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Multilevel Monte Carlo Estimation of the Expected Value of Sample Information\ast 

Tomohiko Hironaka\dagger , Michael B. Giles\ddagger , Takashi Goda\dagger , and Howard Thom\S 

Abstract. We study Monte Carlo estimation of the expected value of sample information (EVSI), which mea-
sures the expected benefit of gaining additional information for decision making under uncertainty.
EVSI is defined as a nested expectation in which an outer expectation is taken with respect to one
random variable Y and an inner conditional expectation with respect to the other random variable
θ. Although the nested (Markov chain) Monte Carlo estimator has been often used in this context, a
root-mean-square accuracy of ε is achieved notoriously at a cost of O(ε−2−1/\alpha ), where α denotes the
order of convergence of the bias and is typically between 1/2 and 1. In this article we propose a novel
efficient Monte Carlo estimator of EVSI by applying a multilevel Monte Carlo (MLMC) method.
Instead of fixing the number of inner samples for θ as done in the nested Monte Carlo estimator,
we consider a geometric progression on the number of inner samples, which yields a hierarchy of
estimators on the inner conditional expectation with increasing approximation levels. Based on an
elementary telescoping sum, our MLMC estimator is given by a sum of the Monte Carlo estimates
of the differences between successive approximation levels on the inner conditional expectation. We
show, under a set of assumptions on decision and information models, that successive approximation
levels are tightly coupled, which directly proves that our MLMC estimator improves the necessary
computational cost to optimal O(ε−2). Numerical experiments confirm the considerable computa-
tional savings as compared to the nested Monte Carlo estimator.

Key words. expected value of sample information, multilevel Monte Carlo, nested expectations, decision-
making under uncertainty
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1. Introduction. Motivated by applications to medical decision making under uncertainty
[27], we study Monte Carlo estimation of the expected value of sample information (EVSI).
Let \theta be a vector of random variables representing the uncertainty in the effectiveness of
different medical treatments. Let D be a finite set of possible medical treatments, and for
each treatment d \in D, fd denotes a function of \theta representing some measure of the patient
outcome with “the larger the better,” where quality-adjusted life years (QALY) is typically
employed in the context of medical decision making [1, 2, 25, 14]. Without any knowledge
about \theta , the best treatment is the one which maximizes the expectation of fd, giving the
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average outcome

max
d\in D

E\theta [fd(\theta )] ,(1.1)

where E\theta [\cdot ] denotes the expectation taken with respect to the prior probability density function
of \theta . On the other hand, if perfect information on \theta is available, the best treatment after
knowing the value of \theta is simply the one which maximizes fd(\theta ), so that, on average, the
outcome will be

E\theta 

\biggl[ 

max
d\in D

fd(\theta )

\biggr] 

.

The difference between these two values is called the expected value of perfect information
(EVPI):

EVPI := E\theta 

\biggl[ 

max
d\in D

fd(\theta )

\biggr] 

 - max
d\in D

E\theta [fd(\theta )] .

However, it will be rare that we have access to perfect information on \theta . In practice, what we
obtain, for instance, through carrying out some new medical research is either partial perfect
information or sample information on \theta .

Partial perfect information is nothing but perfect information on only a subset of random
variables \theta 1 for a partition \theta = (\theta 1, \theta 2), where \theta 1 and \theta 2 are assumed independent. After
knowing the value of \theta 1, the best treatment is the one which maximizes the partial expectation
E\theta 2 [fd(\theta 1, \theta 2)]. Therefore, the average outcome with partial perfect information on \theta 1 will be

E\theta 1

\biggl[ 

max
d\in D

E\theta 2 [fd(\theta 1, \theta 2)]

\biggr] 

,

and the increment from (1.1) is called the expected value of partial perfect information
(EVPPI):

EVPPI := E\theta 1

\biggl[ 

max
d\in D

E\theta 2 [fd(\theta 1, \theta 2)]

\biggr] 

 - max
d\in D

E\theta [fd(\theta )] .

Sample information on \theta , which is of our interest in this article, is a single realization
drawn from some probability distribution. To be more precise, we consider that information
Y is stochastically generated according to the forward information model:

Y = h(\theta ) + \epsilon ,(1.2)

where h is a known deterministic function of \theta possibly with multiple outputs and \epsilon is a zero-
mean random variable with density \rho . Note that h and \epsilon are called the observation operator
and the observation noise, respectively [26, section 2]. It is widely known that Bayes’ theorem
provides an update of the probability density of \theta after observing Y :

\pi Y (\theta ) =
\rho (Y | \theta )\pi 0(\theta )

E\theta [\rho (Y | \theta )]
,(1.3)

where \pi 0(\theta ) denotes the prior probability density of \theta , and \rho (Y | \theta ) denotes the conditional
probability density of Y given \theta . Here \rho (Y | \theta ) is also called the likelihood of the information
Y , and it follows from the model (1.2) that \rho (Y | \theta ) := \rho (Y  - h(\theta )).D
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Now, if such sample information Y is available, by choosing the best treatment which
maximizes the conditional expectation E\theta | Y [fd(\theta )] depending on Y , where E\theta | Y [\cdot ] denotes

the expectation taken with respect to the conditional probability density \pi Y (\theta ), the overall
average outcome becomes

EY

\biggl[ 

max
d\in D

E\theta | Y [fd(\theta )]

\biggr] 

.

Then EVSI represents the expected benefit of gaining the information Y and is defined by the
difference

EVSI := EY

\biggl[ 

max
d\in D

E\theta | Y [fd(\theta )]

\biggr] 

 - max
d\in D

E\theta [fd(\theta )] .

In this article we are concerned with Monte Carlo estimation of EVSI. Given that EVPI
can be estimated with root-mean-square accuracy \varepsilon by using N = O(\varepsilon  - 2) independent and
identically distributed (i.i.d.) samples of \theta , denoted by \theta (1), . . . , \theta (N), as

1

N

N
\sum 

n=1

max
d\in D

fd(\theta 
(n)) - max

d\in D

1

N

N
\sum 

n=1

fd(\theta 
(n)),

it suffices to efficiently estimate the difference between EVPI and EVSI:

EVPI - EVSI = E\theta 

\biggl[ 

max
d\in D

fd(\theta )

\biggr] 

 - EY

\biggl[ 

max
d\in D

E\theta | Y [fd(\theta )]

\biggr] 

.(1.4)

Because of the noncommutativity between the operators E and maxd\in D, this estimation is
inherently a nested expectation problem, and it is far from trivial whether we can construct
a good Monte Carlo estimator which achieves a root-mean-square accuracy \varepsilon at a cost of
O(\varepsilon  - 2).

