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Abstract: Multilevel models have become popular for the analysis of a variety of
problems, going beyond the classical individuals-within-groups applications. This
chapter gives a brief summary of the reasons for using multilevel models, and
provides examples why these reasons are indeed valid reasons. Next, recent
(simulation) research is reviewed on the robustness and power of the usual
estimation procedures with varying sample sizes.

1 Why multilevel data need multilevel models

Multilevel models are models specifically geared toward the statistical analysis of
data that have a hierarchical or clustered structure. Such data arise routinely in
various fields, for instance in educational research, where pupils are nested within
schools, family studies with children nested within families, medical research with
patients nested within physicians or hospitals, and biological research, for instance
the analysis of dental anomalies with teeth nested within different persons' mouths.
Clustered data may also arise as a result of the specific research design. For instance,
in large scale survey research the data collection is usually, for economic reasons,
organized in some sort of multistage sampling design that results in clustered or
stratified design. Another example are longitudinal designs; one way of viewing
longitudinal data is as a series of repeated measurements nested within individual
subjects.
Older approaches to the analysis of multilevel data, such as reviewed in Huetnner
and Van den Eeden (1982), tend to simply ignore the question, and perform the
analysis by disaggregating all data to the lowest level and subsequently applying
standard analysis methods. The problems created by this approach were recognized
(e.g., Burstein, 1980), but remained statistically intractable.
The magnitude of the statistical problem can be illustrated by a simple example from
sample surveys. Survey statisticians have long known that the extend to which the
samples are clustered affects the sampling variance. In his classic work, Kish (1965)
provides a detailed examination of the effect of cluster sampling on sampling
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variance. He defines the design effect (deff) as the ratio of the operating sampling
variance to the sampling variance that applies to simple random sampling. Thus, deff
is the factor with which the simple random sampling variance must be multiplied to
provide the actual operating sampling variance. Kish (1965) describes how deff can
be estimated for various sampling designs. In simple cluster sampling with equal
cluster sizes deff can be computed by deff=(1+rho(nclus-1)) where rho is the intraclass
correlation and nclus is the common cluster size. It is clear that deff equals one only
when either the intraclass correlation is zero, or the cluster size is one. In all other
situations deff is larger than one, which implies that standard statistical formulas will
underestimate the sampling variance, and therefore lead to significance tests with an
inflated alpha level (type I error rate).
Using deff, the standard statistical formulas can be adjusted to reflect the true
sampling variance. If such adjustments are made, the impact of cluster sampling on
the operating alpha level is often rather large. For example, Barcikowski (1981)
examines the effect of cluster sampling on the actual alpha level of a t-test performed
at a nominal alpha level of 0.05. With a small intraclass correlation of rho=0.05 and a
cluster size of 10, the operating alpha level is 0.11. With larger intraclass correlations
and larger cluster sizes, the operating alpha level increases rapidly. For another
example, we can investigate the effect of cluster sampling in educational research. In
educational research, data is often collected from classes. Assuming a common class
size of 25 pupils, and a typical intraclass correlation for school effects of rho=0.10,
we calculate an operating alpha level of 0.29 for tests performed at a nominal alpha
level of 0.05! Clearly, in such situations not adjusting for clustered data produces
totally misleading significance tests.
The examples given above are confirmed by simulation research by Tate and
Wongbundhit (1983). They generate multilevel data following a regression model,
and conclude that the estimates of the regression coefficients are unbiased, but have a
much larger sampling variance than ordinary least squares (OLS) methods would
produce. Again, significance tests ignoring the multilevel structure of the data would
produce spuriously significant effects.

2 The multilevel regression model

The multilevel regression model is known in the research literature under a variety of
names, such as 'random coefficient model' (de Leeuw & Kreft, 1986; Longford,
1993), 'variance component model' (Longford, 1993), and 'hierarchical linear model'
(Raudenbush & Bryk, 1986; Bryk & Raudenbush, 1992). It assumes hierarchical
data, with one response variable measured at the lowest level and explanatory
variables at all existing levels. Conceptually the model is often viewed as a
hierarchical system of regression equations. For example, assume we have data in J
groups or contexts, and a different number of individuals Nj in each group. On the
individual (lowest) level we have the dependent variable Yij and the explanatory



variable Xij, and on the group level we have the explanatory variable Zj. Thus, we
have a separate regression equation in each group:

Yij = β0j + β1j Xij + eij. (1)

The βj are modeled by explanatory variables at the group level:

β0j = γ00 + γ01 Zj + u0j, (2)
β1j = γ10 + γ11 Zj + u1j. (3)

Substitution of (2) and (3) in (1) gives:

Yij = γ00 + γ10 Xij + γ01 Zj + γ11 ZjXij + u1j Xij + u0j + eij (4)

