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ABSTRACT 
 
The paper suggests multilevel models for data processing 
and demonstrates advantages of such models on 
examples of data sorting. Three different techniques are 
discussed, namely graph walk, using tree-like structures 
and sorting networks. The relevant implementations were 
done on the basis of hierarchical finite state machines and 
verified in commercially available FPGAs. Experiments 
and comparisons demonstrate that the results enable the 
performance of processing for different types of data to 
be increased compared to known implementations. 
 

Index Terms— Algorithms; Data models; Data 
processing; Field programmable gate arrays; Trees 

 

1. INTRODUCTION 
 
Using and taking advantage of application-specific 
circuits in general and FPGA-based accelerators in 
particular have a long tradition in data processing [1]. A 
number of research works are targeted to databases that 
use the potential of advanced hardware architectures. For 
example, the system [2] solves a sorting problem over 
multiple hardware shading units achieving parallelization 
through using SIMD operations on GPU processors. The 
algorithms [3,4,5] are very similar in nature, but target 
SIMD instruction sets of PowerPC 970MP, Cell, and 
Intel Core 2 Quad processors. The use of FPGAs was 
studied within projects [6,7] implementing traditional 
CPU tasks on programmable hardware. In [8] FPGAs are 
used as co-processors in Altix supercomputer to 
accelerate XML filtering. The advantages of customized 
hardware as a database coprocessor are investigated in 
different publications (e.g. [1]). 

Some of traditional techniques to data processing are 
also attractive options in the context of hardware [1]. 
However, any particular technique cannot be seen as a 
universal approach producing an optimal result for any 
set of data. Let us consider, for example, data sorting. 
There are many methods [9,10] that permit sorting 
problems to be solved. However, effectiveness of these 
methods depends on given data. For instance, sorting 

networks [9] can be seen as one of the fastest techniques 
but they can be used just for very limited number of data 
items [1]; tree-like structures [10] are very appropriate 
for long data that might require fast resorting, etc. This 
paper suggests combining different models in a way that 
makes possible to apply particular models at those levels 
where the selected models permit to produce the best 
solutions. The effectiveness of such approach was 
examined for data sorting through combining three 
different models, namely: 1) the use of the walk 
technique proposed in [11] at the upper level; 2) tree-like 
structure for sorting [12] at the middle level; and 3) 
sorting networks [1] at the bottom level. Obviously, it is 
not necessary to use all these methods. If the number of 
data items is limited (for instance, less than 28) then just 
the model (3) allows a nearly optimal solution to be 
produced. If fast resorting is required, then tree-like 
structures can be applied autonomously. The upper level 
provides significant assistance for data with large bit 
capacity and so on. The most important feature is the ease 
of linking different models enabling fast data processing 
for very large volumes of data to be achieved. Further, 
we will consider data sorting based on the mentioned 
above multilevel models as an example, which will be 
analyzed through the paper. 

The remainder of this paper is organized in three 
sections. Section 2 suggests new technique for data 
processing with examples of sorting. Section 3 is 
dedicated to implementations, experiments, and the 
results. The conclusion is given in Section 4. 
 

2. MULTILEVEL DATA PROCESSING 
 
Figure 1 demonstrates basic ideas of the proposed 
multilevel data processing on an example of data sorting. 
Each particular level is the most appropriate for the 
following types of data: 
• Upper level – for 2m >> NDA, where m is the size of 

data items in bits and NDA is the number of data 
items; 

• Middle level – for data that cannot be processed by 
the upper and the bottom levels, i.e. this level can be 
used either autonomously or in combinations with 
the other methods. Tree-like structures are the most 
appropriate for autonomous use in applications that 
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require very fast resorting in case of arriving 
additional data items;  

• Bottom level – as a rule for n ≤ 8 or even smaller, 
which depends on available resources, where n is the 
selected number of the less significant bits of data 
items. 