Classically the most standard approach is to apply nested (Markov chain) Monte Carlo
methods. For M,N \in Z>0, let Y (1), . . . , Y (N) be N outer i.i.d. samples of Y , and for each
1 \leq n \leq N , let \theta (n,1), . . . , \theta (n,M) be M inner i.i.d. samples of \theta conditional on Y (n). Then the
nested Monte Carlo estimator of EVPI - EVSI is given by

1

N

N
\sum 

n=1

\Biggl[ 

1

M

M
\sum 

m=1

max
d\in D

fd(\theta 
(n,m)) - max

d\in D

1

M

M
\sum 

m=1

fd(\theta 
(n,m))

\Biggr] 

.(1.5)

Here it is often hard to generate inner i.i.d. samples of \theta conditional on some value of Y
directly (although, conversely, it is quite easy to generate i.i.d. samples of Y conditional on
some value of \theta according to (1.2)). This is a major difference from estimating EVPPI.

To work around this difficulty, although the resulting samples are no longer i.i.d., one relies
on Markov chain Monte Carlo (MCMC) sampling techniques such as Metropolis–Hastings
sampling and Gibbs sampling; see [18, 20]. Under certain conditions, it follows from [16, 17]
that one can establish a nonasymptotic error bound of O(M - 1/2) for MCMC estimation of
the inner conditional expectation. Still, as inferred from a recent work of Giles and Goda [11]
on EVPPI estimation, we need N = O(\varepsilon  - 2) and M = O(\varepsilon  - 1/\alpha ) samples for outer and inner
expectations, respectively, to estimate EVPI - EVSI with root-mean-square accuracy \varepsilon . HereD
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\alpha denotes the order of convergence of the bias and is typically between 1/2 and 1. This way
the necessary total computational cost is of O(\varepsilon  - 2 - 1/\alpha ).

In this article, building upon the earlier work by Giles and Goda [11], we develop a novel
efficient Monte Carlo estimator of EVPI–EVSI by using a multilevel Monte Carlo (MLMC)
method [8, 9]. Although there has been extensive recent research on efficient approximations
of EVSI in the medical decision making context [25, 14, 19, 15], our proposal avoids func-
tion approximations on the inner conditional expectation and any reliance on assumptions
of multilinearity of fd or weak correlation between random variables in \theta . Recently MLMC
estimators have been studied intensively for nested expectations of different forms, for in-
stance, by [4, 12, 13]. We also refer the reader to [10] for a review of recent developments
of MLMC applied to nested expectation problems. Importantly, our approach developed in
this article does not require MCMC sampling for generating inner conditional samples of \theta 
and can achieve a root-mean-square accuracy \varepsilon at a cost of optimal O(\varepsilon  - 2). Moreover, it is
straightforward to incorporate importance sampling techniques within our estimator, which
may sometimes reduce the variance of the estimator significantly.

2. Multilevel Monte Carlo.

2.1. Basic theory. Before introducing our estimator of EVPI - EVSI, we give an overview
of the MLMC method. Let P be a real-valued random variable which cannot be sampled
exactly, and let P0, P1, . . . be a sequence of real-valued random variables which approximate
P with increasing accuracy but also with increasing cost. In order to estimate E[P ], we first
approximate E[P ] by E[PL] for some L \in Z\geq 0 and then the standard Monte Carlo method

estimates E[PL] by using i.i.d. samples P
(1)
L , P

(2)
L , . . . of PL as

E[P ] \approx E[PL] \approx PL
N

:=
1

N

N
\sum 

n=1

P
(n)
L .

On the other hand, the MLMC method exploits the following telescoping sum represen-
tation:

E[PL] = E[P0] +

L
\sum 

\ell =1

E[P\ell  - P\ell  - 1].

More generally, given a sequence of random variables ∆P0,∆P1, . . . which satisfy

E[∆P0] = E[P0] and E[∆P\ell ] = E[P\ell  - P\ell  - 1] for \ell \geq 1,

we have

E[PL] =

L
\sum 

\ell =0

E[∆P\ell ].

Then the MLMC estimator is given by a sum of independent Monte Carlo estimates of
E[∆P0],E[∆P1], . . . , i.e.,

ZMLMC =
L
\sum 

\ell =0

∆P
N\ell 

\ell =
L
\sum 

\ell =0

1

N\ell 

N\ell 
\sum 

n=1

∆P
(n)
\ell .(2.1)
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Since P0, P1, . . . approximate P with increasing accuracy, through a tight coupling of P\ell  - 1

and P\ell , the variance of the correction variable ∆P\ell is expected to get smaller as the level \ell 
increases. This implies that the numbers of samples N0, N1, . . . can also get smaller as the
level \ell increases so as to estimate each quantity E[∆P\ell ] accurately. If this is the case, the
total computational cost can be reduced significantly as compared to the standard Monte
Carlo method.

The following basic theorem from [8, 5, 9] makes the above observation explicit.

Theorem 2.1. Let P be a random variable, and for \ell \in Z\geq 0, let P\ell be the level \ell approxima-

tion of P . Assume that there exist independent correction random variables ∆P\ell with expected

cost C\ell and variance V\ell , and positive constants \alpha , \beta , \gamma , c1, c2, c3 such that \alpha \geq min(\beta , \gamma )/2 and

1. E[∆P\ell ] =

\Biggl\{ 

E[P0], \ell = 0,

E[P\ell  - P\ell  - 1], \ell \geq 1,

2. | E[P\ell  - P ]| \leq c12
 - \alpha \ell ,

3. V\ell \leq c22
 - \beta \ell ,

4. C\ell \leq c32
\gamma \ell .

Then there exists a positive constant c4 such that, for any root-mean-square accuracy \varepsilon < e - 1,

there are L and N0, . . . , NL for which the MLMC estimator (2.1) achieves a mean-square error

less than \varepsilon 2, i.e.,
E[(ZMLMC  - E[P ])2] \leq \varepsilon 2

with a computational cost C bounded above by

E[C] \leq 

\left\{ 

 

 

 

 

c4\varepsilon 
 - 2, \beta > \gamma ,

c4\varepsilon 
 - 2(log \varepsilon  - 1)2, \beta = \gamma ,

c4\varepsilon 
 - 2 - (\gamma  - \beta )/\alpha , \beta < \gamma .