In general there will be more than one explanatory variable at the lowest level and
also more than one explanatory variable at the highest level. Assume that we have P
explanatory variables X at the lowest level, indicated by the subscript p (p=1..P), and
Q explanatory variables Z at the highest level, indicated by the subscript q (q=1..Q).
Then, equation (4) becomes the more general equation:

Yij = γ00 + γp0 Xpij + γ0q Zqj + γpq ZqjXpij + upj Xpij + u0j + eij (5)

The estimators generally used in multilevel analysis are Maximum Likelihood (ML)
estimators, with standard errors estimated from the inverse of the information matrix.
These standard errors are used in the Wald test (Wald, 1943); the test statistic Z =
parameter / (st.error param.) is referred to the standard normal distribution to
establish a p-value for the null-hypothesis that in the population that specific
parameter is zero.
Computing the Maximum Likelihood estimates requires an iterative procedure. At
the beginning the computer program generates reasonable starting values for the
various parameters, often single level OLS estimates. After one iteration, we have
Generalized Least Squares (GLS) estimates. When the iterative process converges,
we have  ML estimates. GLS estimates require much less computing time, which
makes them attractive for computer-intensive procedures like simulation and
bootstrapping. Also, it may be possible to obtain GLS estimates, in situations where
the iterative procedure does not converge (cf. Goldstein, 1995, p23).
Two different varieties of Maximum Likelihood estimation are commonly used in
multilevel regression analysis. The one is Full Maximum Likelihood (FML); in this
method both the regression coefficients and the variance components are included in
the likelihood function. The other is Restricted Maximum Likelihood (RML); here
only the variance components are included in the likelihood function. The difference
is that FML treats the estimates for the regression coefficients as known quantities
when the variance components are estimated, while RML treats them as estimates



that carry some amount of uncertainty (Bryk and Raudenbush, 1992; Goldstein,
1995). Since RML is more realistic, it should, in theory, lead to better estimates,
especially when the number of groups is small (Bryk & Raudenbush, 1992). FML
has two advantages over RML: the computations are generally easier, and since the
regression coefficients are included in the likelihood function, a likelihood ratio can
be used to test for differences between two nested models that differ only in the fixed
part (the regression coefficients). With RML only differences in the random part (the
variance components) can be tested this way.
The assumptions of are that the residual errors at the lowest level eij have a normal
distribution with a mean of zero and a common variance σ² in all groups. The second
level residual errors u0j and upj are assumed to be independent from the lowest level
errors eij, and to have a multivariate normal distribution with means of zero. Other
assumptions, identical to the common assumptions of multiple regression analysis,
are fixed predictors and linear relationships. The standard errors generated by the
ML procedure are asymptotic; meaning we need fairly large samples at all levels.

3 The accuracy of parameter estimates

The assumptions stated above generate questions about the accuracy of the various
estimation methods when these assumptions are false. Most research in this direction
uses simulation methods, and investigates the accuracy of the fixed and random
parameters with small sample sizes and nonnormal data. Comparatively less research
investigates the accuracy of the standard errors used to test specific model
parameters.

3.1 Accuracy of fixed parameters and their standard errors

The estimates for the regression coefficients appear generally unbiased, for OLS,
GLS, as well as ML estimation. OLS estimates have a larger sampling error; Kreft
(1996), reanalyzing results from Kim (1990) estimates that they are about 90%
efficient.
The OLS based standard errors are known to be severely biased downward, which
has been illustrated in the introduction section. The asymptotic Wald tests used in
most multilevel software. This assumes either large samples (of groups) or equal
group sizes.
The power of the Wald test for the significance of the individual level regression
coefficients depends on the total sample size. The power of tests of higher level
effects and cross-level interactions depends more strongly on the number of groups
than on the total sample size. Both simulations (Van der Leeden & Busing, 1994;
Mok, 1995) and analytic work (Snijders & Bosker, 1993) suggest a trade-off
between sample sizes at different levels. For accuracy and high power a large number



of groups appears more important than a large number of individuals per group.
Bryk and Raudenbush (1992) argue that the test statistic should rather be referred to
a Student distribution with J-p-1 degrees of freedom (number of groups - number of
parameters estimated - 1), citing simulations by Fotiu (1989, cited by Bryk and
Raudenbush, 1992). Simulations by Van der Leeden & Busing (1994) and Van der
Leeden et al. (1997) suggest that when assumptions of normality and large samples
are not met, the ML estimates are still unbiased, but the standard errors are
somewhat biased downward. GLS estimates of fixed parameters and their standard
errors are somewhat less accurate, but workable.

