
MULTILEVEL MODELS FOR DATA PROCESSING

Valery Sklyarov
DETI/IEETA,

University of Aveiro,
Aveiro, Portugal

skl@ua.pt

Iouliia Skliarova
DETI/IEETA,

University of Aveiro,
Aveiro, Portugal

iouliia@ua.pt

Dmitri Mihhailov
Computer Dept.,

TUT,
Tallinn, Estonia

d.mihhailov@ttu.ee

Alexander Sudnitson
Computer Dept.,

TUT,
Tallinn, Estonia
alsu@cc.ttu.ee

ABSTRACT

The paper suggests multilevel models for data processing
and demonstrates advantages of such models on
examples of data sorting. Three different techniques are
discussed, namely graph walk, using tree-like structures
and sorting networks. The relevant implementations were
done on the basis of hierarchical finite state machines and
verified in commercially available FPGAs. Experiments
and comparisons demonstrate that the results enable the
performance of processing for different types of data to
be increased compared to known implementations.

Index Terms— Algorithms; Data models; Data
processing; Field programmable gate arrays; Trees

1. INTRODUCTION

Using and taking advantage of application-specific
circuits in general and FPGA-based accelerators in
particular have a long tradition in data processing [1]. A
number of research works are targeted to databases that
use the potential of advanced hardware architectures. For
example, the system [2] solves a sorting problem over
multiple hardware shading units achieving parallelization
through using SIMD operations on GPU processors. The
algorithms [3,4,5] are very similar in nature, but target
SIMD instruction sets of PowerPC 970MP, Cell, and
Intel Core 2 Quad processors. The use of FPGAs was
studied within projects [6,7] implementing traditional
CPU tasks on programmable hardware. In [8] FPGAs are
used as co-processors in Altix supercomputer to
accelerate XML filtering. The advantages of customized
hardware as a database coprocessor are investigated in
different publications (e.g. [1]).

Some of traditional techniques to data processing are
also attractive options in the context of hardware [1].
However, any particular technique cannot be seen as a
universal approach producing an optimal result for any
set of data. Let us consider, for example, data sorting.
There are many methods [9,10] that permit sorting
problems to be solved. However, effectiveness of these
methods depends on given data. For instance, sorting

networks [9] can be seen as one of the fastest techniques
but they can be used just for very limited number of data
items [1]; tree-like structures [10] are very appropriate
for long data that might require fast resorting, etc. This
paper suggests combining different models in a way that
makes possible to apply particular models at those levels
where the selected models permit to produce the best
solutions. The effectiveness of such approach was
examined for data sorting through combining three
different models, namely: 1) the use of the walk
technique proposed in [11] at the upper level; 2) tree-like
structure for sorting [12] at the middle level; and 3)
sorting networks [1] at the bottom level. Obviously, it is
not necessary to use all these methods. If the number of
data items is limited (for instance, less than 28) then just
the model (3) allows a nearly optimal solution to be
produced. If fast resorting is required, then tree-like
structures can be applied autonomously. The upper level
provides significant assistance for data with large bit
capacity and so on. The most important feature is the ease
of linking different models enabling fast data processing
for very large volumes of data to be achieved. Further,
we will consider data sorting based on the mentioned
above multilevel models as an example, which will be
analyzed through the paper.

The remainder of this paper is organized in three
sections. Section 2 suggests new technique for data
processing with examples of sorting. Section 3 is
dedicated to implementations, experiments, and the
results. The conclusion is given in Section 4.

2. MULTILEVEL DATA PROCESSING

Figure 1 demonstrates basic ideas of the proposed
multilevel data processing on an example of data sorting.
Each particular level is the most appropriate for the
following types of data:
• Upper level – for 2m >> NDA, where m is the size of

data items in bits and NDA is the number of data
items;

• Middle level – for data that cannot be processed by
the upper and the bottom levels, i.e. this level can be
used either autonomously or in combinations with
the other methods. Tree-like structures are the most
appropriate for autonomous use in applications that

2011 IEEE GCC Conference and Exhibition, February 19-22, 2011, Dubai, United Arab Emirates

978-1-61284-117-5/11/$26.00 ©2011 IEEE 136

require very fast resorting in case of arriving
additional data items;

• Bottom level – as a rule for n ≤ 8 or even smaller,
which depends on available resources, where n is the
selected number of the less significant bits of data
items.