Remark 2.2. As discussed in [5, section 2.1] and [11, section 2.1], under assumptions
similar to those in Theorem 2.1, the standard Monte Carlo estimator achieves a root-mean-
square accuracy at a cost of O(\varepsilon  - 2 - \gamma /\alpha ). Therefore, regardless of the values of \beta > 0 and \gamma ,
the MLMC estimator always has an asymptotically lower complexity bound than the standard
Monte Carlo estimator.

2.2. MLMC estimator. Here we construct an MLMC estimator of the difference EVPI - 
EVSI. Our starting point is to insert (1.3) into (1.4), which results in

EVPI - EVSI = EY E\theta | Y

\biggl[ 

max
d\in D

fd(\theta )

\biggr] 

 - EY

\biggl[ 

max
d\in D

E\theta | Y [fd(\theta )]

\biggr] 

= EY

\biggl[ 

E\theta [maxd\in D fd(\theta )\rho (Y | \theta )]

E\theta [\rho (Y | \theta )]
 - max

d\in D

E\theta [fd(\theta )\rho (Y | \theta )]

E\theta [\rho (Y | \theta )]

\biggr] 

.

This has converted the posterior expectation with respect to \theta given Y into the ratio of
two prior expectations with respect to \theta , which avoids the need for MCMC sampling. This
idea has been used not only in the current context [19] but also in other areas related to
Bayesian computations; see [22, 21, 6, 7], among many others. On a technical level, this gives
a decisive difference from estimating EVPPI as considered in [11] for which we do not need suchD
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treatment. As discussed later in subsection 3.2, efficient estimation of the nested expectation
involving the ratio of two expectations is far from trivial. Although the algorithmic idea may
perhaps seem a natural extension from [11], the numerical analysis of it is certainly not.

Based on the above expression, within the framework of the MLMCmethod, let us consider
a real-valued random variable

P =
E\theta [maxd\in D fd(\theta )\rho (Y | \theta )]

E\theta [\rho (Y | \theta )]
 - max

d\in D

E\theta [fd(\theta )\rho (Y | \theta )]

E\theta [\rho (Y | \theta )]
,

with Y being the underlying random variable. We see that EY [P ] = EVPI  - EVSI, but P
cannot be sampled exactly because of the inner expectations.

It is important, however, that all these inner expectations are taken with respect to the
prior probability density of \theta , so that they can be approximated by the standard Monte Carlo
method without requiring any MCMC sampling. This way, as a sequence of random variables
P0, P1, . . . which approximate P with increasing accuracy, we consider the standard Monte
Carlo estimation of P :

P\ell :=
maxd\in D fd(\cdot )\rho (Y | \cdot )

M\ell 

\rho (Y | \cdot )
M\ell 

 - max
d\in D

fd(\cdot )\rho (Y | \cdot )
M\ell 

\rho (Y | \cdot )
M\ell 

for an increasing sequence M0 < M1 < \cdot \cdot \cdot with M\ell \rightarrow \infty as \ell \rightarrow \infty . Here, in the definition
of P\ell , we can use either the same M\ell samples of \theta for all of the averages or independent M\ell 

samples of \theta for each average. In this article we focus on the former approach and consider
a geometric progression for M0,M1, . . . , i.e., let M\ell = M02

\ell for some M0 \in Z>0. In fact, the
subsequent argument holds for a general integer base b \geq 2, but we restrict ourselves to the
case b = 2 for simplicity of presentation.

Regarding a sequence of the correction variables ∆P0,∆P1, . . . , following the ideas of
[4, 11, 12], we consider an antithetic coupling of P\ell  - 1 and P\ell . That is, the set of M02

\ell 

samples of \theta used to compute P\ell is split into two disjoint sets of M02
\ell  - 1 samples to compute

two independent realizations of P\ell  - 1, denoted by P
(a)
\ell  - 1 and P

(b)
\ell  - 1. Then ∆P\ell is defined by

∆P0 = P0 and

∆P\ell := P\ell  - 
P

(a)
\ell  - 1 + P

(b)
\ell  - 1

2

=
maxd\in D fd(\cdot )\rho (Y | \cdot )

\rho (Y | \cdot )
 - max

d\in D

fd(\cdot )\rho (Y | \cdot )

\rho (Y | \cdot )

 - 
1

2

\Biggl[ 

maxd\in D fd(\cdot )\rho (Y | \cdot )
(a)

\rho (Y | \cdot )
(a)

+
maxd\in D fd(\cdot )\rho (Y | \cdot )

(b)

\rho (Y | \cdot )
(b)

\Biggr] 

+
1

2

\Biggl[ 

max
d\in D

fd(\cdot )\rho (Y | \cdot )
(a)

\rho (Y | \cdot )
(a)

+max
d\in D

fd(\cdot )\rho (Y | \cdot )
(b)

\rho (Y | \cdot )
(b)

\Biggr] 

for \ell \geq 1, where we have omitted the superscripts M\ell from the first and second terms,
and the averages with the superscripts (a) and (b) are taken by using the first and secondD
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M02
\ell  - 1 samples of \theta used to compute the first two terms, respectively. Assuming that each

computation of fd(\theta ), \rho (Y | \theta ) and h(\theta ) can be performed with unit cost, it is clear that \gamma = 1
in Theorem 2.1 and E[∆P\ell ] = E[P\ell  - P\ell  - 1] for \ell \geq 1 because of the independence of the
samples.

By the word “antithetic” we mean that the following properties hold:

\rho (Y | \cdot ) =
\rho (Y | \cdot )

(a)
+ \rho (Y | \cdot )

(b)

2
,(2.2)

fd(\cdot )\rho (Y | \cdot ) =
fd(\cdot )\rho (Y | \cdot )

(a)
+ fd(\cdot )\rho (Y | \cdot )

(b)

2
for all d \in D,(2.3)

max
d\in D

fd(\cdot )\rho (Y | \cdot ) =
maxd\in D fd(\cdot )\rho (Y | \cdot )

(a)
+maxd\in D fd(\cdot )\rho (Y | \cdot )

(b)

2
.(2.4)

This is the key advantage of the antithetic correction as compared to the standard correction

P\ell  - P
(a)
\ell  - 1.