Upper level: search a group where
the new item has to be included or
allocating a new group in memory

Middle level: 1. Processing binary 
trees associated with each group; 
2. Creating new groups associated 

with leaves of trees

Bottom level: Processing items 
associated with the leaves of the 

trees by sorting networks

 
Figure 1. Multilevel data processing on an example of data 

sorting 

2.1. Tree walk technique 
Suppose we need to sort m-bit data items. Let us 

decompose m-bit binary values in 2N groups that differ 
by the N most significant bits. Let us assume that data 
items within each group will be sorted by applying some 
methods, which we will discuss a bit later. At the upper 
level we have to find a proper group for any new 
incoming data item. In practical cases for data with large 
bit capacity (for instance, more than 64) the number of 
groups is significantly less than 2N.  Thus, we can apply 
the technique [11] proposed for accelerating Boolean 
constraint propagation needed for solving the SAT 
problem with large number of variables and limited 
number of clauses. 

Figure 2 demonstrates an example, taken from [11], 
in which we consider groups instead of clauses. Similar 
to [11] the group index walk module uses a tree to 
efficiently locate the group associated with any new 
incoming data item. The tree will be N/k deep and it is 
stored in the tree walk table in an on-chip BRAM block. 
Here we consider 2k-nary trees and N/k is the number of 
assigned levels of the tree, through which the walk 
procedure from the root of the tree to a leaf (associated 
with a particular group) will be done. If k=1 we have a 
binary tree. The greater the number k the less number of 
levels of the tree we need for our walk procedure. Given 
a non-leaf node, the address of its leftmost child in the 
tree walk table is called the base index of this tree node. 
The rest of the children are ordered sequentially, 
following the leftmost child. Therefore, to locate the ith 
child, the index can be calculated by adding i to the base 
index. If a child is not associated with any group, we 
store a no-match (-1) tag in the entry. If for a node, all of 
its 2k children have no match, then we do not expand the 

tree node and just store a no-match tag in the node itself. 
The considered technique is almost the same as in [11]. 

Root base 
index 0000

0000 Base 
index 0100

0011 Base 
index 1000

0001 No 
match

0010 No 
match

00 01 10 11

0100 No 
match

0101 
Group 1

0110 No 
match

0111 No 
match

1000 
Group 12

1001 No 
match

1010 
Group 14

1011 No 
match

00 01 10 11
00 01 10 11

0 1 2 3

4 5 6 7 8 9 10 11

1st memory lookup

2nd memory 
lookup

Group 13

 
Figure 2. Group index tree work [11] transformed to data sort 

Let us consider example from [11] shown in Figure 2 
and transform it to the new problem (i.e. sorting will be 
considered instead of the SAT). Suppose k=2, N=4 and 
some data items have already been included in the groups 
1, 12 and 14. Let the most significant bits of a new data 
item be 1101. The base index of the root node is 0000 
and the first two bits of the data are 11. The table index is 
the sum of two: 0000+11= 0011. Using this table index, 
the first memory lookup is conducted by checking the 
0011 entry of the table. This entry shows that the next 
lookup is an internal tree node with the base index 1000. 
Following this base index, adding it to the next two bits 
of the input 01, we reach the leaf node 1000+01 = 1001. 
This leaf node corresponds to the group in which the item 
1101 has to be added. Thus, the no match index will be 
replaced with the new group, i.e. group 1310 = 11012. 
New group is indicated by the address of the root of the 
relevant tree in memory. Now m-N most significant bits 
of data for groups (such as the group 13 for our example) 
will be sorted using tree-like structures. 

2.2. Tree-like structures 
Tree-like data structures are frequently explored for data 
processing [10,13]. Let us consider an example of using a 
binary tree for sorting data [13]. Suppose that the nodes 
of the tree contain three fields: a pointer to the left child 
node, a pointer to the right child node, and a value (e.g. 
an integer or a pointer to a string). The nodes are 
maintained so that at any node, the left sub-tree only 
contains values that are less than the value at the node, 
and the right sub-tree contains only values that are 
greater. Such a tree can easily be built and traversed 
either iteratively or recursively. Taking into account the 
experiments in [14,15] we can conclude that hardware 
implementations of recursive and iterative algorithms 
over trees give very comparable results in resource 
consumption and execution time. We will base our 
technique on recursive algorithms just because they 
provide more clear and compact specification. The results 
of the paper are equally applied to both recursive and 
iterative implementations. 

