated effect, algebraically

equivalent in single-level models, are not exactly equivalent in multilevel

models (Krull & MacKinnon, 1999).  This is due to the fact that the weighting

matrix used in estimating the fixed effects in the multilevel equations is not

necessarily identical for each of the three equations.  The non-equivalence,

however, is unlikely to be problematic because the discrepancy between the

two estimates is typically small and unsystematic, essentially vanishing at

larger sample sizes (Krull & MacKinnon, 1999).1  Decisions about which

estimate to use may, therefore, be based on other aspects of estimator

performance.  For example, in a model including more than one mediated

effect, use of the $ $� �a b
 estimator provides a separate estimate of each of the

mediated effects, while the $ $� �c c−
′
 estimator gives only an estimate of the

total mediated effect.  Therefore, the $ $� �a b
estimate of the mediated effect

is used in both the simulation study and the real-world prevention example

presented below.  Moreover, the $ $� �a b
estimate of the mediated effect lends

itself readily to subsequent examination of its component $�a
 and $�b

 paths.

Such analyses can be particularly informative when statistical tests show

that the mediated effect is not significantly different from zero.  For example,

in the evaluation of a prevention program, a non-significant mediated effect

might be traced back to a non-significant $�a
 path linking the initial (program)

and mediator variables, indicating an “action theory failure” in which the

program has failed to affect the hypothesized process variable (Chen, 1990).

Alternately, a non-significant mediated effect might be traced back to a non-

significant $�b
 path, indicating a “conceptual theory failure” in which the

process variable, though changed by the program, has had no impact on the

outcome.  In this case, the theory which links the process variable to the

outcome would be suspect.  Corrective action would differ for the two cases:

1  It should be noted, however, that this equivalence may not necessarily hold for non-linear

models (e.g., survival analyses, logistic regression).  In some cases, rescaling of variances

may be sufficient to restore the equivalence (see MacKinnon & Dwyer, 1993).  In other

cases where the difference between the two mediated effect estimates is not so easily

resolved, the analyst may need to consider the logic underlying the two expressions and

decide which more closely parallels the research question in order to make the decision

about which mediated effect estimator to use.
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program restructuring may be necessary to deal with action theory failure,

while conceptual theory failure would suggest a search for better

replacement theory.

Simulation Study

A simulation study was conducted to compare the performance of

multilevel and single-level mediational analyses in estimating and testing

mediated effects in clustered data and to determine how such performance

might be related to other factors, including characteristics of the clustered

datasets themselves and the true parameters defining the mediational

relationship.  The SAS programming language was used to generate

simulated data sets to represent mediational chains in which an initial variable

X affected a mediator M, which, in turn, affected an outcome variable Y.

Data were generated to have multilevel structure (i.e., with observations

drawn from individual units nested within distinct groups), with the outcome

variable structured to represent a variable measured for each individual

subject within each group.  Models were simulated to reflect 1 → 1 → 1,

2 → 1 → 1, and 2 → 2 → 1 data structures.  For each data structure, separate

sets of models were simulated with dichotomous and continuous initial

variables beginning the mediational chain.

Six factors were systematically varied in the simulations.  Two aspects

of sample size, the number of groups and group size, were manipulated such

that the simulated data sets were comprised of 10, 20, 30, 50, 100, or 200

groups of either small or moderate size.  For the small group size conditions,

half of the groups were comprised of 5 individuals, the other half of 10

individuals.  For the moderate group size conditions, half of the groups had

20 individuals, the other half had 30 individuals in each group.

The proportion of residual variance in the simulated mediator and

outcome variables due to between-group variability was also varied.  In

1 → 1 → 1 and 2 → 1 → 1 models, the residual ICCs for the mediator (ICC
M

)

and outcome (ICC
Y
) variables were adjusted by changing the variability of

the group error terms, u
0j
, relative to the variability of the individual error

terms, r
ij
, which was set equal to 1.0.  Values were chosen so that the

proportion of residual variance due to between-group variability (ICC),

calculated as Var (u
0j
) / [Var (r

ij
) + Var (u

0j
)], was equal to .05 or .15.  These

values were chosen to be representative of actual proportions that might be

observed in intervention studies in a number of areas, including psychology,

education, and family studies.  In 2 → 2 → 1 models, manipulating the

variability of the group error term for the M variable simply changed the total

variance for the mediator rather than changing “ICC”, since there was no
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individual level variability in this group level variable.  ICC of the initial X
ij

variable was simulated to be a relatively high .30 in the continuous 1 → 1 → 1

model, in order to produce null model ICCs (calculated without any

predictors in the model) roughly comparable to those of the other models.