2.3. Combination with importance sampling. In practical applications, it is often the
case where the likelihood \rho (Y | \theta ) (as a function of \theta for a fixed Y ) is highly concentrated
around some values of \theta . If one uses the i.i.d. samples of \theta following from the prior density
\pi 0(\theta ) for estimating E\theta [\rho (Y | \theta )] and E\theta [fd(\theta )\rho (Y | \theta )], most of the samples can be distributed
outside such concentrated regions. As a result, these quantities are estimated as almost zero,
yielding a numerical instability of the estimates. Regarding theoretical analyses on such
concentrated posterior measures on \theta , we refer the reader to some recent papers [23, 24].

As discussed in [13, section 3.4] for MLMC applied to another nested expectation problem,
one can combine importance sampling techniques with our MLMC estimator to address this
issue. Let qY (\theta ) be an importance distribution of \theta , conditional on Y , which needs to satisfy
qY (\theta ) > 0 for any \theta with \pi 0(\theta ) > 0. Since we have

E\theta [fd(\theta )\rho (Y | \theta )] = E\theta \sim qY

\biggl[ 

fd(\theta )
\rho (Y | \theta )\pi 0(\theta )

qY (\theta )

\biggr] 

and

E\theta [\rho (Y | \theta )] = E\theta \sim qY

\biggl[ 

\rho (Y | \theta )\pi 0(\theta )

qY (\theta )

\biggr] 

,

the random variables P\ell and ∆P\ell can be replaced, respectively, by

P\ell =
maxd\in D fd(\cdot )\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )

M\ell 

\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
M\ell 

 - max
d\in D

fd(\cdot )\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
M\ell 

\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
M\ell 

,

∆P\ell =
maxd\in D fd(\cdot )\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )

\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
 - max

d\in D

fd(\cdot )\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )

\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )

 - 
1

2

\left[ 

 

maxd\in D fd(\cdot )\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
(a)

\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
(a)

+
maxd\in D fd(\cdot )\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )

(b)

\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
(b)

\right] 

 

+
1

2

\left[ 

 max
d\in D

fd(\cdot )\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
(a)

\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
(a)

+max
d\in D

fd(\cdot )\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
(b)

\rho (Y | \cdot )\pi 0(\cdot )/qY (\cdot )
(b)

\right] 

 ,D
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where all of the averages are taken with respect to i.i.d. samples of \theta \sim qY for a randomly
chosen Y .

We suggest finding a good approximation of the posterior distribution \pi Y (\theta ) for qY (\theta ). If
one can do so, it follows from Bayes’ theorem (1.3) that

\rho (Y | \theta )\pi 0(\theta )

qY (\theta )
\approx 

\rho (Y | \theta )\pi 0(\theta )

\pi Y (\theta )
= E\theta [\rho (Y | \theta )].

Since the rightmost side does not depend on \theta , the integrand \rho (Y | \theta )\pi 0(\theta )/q
Y (\theta ) appearing

in the denominator of each term for P\ell and ∆P\ell becomes close to a constant function, so that
its variance is extremely small. This way we can avoid the numerical instability of our original
MLMC estimator.

3. Theoretical results. In this section, we prove \beta > \gamma = 1 and \alpha \geq \beta /2 under a set of
assumptions on the decision and information models. This directly implies from Theorem 2.1
that our MLMC estimator of EVPI - EVSI achieves a root-mean-square accuracy \varepsilon at a cost
of optimal O(\varepsilon  - 2).

In what follows, for simplicity of notation, we write \rho (Y ) = E\theta [\rho (Y | \theta )] and Fd(Y ) =
E\theta [fd(\theta )\rho (Y | \theta )]. Note that we have

E

\Biggl[ 

\rho (Y | \cdot )

\rho (Y )
| Y

\Biggr] 

= E\theta 

\biggl[ 

\rho (Y | \theta )

\rho (Y )
| Y

\biggr] 

= 1.

Moreover, we write

gd
(a) =

fd(\cdot )\rho (Y | \cdot )
(a)

\rho (Y | \cdot )
(a)

, gd
(b) =

fd(\cdot )\rho (Y | \cdot )
(b)

\rho (Y | \cdot )
(b)

, gd =
fd(\cdot )\rho (Y | \cdot )

\rho (Y | \cdot )

for d \in D, and

g(a)max =
maxd\in D fd(\cdot )\rho (Y | \cdot )

(a)

\rho (Y | \cdot )
(a)

, g(b)max =
maxd\in D fd(\cdot )\rho (Y | \cdot )

(b)

\rho (Y | \cdot )
(b)

, gmax =
maxd\in D fd(\cdot )\rho (Y | \cdot )

\rho (Y | \cdot )
.

Then ∆P\ell is given by ∆P\ell = ∆P\ell ,1 +∆P\ell ,2 with

∆P\ell ,1 = gmax  - 
1

2

\Bigl( 

g(a)max + g(b)max

\Bigr) 

and ∆P\ell ,2 =
1

2

\biggl( 

max
d\in D

gd
(a) +max

d\in D
gd

(b)

\biggr) 

 - max
d\in D

gd.

For a given Y , we define

Gd(Y ) := E\theta | Y [fd(\theta )] =
E\theta [fd(\theta )\rho (Y | \theta )]

E\theta [\rho (Y | \theta )]
=

Fd(Y )

\rho (Y )

for each d \in D, and

dopt(Y ) := argmax
d\in D

Fd(Y ) = argmax
d\in D

Gd(Y ).D
o
w

n
lo

ad
ed

 1
0
/1

6
/2

0
 t

o
 8

1
.1

1
0
.2

1
4
.1

5
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

1244 T. HIRONAKA, M. B. GILES, T. GODA, AND H. THOM

The second equality is trivial since the denominator of Gd does not affect the choice maxd\in D.
The domain for Y is divided into a number of subdomains in which the optimal decision dopt is
unique. We denote by K the dividing decision manifold on which dopt is not uniquely defined,
and we assume that K is a lower-dimensional subspace of the domain for Y .