Two (following each other) algorithms A1 and A2 
have to be executed for data sort in [13]. The first one A1 
constructs the tree. The second algorithm A2 outputs the 
sorted data from the tree. A1 executes the following steps: 
1) compare the new data item with the value of the root 
node to determine whether it should be placed in the sub-
tree headed by the left node or the right node; 2) check 
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for the presence of the node selected by 1) and if it is 
absent, create and insert a new node for the data item and 
end the process; 3) otherwise, repeat 1) and 2) with the 
selected node as the root. Recursion can easily be applied 
in point 3 [15]. Let us assume that a sequence of input 
data is the following: 24, 17, 35, 30, 8, 61, 12, 18, 1, 25, 
10, 15, 19, 20, 21, 40, 9, 7, 11, 16, 50. A tree built for 
this sequence is shown in Figure 3a. Basic steps of A2 are 
shown in Fig. 3b. We will assume that input data are 
stored in RAM along with the addresses of the left (LA) 
and right (RA) sub-trees (see Figure 3c). All other details 
can be found in [14,15].  
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a) b)

Call Z again for
left node as a root

yes

Beginz

Left sub‐tree
exists

no

Output data from
the last node

Right sub‐tree
exists

yes
Call Z again for

right node as a root

End

no

c) RAM

Data LA RA
 

Figure 3. Binary tree for data sort (a); recursive algorithm for 
data sort (b); contents of memory (c) 

2.3. Sorting networks 
Sorting networks [1] do not require control flow of 
instructions or branches and they are parallel in nature. 
However, they are only suitable for relatively short 
sequences of data whose length is known a priori [1]. 

This paper suggests combining tree-like structures 
(see the middle level in Figure 1) with sorting networks 
(see the bottom level in Figure 1). 

Suppose we need to sort m-bit data items. Let us sort 
(m-n) the most significant bits at upper two levels (see 
Figure 1) and process the remaining n bits using sorting 
networks. Let us consider an example shown in Figure 4 
for m=4, n=2 and the following sequence of inputs: 
3(0011), 8(1000), 1(0001), 6(0110), 9(1001), 13(1101), 
15(1111), 7(0111), 11(1011), 10(1010), 14(1110), where 
the binary code of the relevant decimal value is shown in 
parenthesis. 

00

10

01 11

the root 3,1

0,1,3,2

2,3 1,3,2

a)
1
3 0

1
2
3

1
3
2

1
2
3

2
3

2
3

b) Group 00 (0): 0001(1),0011(3);
Group 01 (1): 0110(6),0111(7),
Group 10 (2): 1000(8),1001(9),1010(10),1011(11),
Group 11 (3): 1101(13),1110(14),1111(15)

 
Figure 4. Combining tree-like structure and sorting networks 

For this example m-n=2 the most significant bits 
arrive in the following sequence: 00, 10, 01, 11. The 
relevant bits are shown in italic in Figure 4 and in the 
text. The tree for this sequence is shown in Figure 4a. 

There are two less significant (n=2)-bit values associated 
with the group 00 namely 11 (3) and 01 (1). The values 3 
and 1 are written near the node 00 in Figure 4a. By 
analogy (n=2)-bit values associated with each group are 
shown near the other nodes 10, 01 and 11 in Figure 4a. 
All associated values are ordered in ascending sequence 
using sorting networks (see Figure 4a where networks 
from [1] were used). Thus, the groups are sorted using 
tree-like structures and the values associated with the 
groups are sorted using networks. Comparators needed 
for the networks are represented in Figure 4a through the 
known Knuth notation [9]. The results of sorting are 
shown in Figure 4b.  