The initial X
ij
 variable was simulated with zero ICC in the dichotomous

1 → 1 → 1 model, consistent with the treatment of this variable as random

assignment to an experimental condition.

Finally, the true values of the �
a
 and �

b
 parameters which comprise the

mediated effect were also systematically varied.  In the simulated model, the

�
a
 parameter (representing the effect of the intervention on the mediator)

could take on values of .3 or .6, and the �
b
 parameter (representing the effect

of the mediator on the outcome) could take on values of .1 or .4.  The �
c�

parameter (representing the direct effect of the intervention on the outcome)

was set to a constant value of .1.  These parameter values of �
a
 and �

b
 are

similar in magnitude to those used in previous simulation studies of

mediational models (e.g., Krull & MacKinnon, 1999; MacKinnon, Warsi, &

Dwyer, 1995), and the true values of the mediated effect �
a
�

b
 (which range

from .03 to .24) reflect a range of values which might be encountered in

preventive intervention studies.

All possible combinations of the 6 values for the number of groups in the

analysis, the 2 group sizes, the 2 true values of �
a
, the 2 true values of �

b
, the

2 ICC
M
 values, and the 2 ICC

Y
 values were examined.  Five hundred

replications were conducted for each of the 192 conditions, producing 96,000

simulated data sets for each of the six model types.

For each data set, results from the OLS estimation of single-level

Equations 2 and 3 (using SAS PROC REG) and the corresponding EB/ML

estimation of multilevel equations from Table 1 (using SAS PROC MIXED)

were used to form the single-level and multilevel $ $� �a b
 estimates of the

mediated effect.  These results were also used to calculate multivariate delta

method/first order Taylor series approximations (Equation 5) for the

standard errors of both single-level and multilevel mediated effects.

Relative bias in mediated effect estimates and standard error

approximations were examined to determine the conditions under which the

advantages of multilevel mediational analysis would be most evident.

Relative bias was calculated using the equation

(6) RB
w w

w
=

−$
,
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where $w  is an estimate of the mediated effect or its standard error, and w

is the true parameter value or an approximation of the true value when the

precise value is not known.  True values of the mediated effect were the

values �
a
�

b
 = .03, .06, .12 or .24 used to generate the simulated data.

Empirical standard errors, calculated as the standard deviation of mediated

effect estimates across the 500 replications in a given condition, were used

as approximations to the true values in calculating the relative bias of the

estimated standard errors.

Following the recommendation of Hauck and Anderson (1984) that

simulation studies be analyzed using the same analytical tools as any other

experimental study, factorial analyses of variance were conducted on the

relative bias values for mediated effect estimates and standard errors, using

number of groups, group size, ICC
M

, ICC
Y
, and true values of �

a
 and �

b

parameters as predictors.  Analysis type (single-level vs. multilevel) was

treated as an additional repeated measures factor in these analyses, which

were carried out using a multivariate analysis of variance approach to handle

the repeated measures data.  In order to identify the conditions under which

multilevel estimation of the mediated effect is likely to show the greatest

advantage over single-level estimation, interactions between the repeated

analysis type factor and the six manipulated factors were examined.  Due to

the large number of observations, standard probability values were not

particularly helpful in identifying meaningful effects.  Therefore, the

multivariate correlation ratio, a measure of multivariate effect size, was

calculated for each effect using the equation

(7) �mult
2

1= −�

where � is the Wilks’ likelihood-ratio criterion for the effect in question

(Tatsuoka, 1988, p. 97, 288).  An �mult
2  value greater than or equal to .05 was

used to identify the most important interactions in this study.

Simulation Results

The multiple factors and large number of conditions in the simulation

study make it difficult to adequately represent the results concisely in tabular

form.  The following sections of text describe the results of the analyses of

simulated data.  Complete tables of relative bias values are available by

request from the first author.  Analyses of the relative bias in single-level

(OLS) and multilevel (EB/ML) estimates of the mediated effect showed

essentially no bias in either estimator, regardless of the data structure or the

continuous or dichotomous nature of the initial variable.  Analyses of the
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relative bias in the standard error estimate of the single-level and multilevel

mediated effects are discussed below.  Results involving sample size and

ICC are presented separately for those models involving dichotomous and

continuous initial variables.  Where significant differences between the two

analysis types are found, an attempt is made to determine whether these

results are due to effects involving �
a
 or �

b
 by examining the amount of

relative bias associated with each path.  This is followed by results regarding

the true value of the �
a
 and �

b
 parameters and a summary of general patterns

of results found across the six model types.