Upper level: search a group where
the new item has to be included or
allocating a new group in memory

Middle level: 1. Processing binary
trees associated with each group;
2. Creating new groups associated

with leaves of trees

Bottom level: Processing items
associated with the leaves of the

trees by sorting networks

Figure 1. Multilevel data processing on an example of data

sorting

2.1. Tree walk technique
Suppose we need to sort m-bit data items. Let us

decompose m-bit binary values in 2N groups that differ
by the N most significant bits. Let us assume that data
items within each group will be sorted by applying some
methods, which we will discuss a bit later. At the upper
level we have to find a proper group for any new
incoming data item. In practical cases for data with large
bit capacity (for instance, more than 64) the number of
groups is significantly less than 2N. Thus, we can apply
the technique [11] proposed for accelerating Boolean
constraint propagation needed for solving the SAT
problem with large number of variables and limited
number of clauses.

Figure 2 demonstrates an example, taken from [11],
in which we consider groups instead of clauses. Similar
to [11] the group index walk module uses a tree to
efficiently locate the group associated with any new
incoming data item. The tree will be N/k deep and it is
stored in the tree walk table in an on-chip BRAM block.
Here we consider 2k-nary trees and N/k is the number of
assigned levels of the tree, through which the walk
procedure from the root of the tree to a leaf (associated
with a particular group) will be done. If k=1 we have a
binary tree. The greater the number k the less number of
levels of the tree we need for our walk procedure. Given
a non-leaf node, the address of its leftmost child in the
tree walk table is called the base index of this tree node.
The rest of the children are ordered sequentially,
following the leftmost child. Therefore, to locate the ith
child, the index can be calculated by adding i to the base
index. If a child is not associated with any group, we
store a no-match (-1) tag in the entry. If for a node, all of
its 2k children have no match, then we do not expand the

tree node and just store a no-match tag in the node itself.
The considered technique is almost the same as in [11].

Root base
index 0000

0000 Base
index 0100

0011 Base
index 1000

0001 No
match

0010 No
match

00 01 10 11

0100 No
match

0101
Group 1

0110 No
match

0111 No
match

1000
Group 12

1001 No
match

1010
Group 14

1011 No
match

00 01 10 11
00 01 10 11

0 1 2 3

4 5 6 7 8 9 10 11

1st memory lookup

2nd memory
lookup

Group 13

Figure 2. Group index tree work [11] transformed to data sort

Let us consider example from [11] shown in Figure 2
and transform it to the new problem (i.e. sorting will be
considered instead of the SAT). Suppose k=2, N=4 and
some data items have already been included in the groups
1, 12 and 14. Let the most significant bits of a new data
item be 1101. The base index of the root node is 0000
and the first two bits of the data are 11. The table index is
the sum of two: 0000+11= 0011. Using this table index,
the first memory lookup is conducted by checking the
0011 entry of the table. This entry shows that the next
lookup is an internal tree node with the base index 1000.
Following this base index, adding it to the next two bits
of the input 01, we reach the leaf node 1000+01 = 1001.
This leaf node corresponds to the group in which the item
1101 has to be added. Thus, the no match index will be
replaced with the new group, i.e. group 1310 = 11012.
New group is indicated by the address of the root of the
relevant tree in memory. Now m-N most significant bits
of data for groups (such as the group 13 for our example)
will be sorted using tree-like structures.