Let us give some assumptions on the decision and information models.

Assumption 3.1. There exists a constant 0 < Fmax < \infty such that | fd(\theta )| \leq Fmax for any
d and \theta .

Assumption 3.2. There exists a constant c0 > 0 such that for all 0 < \epsilon < 1

PY

\biggl[ 

min
y\in K

\| Y  - y\| \leq \epsilon 

\biggr] 

\leq c0\epsilon .

Assumption 3.3. There exist constants c1, c2 > 0 such that if Y /\in K, the following holds:

max
d\in D

Gd(Y ) - max
d\in D

d \not =dopt(Y )

Gd(Y ) > min

\biggl( 

c1, c2min
y\in K

\| Y  - y\| 

\biggr) 

.

Assumption 3.4. There exists a constant p \geq 2 such that

EY

\biggl[ 

E\theta 

\biggl[ \biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) p\biggr] \biggr] 

< \infty .

Remark 3.5. Assumptions 3.1–3.3 are similar to those considered in [11]. In particular,
Assumption 3.2 is introduced to ensure a bound on the probability that Y is close to the
decision manifoldK, while Assumption 3.3 is to ensure a linear separation of different decisions
as Y moves away fromK. Assumption 3.1, which is stronger than [11, Assumption 1], together
with Assumption 3.4 enables us to bound the difference between gd

(a), gd
(b), gd, and Gd.

Now we are ready to state our main result of this article.

Theorem 3.6. If Assumptions 3.1–3.4 are satisfied, we have

V[∆P\ell ] = O(2 - (3p/(2p+2))\ell ) and E[| ∆P\ell | ] = O(2 - (p/(p+1))\ell ),

where p \geq 2 is as given in Assumption 3.4.

Remark 3.7. When an importance sampling is used within the MLMC estimator, the same
orders of the variance and the mean of ∆P\ell can be shown by replacing Assumption 3.4 with
the existence of a constant p \geq 2 such that

EY

\biggl[ 

E\theta 

\biggl[ \biggl( 

\rho (Y | \theta )\pi 0(\theta )

\rho (Y )qY (\theta )

\biggr) p\biggr] \biggr] 

< \infty .

Since the result can be proven in the same manner with the original MLMC estimator, we
shall give a proof of Theorem 3.6 only for the original estimator.

This theorem implies that the parameters \alpha and \beta in Theorem 2.1 are equal to p/(p+ 1)
and 3p/(2p+2), respectively. Since \gamma = 1 < \beta if p > 2, our MLMC estimator of EVPI - EVSI
is in the first regime. Therefore, the total computational complexity to achieve a root-mean-
square accuracy \varepsilon is of order \varepsilon  - 2. If p = 2, on the other hand, the equality \beta = \gamma holds, which
means that our MLMC estimator is in the second regime. In the next subsection, we give a
proof of this theorem by using several lemmas which are shown later in subsection 3.2.D
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3.1. Proof of the main result. We follow an argument similar to that used in [11, The-
orem 3] in conjunction with novel results shown later. Recalling that ∆P\ell = ∆P\ell ,1 + ∆P\ell ,2,
we have

V[∆P\ell ] \leq E[| ∆P\ell | 
2] \leq 2E[| ∆P\ell ,1| 

2] + 2E[| ∆P\ell ,2| 
2].

We shall see later, in Remark 3.10, that the first term on the right-hand side is ofO(2 - min(p,4)\ell /2),
which decays no slower than the desired order 2 - (3p/(2p+2))\ell for any p \geq 2. Thus it suffices to
prove that the second term is of O(2 - (3p/(2p+2))\ell ).

For p as given in Assumption 3.4, let us define \epsilon = 2 - (p/(2p+2))\ell and consider the events

A \equiv 

\biggl\{ 

min
y\in K

\| Y  - y\| \leq \epsilon 

\biggr\} 

,

B \equiv 
\bigcup 

d\in D

\biggl\{ 

max
\Bigl( 

| gd
(a)  - Gd| , | gd

(b)  - Gd| , | gd  - Gd| 
\Bigr) 

\geq 
1

2
c2\epsilon 

\biggr\} 

,

where c2 is as defined in Assumption 3.3.
For an event E, let 1E denote the indicator function, which is 1 if \omega \in E and zero

otherwise, and let Ec denote the complement of E. By using Hölder’s inequality, we have

E[| ∆P\ell ,2| 
2] = E[| ∆P\ell ,2| 

21A\cup B] + E[| ∆P\ell ,2| 
21Ac\cap Bc ]

\leq (E[| ∆P\ell ,2| 
p])2/p(E[1

p/(p - 2)
A\cup B ])(p - 2)/p + E[| ∆P\ell ,2| 

21Ac\cap Bc ]

\leq (E[| ∆P\ell ,2| 
p)2/p(P[A] + P[B])(p - 2)/p + E[| ∆P\ell ,2| 

21Ac\cap Bc ].

In the following we show bounds on E[| ∆P\ell ,2| 
p], P[A] + P[B], and E[| ∆P\ell ,2| 

21Ac\cap Bc ], respec-
tively.

Bound on E[|∆P\ell ,2|
\bfitp ]. Noting that the inequality

| max
d\in D

ad  - max
d\in D

bd| \leq max
d\in D

| ad  - bd| \leq 
\sum 

d\in D

| ad  - bd| 

holds for any two | D| -dimensional vectors with component ad, bd and applying Jensen’s in-
equality twice, we get

| ∆P\ell ,2| 
p =

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2

\biggl( 

max
d\in D

gd
(a) +max

d\in D
gd

(b)

\biggr) 

 - max
d\in D

gd

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2

\biggl( 

max
d\in D

gd
(a)  - max

d\in D
Gd

\biggr) 

+
1

2

\biggl( 

max
d\in D

gd
(b)  - max

d\in D
Gd

\biggr) 