Effects of Sample Size and ICC

Dichotomous Initial Variable Models

Three models were examined in which a dichotomous initial variable

served as the initial variable in the mediational chain.

1 → 1 → 1.  In the model in which the mediational chain involved three

individual level variables, single-level modeling resulted in slight

underestimation the standard error of the mediated effect.  The extent of this

underestimation was greatest for conditions involving higher levels of ICC
M

[� = .9386, F
(1,95808)

 = 6269.75, p < .0001, �2 = .0614], higher levels of ICC
Y

[� = .9366, F
(1,95808)

 = 6483.41, p < .0001, �2 = .0634], and larger group sizes

[� = .8863, F
(1,95808)

 = 12286.11, p < .0001, �2 = .1137].  Even under the most

extreme combination of conditions for this model, the relative bias in the

single-level estimates of the standard error of the mediated effect was only

about 10% of the true value of the standard error.  For those conditions that

showed such bias, it could be traced back to underestimation of the standard

error of the �
b
 effect.  Estimates of the standard error of �

a
 were essentially

unbiased, as were all estimates obtained using multilevel techniques.

2 → 1 → 1.  For the model in which a dichotomous group level predictor

affected an individual level mediator, ICC
M

 [� = .7103, F
(1,95808)

 = 39084.29,

p < .0001, �2 = .2897] and group size [� = .5713, F
(1,95808)

 = 71904.36,

p < .0001, �2 = .4287] were again factors which affected the extent to which

multilevel modeling showed an advantage over single-level modeling.  In this

case, the interaction between ICC
M

 and group size was also significant

[� = .9019, F
(1,95808)

 = 10423.71, p < .0001, �2 = .0981], indicating that the

effects of these factors were especially pronounced in combination.  Multilevel

estimates of standard error of the mediated effect were essentially unbiased,

whereas single-level estimates were often substantially downwardly biased.

This bias could be greater than 20% of the true value of the standard error

when ICC
M
 and group size were large.  Such biases were attributable to an
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appreciable downward bias in the single-level estimates of the standard error

of the �
a
 effect, as well as more modest downward biases in the single-level

estimates of the standard error of the �
b
 effect.

2 → 2 → 1.  In the mediational chain in which a dichotomous group level

predictor variable affected a group level mediator, the only possible modeling

method for the first link (the �
a
 effect) was single-level (i.e., entirely group

level) estimation.  Estimates of the �
b
 effect, however, could be generated

via either single-level or multilevel techniques, and using these results in the

calculation of the mediated effect results in different estimates for the two

techniques.  Here, the conditions under which multilevel models showed the

greatest advantage were those in which ICC
Y
 was relatively high [� = .8053,

F
(1,95808) 

= 23168.13, p < .0001, �2 = .1947] and those in which group sizes

were large [� = .8198, F
(1,95808)

 = 21056.50, p < .0001, �2 = .1802].  Under

such conditions, the underestimation of single-level standard errors was on

the order of 38 to 50%.  Even under more ideal conditions with lower levels

of ICC
Y
 and smaller group sizes, underestimation of the standard error was

on the order of 10 to 15%.  Since only single-level estimates were available

for the �
a
 path, and these were essentially unbiased, the downward bias of

the single-level estimates of the standard error of the mediated effect was

entirely due to underestimation of the standard error of the �
b
 path.

Continuous Initial Variable Models

Three models were simulated in which a continuous initial variable began

the mediational chain.  The following section discusses results involving the

relative bias in single-level and multilevel standard errors of the �
a
 estimate,

the �
b
 estimate, and the mediated effect in each of the three model types.

1 → 1 → 1.  For the mediational chain involving three individual level

variables, the extent of single-level underestimation of the standard error of

the mediated effect was a function of ICC
M
 [� = .6212, F

(1,95808)
 = 58430.76,

p < .0001, �2 = .3788], ICC
Y
 [� = .8380, F

(1,95808)
 = 18519.94, p < .0001, �2

= .1620], and group size [� = .5664, F
(1,95808) 

= 73347.38, p < .0001, �2 =

.4336].  Interactions between ICC
M

 and group size [� = .8917,

F
(1,95808)

=11636.41, p<.0001, �2 = .1083] and between ICC
Y
 and group size

[� = .9493, F
(1,95808)