2.2. Tree-like structures
Tree-like data structures are frequently explored for data
processing [10,13]. Let us consider an example of using a
binary tree for sorting data [13]. Suppose that the nodes
of the tree contain three fields: a pointer to the left child
node, a pointer to the right child node, and a value (e.g.
an integer or a pointer to a string). The nodes are
maintained so that at any node, the left sub-tree only
contains values that are less than the value at the node,
and the right sub-tree contains only values that are
greater. Such a tree can easily be built and traversed
either iteratively or recursively. Taking into account the
experiments in [14,15] we can conclude that hardware
implementations of recursive and iterative algorithms
over trees give very comparable results in resource
consumption and execution time. We will base our
technique on recursive algorithms just because they
provide more clear and compact specification. The results
of the paper are equally applied to both recursive and
iterative implementations.

Two (following each other) algorithms A1 and A2
have to be executed for data sort in [13]. The first one A1
constructs the tree. The second algorithm A2 outputs the
sorted data from the tree. A1 executes the following steps:
1) compare the new data item with the value of the root
node to determine whether it should be placed in the sub-
tree headed by the left node or the right node; 2) check

137

for the presence of the node selected by 1) and if it is
absent, create and insert a new node for the data item and
end the process; 3) otherwise, repeat 1) and 2) with the
selected node as the root. Recursion can easily be applied
in point 3 [15]. Let us assume that a sequence of input
data is the following: 24, 17, 35, 30, 8, 61, 12, 18, 1, 25,
10, 15, 19, 20, 21, 40, 9, 7, 11, 16, 50. A tree built for
this sequence is shown in Figure 3a. Basic steps of A2 are
shown in Fig. 3b. We will assume that input data are
stored in RAM along with the addresses of the left (LA)
and right (RA) sub-trees (see Figure 3c). All other details
can be found in [14,15].

7

17

24

35

308
61

12

18

1

25
10

15

19

20

21

40

9

11
16

50

a) b)

Call Z again for
left node as a root

yes

Beginz

Left sub‐tree
exists

no

Output data from
the last node

Right sub‐tree
exists

yes
Call Z again for

right node as a root

End

no

c) RAM

Data LA RA

Figure 3. Binary tree for data sort (a); recursive algorithm for
data sort (b); contents of memory (c)

2.3. Sorting networks
Sorting networks [1] do not require control flow of
instructions or branches and they are parallel in nature.
However, they are only suitable for relatively short
sequences of data whose length is known a priori [1].

This paper suggests combining tree-like structures
(see the middle level in Figure 1) with sorting networks
(see the bottom level in Figure 1).

Suppose we need to sort m-bit data items. Let us sort
(m-n) the most significant bits at upper two levels (see
Figure 1) and process the remaining n bits using sorting
networks. Let us consider an example shown in Figure 4
for m=4, n=2 and the following sequence of inputs:
3(0011), 8(1000), 1(0001), 6(0110), 9(1001), 13(1101),
15(1111), 7(0111), 11(1011), 10(1010), 14(1110), where
the binary code of the relevant decimal value is shown in
parenthesis.

00

10

01 11

the root 3,1

0,1,3,2

2,3 1,3,2

a)
1
3 0

1
2
3

1
3
2

1
2
3

2
3

2
3

b) Group 00 (0): 0001(1),0011(3);
Group 01 (1): 0110(6),0111(7),
Group 10 (2): 1000(8),1001(9),1010(10),1011(11),
Group 11 (3): 1101(13),1110(14),1111(15)

Figure 4. Combining tree-like structure and sorting networks

For this example m-n=2 the most significant bits
arrive in the following sequence: 00, 10, 01, 11. The
relevant bits are shown in italic in Figure 4 and in the
text. The tree for this sequence is shown in Figure 4a.

There are two less significant (n=2)-bit values associated
with the group 00 namely 11 (3) and 01 (1). The values 3
and 1 are written near the node 00 in Figure 4a. By
analogy (n=2)-bit values associated with each group are
shown near the other nodes 10, 01 and 11 in Figure 4a.
All associated values are ordered in ascending sequence
using sorting networks (see Figure 4a where networks
from [1] were used). Thus, the groups are sorted using
tree-like structures and the values associated with the
groups are sorted using networks. Comparators needed
for the networks are represented in Figure 4a through the
known Knuth notation [9]. The results of sorting are
shown in Figure 4b.