 - 

\biggl( 

max
d\in D

gd  - max
d\in D

Gd

\biggr) \bigm| 

\bigm| 

\bigm| 

\bigm| 

p

\leq 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\sum 

d\in D

\biggl( 

1

2

\bigm| 

\bigm| 

\bigm| 
gd

(a)  - Gd

\bigm| 

\bigm| 

\bigm| 
+

1

2

\bigm| 

\bigm| 

\bigm| 
gd

(b)  - Gd

\bigm| 

\bigm| 

\bigm| 
+ | gd  - Gd| 

\biggr) 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p

\leq | D| p - 1
\sum 

d\in D

\biggl( 

1

2

\bigm| 

\bigm| 

\bigm| gd
(a)  - Gd

\bigm| 

\bigm| 

\bigm| 
+

1

2

\bigm| 

\bigm| 

\bigm| gd
(b)  - Gd

\bigm| 

\bigm| 

\bigm| 
+ | gd  - Gd| 

\biggr) p

\leq (2| D| )p - 1
\sum 

d\in D

\biggl( 

1

2

\bigm| 

\bigm| 

\bigm| gd
(a)  - Gd

\bigm| 

\bigm| 

\bigm| 

p
+

1

2

\bigm| 

\bigm| 

\bigm| gd
(b)  - Gd

\bigm| 

\bigm| 

\bigm| 

p
+ | gd  - Gd| 

p

\biggr) 

.
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It follows from the first assertion of Lemma 3.9 that

E

\Bigl[ \bigm| 

\bigm| 

\bigm| gd
(a)  - Gd

\bigm| 

\bigm| 

\bigm| 

p\Bigr] 

,E
\Bigl[ \bigm| 

\bigm| 

\bigm| gd
(b)  - Gd

\bigm| 

\bigm| 

\bigm| 

p\Bigr] 

,E [| gd  - Gd| 
p] = O(2 - p\ell /2)

for any d \in D. This leads to a bound on E[| ∆P\ell ,2| 
p] of order 2 - p\ell /2.

Bound on P[A] + P[B]. It is straightforward from Assumption 3.2 that P[A] \leq c0\epsilon .
Regarding a bound on P[B], we have

P[B] \leq 
\sum 

d\in D

\biggl( 

P[| gd
(a)  - Gd| \geq 

1

2
c2\epsilon ] + P[| gd

(b)  - Gd| \geq 
1

2
c2\epsilon ] + P[| gd  - Gd| \geq 

1

2
c2\epsilon ]

\biggr) 

.

Using the Markov inequality, we obtain

P

\biggl[ 

| gd  - Gd| \geq 
1

2
c2\epsilon | Y

\biggr] 

= P

\biggl[ 

| gd  - Gd| 
p \geq 

1

2p
cp2\epsilon 

p | Y

\biggr] 

\leq 
2p

cp2\epsilon 
p
E[| gd  - Gd| 

p | Y ].

Taking an outer expectation with respect to Y , the tower property provides

P

\biggl[ 

| gd  - Gd| \geq 
1

2
c2\epsilon 

\biggr] 

= EY

\biggl[ 

P

\biggl[ 

| gd  - Gd| \geq 
1

2
c2\epsilon | Y

\biggr] \biggr] 

\leq 
2p

cp2\epsilon 
p
E[| gd  - Gd| 

p].

The first assertion of Lemma 3.9 states that the expectation on the rightmost side above is of
order 2 - p\ell /2. Since similar bounds exist for P[| gd

(a)  - Gd| \geq 
1
2c2\epsilon ] and P[| gd

(b)  - Gd| \geq 
1
2c2\epsilon ],

this proves a bound on P[A] + P[B] of order

max(\epsilon , \epsilon  - p2 - p\ell /2) = 2 - (p/(2p+2))\ell .

Bound on E[|∆P\ell ,2|
21\bfitA c∩\bfitB c]. Finally let us consider the case where the event Ac \cap Bc

happens. Namely we have miny\in K \| Y  - y\| > \epsilon , and for any d \in D

| gd
(a)  - Gd| , | gd

(b)  - Gd| , | gd  - Gd| <
1

2
c2\epsilon .

For a particular value of Y , for any decision d \not = dopt(Y ), Assumption 3.3 ensures

gdopt  - gd = (Gdopt  - Gd) + (gdopt  - Gdopt) - (gd  - Gd)

> min(c1, c2\epsilon ) - 
1

2
c2\epsilon  - 

1

2
c2\epsilon = min(c1  - c2\epsilon , 0).

Therefore, for a sufficiently large \ell , we have c1  - c2\epsilon > 0, and so gdopt  - gd > 0. This means
that argmaxd\in D gd = dopt, that is, we shall always choose an optimal decision, and the same
for gd

(a) and gd
(b). It follows that

∆P\ell ,2 =
1

2

\biggl( 

max
d\in D

gd
(a) +max

d\in D
gd

(b)

\biggr) 

 - max
d\in D

gd =
1

2

\Bigl( 

gdopt
(a) + gdopt

(b)
\Bigr) 

 - gdopt .D
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We see from the second assertion of Lemma 3.9 with q = 2 that the expectation of the square of
the rightmost side above is of order 2 - min(p,4)\ell /2, which proves a bound on E[| ∆P\ell ,2| 

21Ac\cap Bc ].

Altogether, V[∆P\ell ] is upper bounded as

V[∆P\ell ] \leq 2E[| ∆P\ell ,1| 
2] + 2E[| ∆P\ell ,2| 

2]

= O(2 - min(p,4)\ell /2) +O(2 - \ell )\times O(2 - (p - 2)\ell /(2p+2)) +O(2 - min(p,4)\ell /2)

= O(2 - (3p/(2p+2))\ell ).

Since the bound on E[| ∆P\ell | ] can be proven in a similar way, we omit the proof.

3.2. Auxiliary results. Before stating necessary auxiliary results, let us first recall the
following fact. The proof can be found in [11, Lemma 1].

Lemma 3.8. Let X be a real-valued random variable with mean zero, and let XN be an

average of N i.i.d. samples of X. If E[| X| p] < \infty for p \geq 2, there exists a constant Cp > 0
depending only on p such that

E[| XN | p] \leq Cp
E[| X| p]

Np/2
and P[| XN | > c] \leq Cp

E[| X| p]

cpNp/2
.

Lemma 3.9. If Assumptions 3.1 and 3.4 are satisfied, then for any d \in D we have

E [| gd  - Gd| 
q] = O(2 - q\ell /2) for any 1 \leq q \leq p

and

E

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2

\Bigl( 

gd
(a) + gd

(b)
\Bigr) 

 - gd

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q\biggr] 

= O(2 - min(p,2q)\ell /2) for any 1 \leq q \leq p,

where p is as defined in Assumption 3.4.