 = 5113.91, p < .0001, �2 = .0507] also affected single-

level estimates, indicating that the combination of these effects had a

particularly strong effect on relative bias values.  Under the most extreme

conditions (high ICC
M
, high ICC

Y
, and large group size), the downward bias

in the single-level estimates of the standard error of the mediated effect was

over 20% of the true value of the parameter.  These biases could be

attributed to appreciable downward bias in single-level estimates of the
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standard error of �
a
 in those conditions with relatively large values of ICC

M
,

combined with more modest biases in single-level estimates of the standard

error of �
b
.  In the most extreme conditions, the bias in the standard error of

�
b
 was fairly substantial (19%) as well.

2 → 1 → 1.  In the models in which a continuous group level predictor

affected an individual level mediator, ICC
M

 [� = .7700, F
(1,95808)

 = 28619.23,

p < .0001, �2 = .2300] and group size [� = .7347, F
(1,95808)

 = 34598.88, p <

.0001, �2 = .2653] were the primary influences which determined the extent

to which multilevel estimates of the standard error of the mediated effect

improved upon single-level estimates.  For small groups, the underestimation

was on the order of 9 to 23%.  For larger groups, the underestimation was

on the order of 23 to 43%.  This bias could be primarily attributed to

substantial bias in the single-level OLS estimates of the standard error of the

�
a
 effect, combined with more modest bias in the estimates of the standard

error of �
b
.

2 → 2 → 1.  For the mediational chain in which both predictor and

mediator were continuous group level variables, the primary determinants of

the extent of multilevel advantage over single-level estimation were ICC
Y
 [�

= .8278, F
(1,95808)

 = 19926.09, p < .0001, �2 = .1722] and group size [� = .8416,

F
(1,95808)

 = 18034.86, p < .0001, �2 = .1584].  For small groups, the

underestimation of the standard error of the mediated effect in single-level

models ranged from 10 to 28%, while for larger groups the underestimation

ranged from 19 to 48%.  This bias was entirely due to underestimation of the

standard error of �
b
.

Effects of �
a
 and �

b

In all models except 2 → 2 → 1, the true value of the �
b
 parameter

interacted with analysis type as a significant predictor of the bias in the

standard error of the mediated effect.  In other words, the extent of the

advantage of multilevel over single-level modeling depended on the true

value of �
b
.  However, this factor was not a significant predictor of the biases

in the standard errors of either �
a
 or �

b
.  Therefore, we can conclude that the

effect of �
b
 on the bias of the standard error of the mediated effect arises

from the equation used to calculate this standard error (Equation 5).  In this

equation, the estimate of the standard error of the �
a
 coefficient is squared

and multiplied by the estimate of �
b
 squared.  The effect, then, occurs

because a larger �
b
 value weights any bias which may be present in �

a
 more

heavily in calculating the standard error of the mediated effect.  If the single-

level estimate of the standard error of �
a
 is negatively biased, then more of

this bias will appear in the single-level estimate of the standard error of the
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mediated effect when �
b
 is large (as in the dichotomous 2 → 1 → 1 model).

If the single-level OLS estimate of the standard error of �
a
 is essentially

unbiased, then more bias may be present in the single-level estimate of the

standard error of the mediated effect when �
b
 is small (as in the dichotomous

1 → 1 → 1 model).  The effect sizes associated with the �
b
 variable ranged

from �2 = .0571 and �2 = .0728 in the dichotomous 2 → 1 → 1 and 1 → 1 → 1

models to �2 = .1123 and �2 = .1382 in the continuous 1 → 1 → 1 and 2 → 1 → 1

models.

The effects of the true value of �
b
 on the relative bias in the standard error

of the meditated effect, then, arise simply from the mathematical formula used

to calculate the standard error of the mediated effect.  We would expect �
a

to operate similarly, simply weighting any bias in the standard error of �
b
 in the

calculation of the standard error of the mediated effect.  However, the effects

of the true value of �
a
, though significant at the traditional p < .05 level, did not

achieve the �2 > .05 criterion used in this study.  This difference may be due

to the larger range of true �
b
 values (.1 - .4, as opposed to .3 - .6 for the true

�
a
 values) included in the simulation design.