Note that it is not necessary to store the associated
with the nodes values explicitly. They can be indicated
by values '1' of bits in the respective binary word. Such
words for the nodes 00, 10, 01 and 11 in Figure 4a are
0101, 1111, 0011 and 0111.

3. IMPLEMENTATIONS AND EXPERIMENTS

The considered methods were implemented and tested in
FPGA. Processing of trees at upper and middle levels
was done with the aid of a hierarchical finite state
machine (HFSM) [16] using the methods [15].
Specifications for the algorithms (e.g. Figure 3b) can be
seen as flow-charts with some predefined constraints.
Such flow-charts can easily be converted to a HFSM
(using the method [16]) and then formally coded in a
hardware description language such as VHDL. The
coding is done using the template proposed in [14],
which is easily customizable for the given set of flow-
charts. The resulting (customized) VHDL code is
synthesizable and permits the relevant circuits to be
designed in commercially available CAD systems, such
as Xilinx ISE (all necessary details can be found in [14-
16]).

The synthesis and implementation of the circuits from
the specification in VHDL were done in Xilinx ISE 11
for FPGA Spartan3E-1200E-FG320 of Xilinx available
on NEXYS-2 prototyping board of Digilent Inc. Since
the experiments were performed in a cheap FPGA that
has limited resources the methods used at each level were
verified separately. Preliminary results for the upper level
are very similar to [11] because the method [11] was used
with minimal modifications. For the middle level a
random-number generator produced up to 212 data items
with a length of 14 bits that are supplied in portions to
the circuits that have to sort the previously received
portions of data and to resort them for a new portion as
soon as possible. Besides, the both types were evaluated
without and with sorting networks for different values of
n.

Fig. 5 permits to compare acceleration of resorting for
a new portion (that includes from 10 to 120 data items)
comparing with resorting all 212 data items in FPGA-
based circuits.

The algorithm shown in Fig. 3b was also described in
C++ and implemented in software. The same data

138

(randomly generated) were used for the software
implementations. The results were produced on HP
EliteBook 2730p (Intel Core 2 Duo CPU, 1.87 GHz)
computer. They show that hardware implementations are
faster than software implementations for all the
experiments even though the clock frequencies of the
FPGA and the PC differ significantly. Indeed, the clock
frequency of the PC is about 25 times faster than that of
the FPGA. However, in spite of a significantly lower
clock frequency, the performance of sorting operations in
FPGA is about 4.5 times faster than in software
implementations. This is because the optimization
technique [12,16] valid just for hardware circuits has
been applied.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

number of data items in each portion

ac
ce
le
ra
tio

n
co
m
pa
rin

g
w
ith

fu
ll
re
so
rt
in
g
of
 2

12
da
ta
 it
em

s

500

450

400

350

300

250

200

150

100

50

Figure 5. The results of experiments

 When we combined tree-like structures and sorting
networks we were able to provide acceleration of sorting
in an average 1.6/3.1/4.7 times for different values of n:
n=2/n=3/n=4 respectively. Regardless of parallelization
of 2n operations, acceleration cannot be equal to 2n
because the use of sorting networks gives significant
delay in getting the results due to long paths in the
relevant combinational circuits.

Now let us make a comparison with other known
results. In [1] the complete median operator to process
256 MB of data consisting of 4-byte words takes 6.173
seconds, i.e. 100 ns per word. Any resorting for a new
portion of data requires all data items to be sorted and,
thus, for data from Figure 5, it takes about 4
milliseconds. For our technique and for examples in
Figure 5, it takes from 130 to 1100 nanoseconds for
different number of items in portions.

In [17] the maximum speed of sorting is estimated as
180 million records per second. Thus, resorting all data in
Figure 5 would require about 23 milliseconds.

4. CONCLUSION

The paper suggests multilevel models for data
processing and clearly demonstrates the advantages of
the innovations proposed based on prototyping in FPGA
and experiments with the implemented algorithms. The
technique is illustrated by examples of data sorting where
three different models (graph walk, tree-like structures
and sorting networks) are combined.