Proof. Note that because of the fact that the same i.i.d. samples of \theta are used both in
the denominator and numerator of gd

(a), gd
(b), gd, respectively, it follows from Assumption 3.1

that | gd
(a)| , | gd

(b)| , | gd| \leq Fmax. Also we have

| Fd(Y )| \leq FmaxE\theta [\rho (Y | \theta )] = Fmax\rho (Y ).

For the first assertion, we give a proof only for q = p, since the result for q < p follows
immediately from Hölder’s inequality.

We define an extreme event E as

E :

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

>
1

2

and then
E[| gd  - Gd| 

p] = E[| gd  - Gd| 
p1E ] + E[| gd  - Gd| 

p1Ec ].

For the first term, due to Hölder’s inequality, the tower property of expectation, and
Lemma 3.8, we have

E[| gd  - Gd| 
p1E ] \leq (2Fmax)

p
P[E]

\leq 22p - p\ell /2M
 - p/2
0 CpF

p
maxEY

\biggl[ 

E\theta 

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \theta )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p\biggr] \biggr] 

.(3.1)

D
o
w

n
lo

ad
ed

 1
0
/1

6
/2

0
 t

o
 8

1
.1

1
0
.2

1
4
.1

5
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

1248 T. HIRONAKA, M. B. GILES, T. GODA, AND H. THOM

For the second term, when
\bigm| 

\bigm| \rho (Y | \cdot )/\rho (Y ) - 1
\bigm| 

\bigm| \leq 1/2 we have

| gd  - Gd| 
p \leq 2p - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

fd(\cdot )\rho (Y | \cdot )

\rho (Y | \cdot )
 - 

Fd(Y )

\rho (Y | \cdot )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p

+ 2p - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

Fd(Y )

\rho (Y | \cdot )
 - 

Fd(Y )

\rho (Y )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p

\leq 
22p - 1

\rho (Y )p

\bigm| 

\bigm| 

\bigm| 
fd(\cdot )\rho (Y | \cdot ) - Fd(Y )

\bigm| 

\bigm| 

\bigm| 

p
+ 22p - 1F p

max

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p

,

and therefore, again by Lemma 3.8,

E[| gd  - Gd| 
p1Ec ] \leq 22p - 1 - p\ell /2M

 - p/2
0 CpEY

\biggl[ 

E\theta 

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

fd(\theta )\rho (Y | \theta ) - Fd(Y )

\rho (Y )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p\biggr] \biggr] 

+ 22p - 1 - p\ell /2M
 - p/2
0 CpF

p
maxEY

\biggl[ 

E\theta 

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \theta )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p\biggr] \biggr] 

.(3.2)

Note that
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \theta )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p

\leq max

\biggl( 

\rho (Y | \theta )

\rho (Y )
, 1

\biggr) p

\leq 

\biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) p

+ 1,

which gives

EY

\biggl[ 

E\theta 

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \theta )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p\biggr] \biggr] 

\leq EY

\biggl[ 

E\theta 

\biggl[ \biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) p\biggr] \biggr] 

+ 1.(3.3)

Similarly,

| fd(\theta )\rho (Y | \theta ) - Fd(Y )| p \leq 2p - 1 (| fd(\theta )\rho (Y | \theta )| p + | Fd(Y )| p)

\leq 2p - 1F p
max(\rho (Y | \theta )p + \rho (Y )p),

which gives

EY

\biggl[ 

E\theta 

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

fd(\theta )\rho (Y | \theta ) - Fd(Y )

\rho (Y )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p\biggr] \biggr] 

\leq 2p - 1F p
max

\biggl( 

EY

\biggl[ 

E\theta 

\biggl[ \biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) p\biggr] \biggr] 

+ 1

\biggr) 

.(3.4)

Combining the bounds in (3.1) and (3.2), and then using (3.3) and (3.4), we get

E[ | gd  - Gd| 
p] \leq (3 \cdot 22p - 1+23p - 2)2 - p\ell /2M

 - p/2
0 CpF

p
max

\biggl( 

EY

\biggl[ 

E\theta 

\biggl[ \biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) p\biggr] \biggr] 

+ 1

\biggr) 

,

which completes the proof of the first assertion.
For the second assertion we define the extreme event E as

E : max

\Biggl( \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )
(a)

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

,

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )
(b)

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\Biggr) 

>
1

2

and then

E

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2

\Bigl( 

gd
(a) + gd

(b)
\Bigr) 

 - gd

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q\biggr] 

= E

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2

\Bigl( 

gd
(a) + gd

(b)
\Bigr) 

 - gd

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

1E

\biggr] 

+ E

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2

\Bigl( 

gd
(a) + gd

(b)
\Bigr) 

 - gd

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

1Ec

\biggr] 
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For the first term, following similar reasoning to before, we have

E

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2

\Bigl( 

gd
(a) + gd

(b)
\Bigr) 

 - gd

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

1E

\biggr] 

\leq (2Fmax)
q

\Biggl( 

P

\Biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )
(a)

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

> 1
2

\Biggr] 

+ P

\Biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )
(b)

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

> 1
2

\Biggr] \Biggr) 

\leq 2p+q+1Cp2
 - p(\ell  - 1)/2M

 - p/2
0 F q

max

\biggl( 

EY

\biggl[ 

E\theta 

\biggl[ \biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) p\biggr] \biggr] 

+ 1

\biggr) 

.(3.5)

For the second term, we use the antithetic properties (2.2) and (2.3) to give

1

2

\Bigl( 

gd
(a) + gd

(b)
\Bigr) 

 - gd =
1

2

\Bigl( 

fd(\cdot )\rho (Y | \cdot )
(a)

 - Fd(Y )
\Bigr) 

\Biggl( 

1

\rho (Y | \cdot )
(a)

 - 
1

\rho (Y )

\Biggr) 

+
1

2

\Bigl( 

fd(\cdot )\rho (Y | \cdot )
(b)

 - Fd(Y )
\Bigr) 

\Biggl( 

1

\rho (Y | \cdot )
(b)

 - 
1

\rho (Y )

\Biggr) 

 - 
\Bigl( 

fd(\cdot )\rho (Y | \cdot ) - Fd(Y )
\Bigr) 

\Biggl( 

1

\rho (Y | \cdot )
 - 

1

\rho (Y )

\Biggr) 

+
1

2

Fd(Y )

\rho (Y )

\Biggl( 

\rho (Y )

\rho (Y | \cdot )
(a)

 - 2 +
\rho (Y | \cdot )

(a)

\rho (Y )

\Biggr) 

+
1

2

Fd(Y )

\rho (Y )

\Biggl( 

\rho (Y )

\rho (Y | \cdot )
(b)

 - 2 +
\rho (Y | \cdot )

(b)

\rho (Y )

\Biggr) 

 - 
Fd(Y )

\rho (Y )

\Biggl( 

\rho (Y )

\rho (Y | \cdot )
 - 2 +

\rho (Y | \cdot )

\rho (Y )

\Biggr) 

.