Patterns of Simulation Results

In general, results of the simulation study showed downward biases

associated with single-level estimation of standard errors of mediated

effects in clustered data.  This effect was present, if modestly so, even in

1 → 1 → 1 models involving no group level predictors.  Large group sizes, high

ICCs of the mediator, and high ICCs of the outcome variable were

associated with a larger degree of downward bias in estimates of the

standard error of the mediated effect.  Therefore, the advantage to be gained

by using a multilevel mediational model, which showed no such bias, would

be greatest under these conditions.  The number of groups in the analysis had

relatively little effect on the extent of the single-level bias and the multilevel

advantage.

The magnitude of the bias in the single-level standard error estimates

was especially large in certain models.  In particular, the 2 → 1 → 1 models

and the 2 → 2 → 1 models all had multiple conditions which showed

downward biases of over 20%.  Generally, these large biases in the standard

error of the mediated effect were traceable to substantial downward biases

in the 2 → 1 path.  For the 2 → 1 → 1 models, this was bias in the �
a
 path; for

the 2 → 2 → 1 models, this was bias in the �
b
 path.  Models which include

such a 2 → 1 link, then, seem to be particularly vulnerable to bias in single-

level standard error estimates, and for such models, multilevel mediational

modeling may provide much more accurate tests of the mediated effect.
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 The effects of the true value of �
b
, as well as potential effects of �

a
, on

bias in the standard error of the mediated effect are entirely predictable,

given the expression used to calculate the approximate standard error.  For

situations with strong relationships between the mediator and outcome, any

bias in estimating the standard error of �
a
 will be heavily weighted in

calculating the standard error of the mediated effect, resulting in greater bias

than a situation with a weaker relationship.  Thus the choice of an analytic

method that minimizes bias (i.e., multilevel EB/ML estimation rather than

single-level OLS estimation for clustered data) may be more important when

the effects in the model are particularly strong, especially when the data

exhibit other features associated with bias (e.g., large group size, high ICC
M

or ICC
Y
, or a 2 → 1 link in the mediational chain).

ATLAS Example

Data from the evaluation trial of the Adolescents Training and Learning

to Avoid Steroids (ATLAS) program were analyzed in order to illustrate the

differences between single-level and multilevel mediational modeling in a

real-world data set.  The ATLAS program is a team-based educational

intervention program designed to decrease steroid use among high school

football players.  The program was designed to achieve its effects through

changing a number of mediators believed to be related to steroid use, or, more

proximally, to intentions to use steroids.  These targeted mediators included

knowledge constructs, peer and non-peer influence measures, attitudes, and

individual player characteristics.  The program also promoted nutrition

behaviors and strength training self-efficacy as healthy alternatives to

steroid use in improving athletic performance.  Details of the prevention

program can be found in Goldberg et al. (1996), and results of individual level

mediational analyses can be found in MacKinnon et al. (2001).

Thirty-one schools were included in the ATLAS study, with 15 assigned

to the experimental intervention and 16 to the non-intervention control

condition.  Data were collected from 17 to 66 players on each school’s

football team ( X  = 40, SD = 15).  Pretest measures were gathered prior to

intervention, and posttest measures were obtained immediately following the

seven-week intervention period.

Two sample analyses are presented below.  The first of these examines

the effects of perceived tolerance of steroid use by the individual player’s (a)

coach, (b) friends, (c) peers, and (d) parents as mediators of the relationship

between the intervention program and intentions to use steroids.  This case

illustrates a series of 2 → 1 → 1 models, with the team-level intervention

program affecting individual perceptions, and, ultimately, individual
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intentions to use steroids.  The second analysis concerns individual and mean

team levels of strength training self-efficacy as mediators of the relation

between the intervention and intentions to use steroids.  This example shows

a 2 → 1 → 1 model involving the individual level mediator in combination with

a 2 → 2 → 1 model involving the mean team effect as a mediator.  Detailed

information about the measures used in these sample analyses can be found

in Goldberg et al. (1996).

Analyses were conducted by estimating single-level Equations 1-3 and

their multilevel equivalents (from Table 1) to obtain single-level and

multilevel estimates of $�a  and $�b , which were then combined to produce the

single-level and multilevel $ $� �a b  estimates of the mediated effect.  Each

equation included pretest measures of all included variables as covariates in

order to isolate post-intervention changes in the variables.  Single-level and

multilevel standard error estimates were calculated using the multivariate

delta method/first order Taylor series expression given in Equation 5.

ATLAS Results

Example 1:  Individual Perceptions of Tolerance of Steroid Use

In the first example, the dichotomous group level intervention is believed

to affect the individual player’s perceptions of (a) the team coach’s

tolerance of steroid use, (b) the player’s friends’ tolerance of steroid use, (c)

the player’s peers’ tolerance of steroid use, and (d) the player’s parents’

tolerance of steroid use.  Changes in these mediators, then, would be

expected to cause change in the individual’s intentions to use steroids.