Note that it is not necessary to store the associated 
with the nodes values explicitly. They can be indicated 
by values '1' of bits in the respective binary word. Such 
words for the nodes 00, 10, 01 and 11 in Figure 4a are 
0101, 1111, 0011 and 0111. 
 

3. IMPLEMENTATIONS AND EXPERIMENTS 
 
The considered methods were implemented and tested in 
FPGA. Processing of trees at upper and middle levels 
was done with the aid of a hierarchical finite state 
machine (HFSM) [16] using the methods [15]. 
Specifications for the algorithms (e.g. Figure 3b) can be 
seen as flow-charts with some predefined constraints. 
Such flow-charts can easily be converted to a HFSM 
(using the method [16]) and then formally coded in a 
hardware description language such as VHDL. The 
coding is done using the template proposed in [14], 
which is easily customizable for the given set of flow-
charts. The resulting (customized) VHDL code is 
synthesizable and permits the relevant circuits to be 
designed in commercially available CAD systems, such 
as Xilinx ISE (all necessary details can be found in [14-
16]). 

The synthesis and implementation of the circuits from 
the specification in VHDL were done in Xilinx ISE 11 
for FPGA Spartan3E-1200E-FG320 of Xilinx available 
on NEXYS-2 prototyping board of Digilent Inc. Since 
the experiments were performed in a cheap FPGA that 
has limited resources the methods used at each level were 
verified separately. Preliminary results for the upper level 
are very similar to [11] because the method [11] was used 
with minimal modifications. For the middle level a 
random-number generator produced up to 212 data items 
with a length of 14 bits that are supplied in portions to 
the circuits that have to sort the previously received 
portions of data and to resort them for a new portion as 
soon as possible. Besides, the both types were evaluated 
without and with sorting networks for different values of 
n.  

Fig. 5 permits to compare acceleration of resorting for 
a new portion (that includes from 10 to 120 data items) 
comparing with resorting all 212 data items in FPGA-
based circuits. 

The algorithm shown in Fig. 3b was also described in 
C++ and implemented in software. The same data 
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(randomly generated) were used for the software 
implementations. The results were produced on HP 
EliteBook 2730p (Intel Core 2 Duo CPU, 1.87 GHz) 
computer. They show that hardware implementations are 
faster than software implementations for all the 
experiments even though the clock frequencies of the 
FPGA and the PC differ significantly. Indeed, the clock 
frequency of the PC is about 25 times faster than that of 
the FPGA. However, in spite of a significantly lower 
clock frequency, the performance of sorting operations in 
FPGA is about 4.5 times faster than in software 
implementations. This is because the optimization 
technique [12,16] valid just for hardware circuits has 
been applied. 
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Figure 5. The results of experiments 

 When we combined tree-like structures and sorting 
networks we were able to provide acceleration of sorting 
in an average 1.6/3.1/4.7 times for different values of n: 
n=2/n=3/n=4 respectively. Regardless of parallelization 
of 2n operations, acceleration cannot be equal to 2n 
because the use of sorting networks gives significant 
delay in getting the results due to long paths in the 
relevant combinational circuits. 

Now let us make a comparison with other known 
results. In [1] the complete median operator to process 
256 MB of data consisting of 4-byte words takes 6.173 
seconds, i.e. 100 ns per word. Any resorting for a new 
portion of data requires all data items to be sorted and, 
thus, for data from Figure 5, it takes about 4 
milliseconds. For our technique and for examples in 
Figure 5, it takes from 130 to 1100 nanoseconds for 
different number of items in portions. 

In [17] the maximum speed of sorting is estimated as 
180 million records per second. Thus, resorting all data in 
Figure 5 would require about 23 milliseconds.  
 

4. CONCLUSION 
 

The paper suggests multilevel models for data 
processing and clearly demonstrates the advantages of 
the innovations proposed based on prototyping in FPGA 
and experiments with the implemented algorithms. The 
technique is illustrated by examples of data sorting where 
three different models (graph walk, tree-like structures 
and sorting networks) are combined.  
 