3.2 Accuracy of random parameters and their standard errors

Estimates of the residual error at the lowest level are generally accurate. The group
level variance components are generally underestimated, with FML somewhat more
that with RML. GLS variance estimates are less accurate than ML estimates, and for
accurate estimates many groups (>100) are needed (Busing, 1993; Van der Leeden
& Busing, 1994; Afshartous, 1995).
The asymptotic Wald test for the variance components implies the unrealistic
assumption that they are normally distributed. For this reason, other approaches have
been advocated, among which estimating the standard error for sigma (the square
root of the variance, Longford, 1993), and using the likelihood ratio test. Bryk &
Raudenbush (1992) advocate a chi-square test based on the OLS residuals. The
literature contains no comparisons between these methods. Simulations by Van der
Leeden et al. (1997) show that the standard errors used for the wald test are
generally estimated too small, with RML more accurate than FML. Symmetric
confidence intervals around the estimated value also do not perform well. Van der
Leeden et al. show that the bootstrap is a promising alternative to obtaining more
accurate variance estimates, standard errors, and confidence intervals, provided the
bootstrapping method samples cases and not residuals.

3.3 Accuracy and sample size

It is clear that with increasing sample sizes at all levels, estimates and their standard
errors become more accurate. Kreft (1996) suggests a rule of thumb which she calls
the '30/30 rule.' To be on the safe side, researchers should strive for a sample of at
least 30 groups with at least 30 individuals per group. From the various simulations
reviewed above, this seems sound advice if the interest is mostly in the fixed
parameters. For certain applications it may be wise to modify this rule of thumb.
Specifically, if there is strong interest in cross-level interactions, the number of
groups should be larger, which leads to a 50/20 rule: about fifty groups with about
20 individuals per group. If there is strong interest in the random part, the variance
and covariance components, the number of groups should be considerably larger,



which leads to a 100/10 rule: about 100 groups with about 10 individuals per group.
These rules of thumb take into account that there are costs attached to data
collection, so if the number of groups is increased, the number of individuals per
group decreases. In some cases this may not be a realistic reflection of costs. For
instance, in school research the extra cost will be incurred when an extra class is
included. Testing only part of the class instead of all pupils will usually not make
much difference in the data collection cost. Given a limited budget, an optimal design
should reflect the various costs of data collection. Snijders and Bosker (1994)
discuss the problem of choosing sample sizes at two levels while taking costs into
account.

4. Analysis of proportions and binary data

Multilevel analysis of proportions is uses a generalized linear models with a logit link,
which gives us the model:

logit(πij) = γ00 + γ10Xij + U0j (6)

The observed proportions Pij are assumed to have a binomial distribution with
known variance

var(Pij) = (πij (1 - πij ))/nij

In the software, this variance is usually specified by including the predictor sij =
_var(Pij) in the random part, with associated variance constrained to one. The πij are
estimated by prediction from the current model. If the variance term is not
constrained to one, but estimated, we can model over- and underdispersion. If the
extrabinomial variation is significantly different from one, this is usually interpreted as
an indication that the model is misspecified, for instance by leaving out relevant
levels, interactions among predictors, or in time series data by not allowing
autocorrelation in the error structure.
Most programs rely on a Taylor expansion to linearize the model. The programs
VARCL and MLn use a first-order Taylor expansion and marginal (quasi) likelihood
(MQL1: Pij predicted by fixed part only). MLn also offers the options of a second-
order expansion and predictive or penalized (quasi) likelihood (PQL2: Pij predicted
by both fixed and random part).

Simulations by Rodriguez & Goldman (1995) show that marginal quasi
likelihood with first-order Taylor expansion underestimates both the regression
coefficients and the variance components, in some cases quite severely. Goldstein
and Rasbash (1996) compare MQL1 and PQL2 by simulating data according to the
worst performing dataset of Rodriguez and Goldman. In their simulation, the means
of the MQL1 estimates for the fixed effects, from 200 simulation runs, were



underestimated by about 25%. The means of the MQL1 estimates for the random
effects were underestimated by as much as 88%. Moreover, 54% of the level 2
variances were estimated as zero, while the population value is one. For the same
200 simulated datasets, the means of the PQL2 estimates for the fixed effects
underestimated the population value by at most 3%, and for the random effects by at
most 20%. None of the PQL2 variance estimates was estimated as zero. It appears
that predictive quasi likelihood with second order Taylor expansion is sufficiently
accurate for the regression coefficients, and in many cases good enough for the
random parameters. However, with some data sets the PQL2 algorithm breaks
down, and it is recommended to start with the simpler MQL1 approach to obtain
good starting values for the more complicated PQL2 approach.
If anything, the analysis of proportions and binomial data requires larger samples that
the analysis of normally distributed data. For proportions very close to 0 or 1 and
small numbers of groups, Bayesian estimation using Gibbs sampling is coming into
use; for a brief description see Goldstein (1995, p45).

5 Conclusion

As multilevel modeling becomes more widely used, it is important to gain an
understanding of their limitations when the model assumptions are not fully met. This
chapter, after establishing the need for multilevel modeling when data have a
complex (hierarchical) error structure, focusses mostly on the effects of the sample
sizes at different levels on accuracy and power of the statistical tests. A review of the
available literature shows that estimates and tests for the regression coefficients are
accurate with samples of modest sizes, but estimates and tests of the variances are
not.
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