Results of the single-level and multilevel mediational analyses are shown in

the top section of Table 2.  Both analyses indicated that only one of the four

tolerance measures, perceived coach tolerance, did, in fact, significantly

mediate the relationship between the intervention and intention to use

steroids.  Examination of the �
a
 and �

b
 paths that make up this mediated

effect indicated that the ATLAS intervention decreased the level of

perceived coach tolerance of steroid use, and that perceived level of coach

tolerance was positively related to intentions to use steroids, so that the

intervention-induced decreases in perceived coach tolerance resulted in

decreased intentions to use.  The single-level standard error of the mediated

effect for this variable was about 29% smaller than the multilevel standard

error.  Looking at the standard errors of the two component paths, the single-

level standard error of �
a
 was 43% smaller than the multilevel standard error,

and essentially no difference was found for the �
b
 path.  This pattern is quite

similar to those found in the simulation study, where the single-level standard
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errors were often substantially underestimated when a higher level variable

was predicting a lower level variable (i.e., along a 2 → 1 link).  Here,

substantial underestimation was present along the path where the team level

intervention affected individual level perceptions of coach tolerance.

Both the single-level mediational analysis and the multilevel mediational

analysis showed that neither the friend tolerance nor the peer tolerance

measure were significant mediators of the effect of the ATLAS intervention

on intentions to use steroids.  Examination of the individual �
a
 and �

b
 paths

showed that even though these two constructs were significantly related to

intentions to use steroids (i.e., the �
b
 paths were significant), neither construct

Table 2

Single-level and Multilevel Estimates (and Standard Errors) of �
a
, �

b
, and the

Mediated Effect for ATLAS Mediational Models

Analysis Type

Single-Level Multilevel

Mediated Mediated

Mediator �
a

�
b

Effect �
a

�
b

Effect

Example 1

Perceived coach -.3734*** .0924*** -.0345** -.3629** .0915*** -.0332**

tolerance of steroid use (.0717) (.0271) (.0121) (.1252) (.0272) (.0170)

Perceived friend -.1314 .0730*** -.0096 -.1207 .0722*** -.0087

tolerance of steroid use (.0982) (.0202) (.0076) (.1221) (.0202) (.0091)

Perceived peer -.1461 .0518** -.0076 -.1672 .0508* -.0085

tolerance of steroid use (.1000) (.0200) (.0059) (.1560) (.0201) (.0086)

Perceived parent -.1710* .0015 -.0003 -.1592 .0003 .0001

tolerance of steroid use (.0745) (.0258) (.0044) (.1044) (.0258) (.0041)

Example 2

Individual strength .4068*** -.1634*** -.0666*** .4174***-.1636*** -.0683***

training self-efficacy (.0586) (.0293) (.0153) (.0996) (.0292) (.0203)

Mean team strength .4850***-.2250* -.1091† -.2156† -.1046

training self-efficacy (.0984) (.1134) (.0593) (.1240) (.0638)

† p < .10, * p < .05, ** p < .01, *** p < .001
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was affected by the ATLAS intervention (i.e., the �
a
 paths were non-

significant).  This suggests a failure of action theory, rather than a failure of

conceptual theory.  Again, the smaller standard errors in the single-level

analysis (16% smaller for perceived friend tolerance and 31% smaller for

perceived peer tolerance) were due to smaller standard errors of the �
a
 path

in which the group level intervention variable affected the individual level

mediator.  No such underestimation was found in the standard error of the �
b

path involving the individual level mediator and the individual level outcome.

Both the single-level and the multilevel mediational analysis showed that

perceived parental tolerance was not a significant mediator of the intervention

effect on intentions to use steroids.  The single-level estimate of the standard

error of the �
a
 path in this analysis was 28% smaller than the multilevel

estimate.  With this smaller standard error, the single-level analysis would

suggest that the ATLAS intervention did, in fact, decrease perceived parent

tolerance.  However, the multilevel analysis, with its more accurate standard

error, showed that this decrease did not achieve conventional levels of

significance.  Moreover, both analyses showed that the perceived parent

tolerance mediator was not related to intentions to use steroids.