 
5. REFERENCES 

 
[1] R. Mueller, J. Teubner, G. Alonso, “Data processing on 
FPGAs”, Proc. VLDB Endowment 2(1), 2009. 
[2] N.K. Govindaraju, J. Gray, R. Kumar, D. Manocha, 
“GPUTeraSort: High performance graphics co-processor sorting 
for large database management”, Proc. 2006 ACM SIGMOD 
Int'l Conference on Management of Data, Chicago, IL, USA, 
pp. 325-336, 2006. 
[3] H. Inoue, T. Moriyama, H. Komatsu, T. Nakatani, “AA-
Sort: A new parallel sorting algorithm for multi-core SIMD 
processors”, Proc. Int'l Conference on Parallel Architecture and 
Compilation Techniques (PACT), Brasov, Romania, pp. 189-
198, 2007. 
[4] B. Gedik, R.R. Bordawekar, P.S. Yu, “CellSort: High 
performance sorting on the Cell processor”, Proc. 33rd Int'l 
Conference on Very Large Data Bases (VLDB), Vienna, 
Austria, pp. 1286-1297, 2007. 
[5] J. Chhugani, A.D. Nguyen, V.W. Lee, W. Macy, M. Hagog, 
Y.K. Chen, A. Baransi, S. Kumar, P. Dubey, ”Efficient 
implementation of sorting on multi-core SIMD CPU 
architecture”, Proc VLDB Endowment 1(2), pp. 1313-1324, 
2008. 
[6] D.J. Greaves, S. Singh, “Kiwi: Synthesis of FPGA circuits 
from parallel programs”, Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2008. 
[7] S.S. Huang, A. Hormati, D.F. Bacon, R. Rabbah, “Liquid 
Metal: Object-oriented programming across the 
hardware/software boundary”, European Conference on Object-
Oriented Programming, Paphos, Cyprus, 2008. 
[8] A. Mitra, M.R. Vieira, P. Bakalov, V.J. Tsotras, W. Najjar, 
“Boosting XML Filtering through a scalable FPGA-based 
architecture”, Proc. Conference on Innovative Data Systems 
Research (CIDR), Asilomar, CA, USA, 2009. 
[9] D.E. Knuth, The Art of Computer Programming, Volume 3: 
Sorting and Searching, 2nd edn., Addison-Wesley, 1998. 
[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stain,  
Introduction to Algorithms, 2nd edition, MIT Press, 2002. 
[11] J.D. Davis, Z. Tan, F. Yu, L. Zhang, “A practical 
reconfigurable hardware accelerator for Boolean satisfiability 
solvers”, Proc. of the 45th ACM/IEEE Design Automation 
Conference  - DAC 2008, pp. 780 – 785. 
[12] V. Sklyarov, I. Skliarova, "Recursive and Iterative 
Algorithms for N-ary Search Problems", Proc. of AISPP'2006, 
19th IFIP World Computer Congress - WCC'2006, Santiago de 
Chile, Chile, August 2006, pp. 81-90. 
[13] B.W. Kernighan, D.M. Ritchie, The C Programming 
Language, Prentice Hall, 1988. 
[14] V. Sklyarov, “FPGA-based implementation of recursive 
algorithms,” Microprocessors and Microsystems. Special Issue 
on FPGAs: Applications and Designs, vol. 28/5-6, pp. 197–211, 
2004. 
[15] D.Mihhailov, V.Sklyarov, I.Skliarova, A.Sudnitson. 
“Hardware Implementation of Recursive Algorithms”. In Proc. 
of the 53rd IEEE Int. Symposium on Circuits and Systems, 
Seattle, USA, August, 2010.  
[16] Sklyarov, V, Hierarchical Finite-State Machines and Their 
Use for Digital Control, IEEE Transactions on VLSI Systems, 
1999, Vol. 7, No 2, pp. 222-228. 
[17] R.D. Chamberlain, N. Ganesan, “Sorting on 
Architecturally Diverse Computer Systems”, Proc. 3rd Int’l 
Workshop on High-Performance Reconfigurable Computing 
Technology and Applications, November 2009. 
 

139