5. REFERENCES

[1] R. Mueller, J. Teubner, G. Alonso, “Data processing on
FPGAs”, Proc. VLDB Endowment 2(1), 2009.
[2] N.K. Govindaraju, J. Gray, R. Kumar, D. Manocha,
“GPUTeraSort: High performance graphics co-processor sorting
for large database management”, Proc. 2006 ACM SIGMOD
Int'l Conference on Management of Data, Chicago, IL, USA,
pp. 325-336, 2006.
[3] H. Inoue, T. Moriyama, H. Komatsu, T. Nakatani, “AA-
Sort: A new parallel sorting algorithm for multi-core SIMD
processors”, Proc. Int'l Conference on Parallel Architecture and
Compilation Techniques (PACT), Brasov, Romania, pp. 189-
198, 2007.
[4] B. Gedik, R.R. Bordawekar, P.S. Yu, “CellSort: High
performance sorting on the Cell processor”, Proc. 33rd Int'l
Conference on Very Large Data Bases (VLDB), Vienna,
Austria, pp. 1286-1297, 2007.
[5] J. Chhugani, A.D. Nguyen, V.W. Lee, W. Macy, M. Hagog,
Y.K. Chen, A. Baransi, S. Kumar, P. Dubey, ”Efficient
implementation of sorting on multi-core SIMD CPU
architecture”, Proc VLDB Endowment 1(2), pp. 1313-1324,
2008.
[6] D.J. Greaves, S. Singh, “Kiwi: Synthesis of FPGA circuits
from parallel programs”, Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2008.
[7] S.S. Huang, A. Hormati, D.F. Bacon, R. Rabbah, “Liquid
Metal: Object-oriented programming across the
hardware/software boundary”, European Conference on Object-
Oriented Programming, Paphos, Cyprus, 2008.
[8] A. Mitra, M.R. Vieira, P. Bakalov, V.J. Tsotras, W. Najjar,
“Boosting XML Filtering through a scalable FPGA-based
architecture”, Proc. Conference on Innovative Data Systems
Research (CIDR), Asilomar, CA, USA, 2009.
[9] D.E. Knuth, The Art of Computer Programming, Volume 3:
Sorting and Searching, 2nd edn., Addison-Wesley, 1998.
[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stain,
Introduction to Algorithms, 2nd edition, MIT Press, 2002.
[11] J.D. Davis, Z. Tan, F. Yu, L. Zhang, “A practical
reconfigurable hardware accelerator for Boolean satisfiability
solvers”, Proc. of the 45th ACM/IEEE Design Automation
Conference - DAC 2008, pp. 780 – 785.
[12] V. Sklyarov, I. Skliarova, "Recursive and Iterative
Algorithms for N-ary Search Problems", Proc. of AISPP'2006,
19th IFIP World Computer Congress - WCC'2006, Santiago de
Chile, Chile, August 2006, pp. 81-90.
[13] B.W. Kernighan, D.M. Ritchie, The C Programming
Language, Prentice Hall, 1988.
[14] V. Sklyarov, “FPGA-based implementation of recursive
algorithms,” Microprocessors and Microsystems. Special Issue
on FPGAs: Applications and Designs, vol. 28/5-6, pp. 197–211,
2004.
[15] D.Mihhailov, V.Sklyarov, I.Skliarova, A.Sudnitson.
“Hardware Implementation of Recursive Algorithms”. In Proc.
of the 53rd IEEE Int. Symposium on Circuits and Systems,
Seattle, USA, August, 2010.
[16] Sklyarov, V, Hierarchical Finite-State Machines and Their
Use for Digital Control, IEEE Transactions on VLSI Systems,
1999, Vol. 7, No 2, pp. 222-228.
[17] R.D. Chamberlain, N. Ganesan, “Sorting on
Architecturally Diverse Computer Systems”, Proc. 3rd Int’l
Workshop on High-Performance Reconfigurable Computing
Technology and Applications, November 2009.

139