Example 2:   Individual and Team Levels of Strength Training Self-

Efficacy

The second example involves both individual strength training self-

efficacy and mean team levels of strength training self-efficacy as mediators

of the intervention effect on intentions to use steroids.  Here, the team mean

on strength training self-efficacy may operate as a contextual effect:  high

mean levels reflect a context in which strength training is generally accepted

as an effective means of improving athletic performance.  The model

incorporates both individual and team mean levels of the construct

simultaneously, to provide conservative estimates of the mean effect on

intentions, above and beyond the individual effect.

Results of these analyses are shown in the bottom section of Table 2.

Both the single-level and the multilevel mediational model showed that

individual strength training self-efficacy significantly mediated the

relationship between the ATLAS intervention and intentions to use steroids.

The intervention increased self-efficacy, and these increases led to

decreases in intentions.  The single-level standard error of this mediated

effect was 25% smaller than the multilevel standard error, and this

difference was due to underestimation (by 41%) of the standard error of the

�
a
 path.  Again, the underestimation occurred along a 2 → 1 path relating the

group level intervention to the individual level mediator.  In this case,
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however, the inferences drawn about the relationships among the variables

were similar for the two types of analyses, regardless of the underestimation.

Both single-level and multilevel mediational analyses also indicated that

the contextual effect of team mean strength training self-efficacy was not

a significant mediator of the intervention effect (though the single-level

mediated effect would be significant at the .05 level in a one-tailed test).

Because the �
a
 path involves only group level variables (i.e., group mean

self-efficacy is predicted by group assignment to intervention or control

conditions) a single-level model is appropriate.  Examination of the �
a

coefficient for the group level effect indicated that the ATLAS program did,

in fact, increase team mean self-efficacy.  Examination of the single-level

�
b
 path indicated that these changes in the mean team strength training self-

efficacy construct were associated with changes in intentions to use

steroids, above and beyond the individual level effect.  However, the

multilevel �
b
 path, tested with a larger and more accurate standard error, was

not significant at the p < .05 level, suggesting that this mean construct was

not related to individual intentions.2  The single-level estimate of the standard

error of the team mediated effect was only 7% smaller than the multilevel

estimate.  However, this case illustrates that even a quite moderate level of

underestimation could potentially result in different inferences based on

single-level analyses in situations where multilevel analysis is actually more

appropriate.  Again, the single-level underestimation of the standard error of

the mediated effect could be traced back to underestimation of the standard

error of a 2 → 1 path.  Here, the �
b
 path relating the group level mediator to

the individual level outcome variable was underestimated by 8.5%.

General Discussion

The simulation study consistently showed underestimation of the

standard error of the mediated effect in single-level models with clustered

data.  Group size, ICC of the mediator, and ICC of the outcome variable were

identified as factors which increase the extent of such underestimation.

Consequently, these factors also define the conditions under which multilevel

mediational modeling will be most advantageous.  Results of the simulation

study also illustrate how actual values of �
a
 and �

b
 can affect the extent of

single-level underestimation through their role in the calculation of the

standard error of the mediated effect.  Single-level underestimation of the

2 The failure to detect this relationship in the multilevel analysis should, of course, not be

viewed as definitive evidence that the effect does not exist.  It is possible that with the

sample size in this dataset, the analysis did not have sufficient power to detect the

contextual effect.
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mediated effect could often be traced back to underestimation along a 2 → 1

link (i.e., underestimation of the standard error of �
a
 in a 2 → 1 → 1 model and

underestimation of the standard error of �
b
 in a 2 → 2 → 1 model).  Results

of the simulation study also suggest that the level 2 sample size (i.e., the

number of groups in the analysis) plays at most a minimal role in determining

the underestimation of single-level standard errors and the multilevel

advantage in this regard.  However, this variable is known to play a key role

in other aspects of multilevel model performance, most notably power

(Kenny, Kashy, & Bolger, 1998; Murray, 1998).

The primary findings from the simulation study were borne out by the

ATLAS examples.  In particular, the single-level standard errors of mediated

effects in both examples were smaller than the corresponding multilevel

standard errors. We may infer from the simulation study that these smaller

standard errors were, in fact, the result of underestimation in the single-level

model.  Moreover, as in the simulation study, the underestimation of the

standard errors of mediated effects in the ATLAS examples could typically

be traced back to underestimation along a 2 → 1 link.  The extent of the

underestimation was smaller in the ATLAS examples than in the simulation

study.  This may be due, in part, to the more complex multiple mediator

models tested with the ATLAS data.  Differences in the properties of the real

and simulated variables may also be partially responsible.  For example, the

ATLAS analysis involving mean team level of strength training self-efficacy

showed only a 7% difference between single-level and multilevel standard

errors of the mediated effect.  In contrast, underestimation was on the order

of  35 to 50% in the parallel 2 → 2 → 1 simulation model.  However, the

residual ICC of the ATLAS outcome variable was quite small (ICC
Y
 = .005)

when both individual and team levels of strength training self-efficacy were

included as predictors in the model.  This value was only a tenth of the size

of the smallest residual ICC value included in the simulation.  Nevertheless,

the example illustrated that single-level and multilevel analyses may result in

different inferences even with such a small degree of within-group

homogeneity.

Each of the multilevel equations presented in Table 1 and applied in the

simulation study and the ATLAS example includes only a single random

coefficient, the intercept term.  This allows each group intercept, representing

an overall group level of the dependent measure, to vary across the set of groups.

The error term associated with this random intercept enables the modeling of the

correlated error inherent in clustered data.  All other coefficients in the lower

level equations are treated as fixed.  However, in 1 → 1 → 1 and 2 → 1 → 1

models (i.e., whenever the mediator is a level 1 variable), it would also be possible

to specify the �
b
 term as random.  This would involve the specification of an
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additional level 2 model in which a group’s relationship between mediator and

outcome is predicted from an overall level of relationship and an additional group

level error term.  In this simulation study and in the ATLAS example, the �
b

coefficient was always treated as fixed, to permit comparisons across model

types and to fixed single-level effects.  In some cases, however, specification of

�
b
 as random may be appropriate, particularly if theory dictates considerable

variability in the strength of the mediator-outcome relationship or if the groups

in the study are very heterogeneous.  Specifying an additional coefficient as

random, however, increases the computational demand of the solution, and the

addition can affect both estimates of fixed effects and standard errors in a rather

complex fashion (see Kreft & deLeeuw, 1998, p. 126-130).  Moreover, the

addition of a random slope will make decisions about the centering of lower level

variables more critical.  With a random slope, centering decisions will affect the

variability of intercepts across groups, as well as the covariance of the random

intercepts with the random slopes.  Centering may also provide a computational

advantage, as the correlation between random intercepts and slopes is often

reduced (Kreft, de Leeuw, & Aiken, 1995).  Hoffmann and Gavin (1998) provide

a thoughtful discussion of the possible centering strategies that could be used in

examining multilevel mediation, as well as other types of research paradigms.

The procedures of multilevel mediational analysis, presented here in the

context of individuals nested within groups, are equally applicable to

repeated measures nested within persons.  Kenny, Kashy, and Bolger (1998)

briefly discuss two situations, termed “lower level mediation” and “upper

level mediation”, which parallel in a repeated measures context the

1 → 1 → 1 and 2 → 1 → 1 models presented here.  More complex longitudinal

mediational models are also testable using extensions of multilevel and latent

growth modeling techniques (e.g., Cheong, MacKinnon, & Khoo, 1998).

Many of the difficulties in the interpretation of single-level mediational

models apply equally to and may be complicated by the structure of multilevel

mediational models.  Holland (1988) has outlined the difficulty of making causal

statements in the analysis of mediational models even when the independent

variable represents random assignment to conditions, as in the ATLAS

examples.  The existence of multiple levels of analysis further complicates

interpretation.  It would seem that the group-level program effect estimate on

a group-level outcome variable and the group-level program effect on the

mediator are generally accurate estimates of causal effects given true random

assignment of groups to conditions.  It is less clear whether causal

interpretations are available for the interpretation of effects on individuals

when random assignment occurs at the group level.  A detailed study of the

underlying causal relationships in multilevel models using Rubin’s causal model

(Rubin, 1974) is beyond the scope of this article.  It is clear that the relationship
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between the mediator and the dependent variable is not necessarily an

accurate estimate of the true relationship between the mediator and the

outcome.  For example, the relationship between the mediator and the outcome

may differ across the groups or the direction of the relationship may be

inaccurate where the outcome actually causes the mediator (MacCallum,

1986; Spirtes, Glymour, & Schienes, 1993).  Given the ambiguity in

interpretation of mediational models, whether single-level or multilevel, it is

best to incorporate a variety of additional research strategies to clarify

mediational processes. These additional research strategies include replication

studies with randomization to conditions based on mediational processes found

to be important in prior studies (West & Aiken, 1997).  Meta-analyses of

critical relationships are also important (Cook et al., 1992), as are theoretical

arguments for the specificity of effects through one mediator and not others.
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