If | \rho (Y | \cdot )
(a)

/\rho (Y ) - 1| < 1/2 and | \rho (Y | \cdot )
(b)
/\rho (Y ) - 1| < 1/2, it follows that | \rho (Y | \cdot )/\rho (Y ) - 

1| < 1/2, and therefore by applying Jensen’s inequality we obtain

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2

\Bigl( 

gd
(a) + gd

(b)
\Bigr) 

 - gd

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

\leq 22q - 3
\bigm| 

\bigm| 

\bigm| fd(\cdot )\rho (Y | \cdot )
(a)

 - Fd(Y )
\bigm| 

\bigm| 

\bigm| 

q
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

\rho (Y | \cdot )
(a)

 - 
1

\rho (Y )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

+ 22q - 3
\bigm| 

\bigm| 

\bigm| 
fd(\cdot )\rho (Y | \cdot )

(b)
 - Fd(Y )

\bigm| 

\bigm| 

\bigm| 

q
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

\rho (Y | \cdot )
(b)

 - 
1

\rho (Y )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

+ 22q - 2
\bigm| 

\bigm| 

\bigm| fd(\cdot )\rho (Y | \cdot ) - Fd(Y )
\bigm| 

\bigm| 

\bigm| 

q
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

1

\rho (Y | \cdot )
 - 

1

\rho (Y )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

+ 22q - 3 | Fd(Y )| q

\rho (Y )q

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y )

\rho (Y | \cdot )
(a)

 - 2 +
\rho (Y | \cdot )

(a)

\rho (Y )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

+ 22q - 3 | Fd(Y )| q

\rho (Y )q

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y )

\rho (Y | \cdot )
(b)

 - 2 +
\rho (Y | \cdot )

(b)

\rho (Y )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q
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+ 22q - 2 | Fd(Y )| q

\rho (Y )q

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y )

\rho (Y | \cdot )
 - 2 +

\rho (Y | \cdot )

\rho (Y )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

\leq 23q - 3
\bigm| 

\bigm| 

\bigm| 
fd(\cdot )\rho (Y | \cdot )

(a)
 - Fd(Y )

\bigm| 

\bigm| 

\bigm| 

q
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )
(a)

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

1

\rho (Y )q

+ 23q - 3
\bigm| 

\bigm| 

\bigm| fd(\cdot )\rho (Y | \cdot )
(b)

 - Fd(Y )
\bigm| 

\bigm| 

\bigm| 

q
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )
(b)

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q

1

\rho (Y )q

+ 23q - 2
\bigm| 

\bigm| 

\bigm| 
fd(\cdot )\rho (Y | \cdot ) - Fd(Y )

\bigm| 

\bigm| 

\bigm| 

q
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q
1

\rho (Y )q

+ 23q - 3| Fd(Y )| q

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )
(a)

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2q

1

\rho (Y )q

+ 23q - 3| Fd(Y )| q

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )
(b)

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2q

1

\rho (Y )q

+ 23q - 2| Fd(Y )| q

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2q
1

\rho (Y )q
.

Looking at the third term, if p \geq 2q, then Hölder’s inequality, together with Lemma 3.8,
(3.3), and (3.4), gives

E

\Biggl[ 

\bigm| 

\bigm| 

\bigm| fd(\cdot )\rho (Y | \cdot ) - Fd(Y )
\bigm| 

\bigm| 

\bigm| 

q
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q
1

\rho (Y )q

\Biggr] 

\leq 

\left( 

 E

\biggl[ 

\bigm| 

\bigm| 

\bigm| fd(\cdot )\rho (Y | \cdot ) - Fd(Y )
\bigm| 

\bigm| 

\bigm| 

2q
/\rho (Y )2q

\biggr] 

E

\left[ 

 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2q
\right] 

 

\right) 

 

1/2

\leq 2q - 1/2C2q2
 - q\ell M - q

0 F q
max

\Biggl( 

EY

\Biggl[ 

E\theta 

\Biggl[ 

\biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) 2q
\Biggr] \Biggr] 

+ 1

\Biggr) 

.

If 2 \leq p < 2q, then we need to modify the argument slightly, using Hölder’s inequality when
q < p and a simple identity when q = p, to obtain

E

\Biggl[ 

\bigm| 

\bigm| 

\bigm| fd(\cdot )\rho (Y | \cdot ) - Fd(Y )
\bigm| 

\bigm| 

\bigm| 

q
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q
1

\rho (Y )q
1Ec

\Biggr] 

\leq 2p - 2q
E

\Biggl[ 

\bigm| 

\bigm| 

\bigm| fd(\cdot )\rho (Y | \cdot ) - Fd(Y )
\bigm| 

\bigm| 

\bigm| 

q
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p - q
1

\rho (Y )q

\Biggr] 

\leq 2p - 2q
\Bigl( 

E

\Bigl[ \bigm| 

\bigm| 

\bigm| fd(\cdot )\rho (Y | \cdot ) - Fd(Y )
\bigm| 

\bigm| 

\bigm| 

p
/\rho (Y )p

\Bigr] \Bigr) q/p
\Biggl( 

E

\Biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

p\Biggr] \Biggr) 1 - q/p

\leq 2p - q - q/pCp2
 - p\ell /2M

 - p/2
0 F q

max

\biggl( 

EY

\biggl[ 

E\theta 

\biggl[ \biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) p\biggr] \biggr] 

+ 1

\biggr) 

.D
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Looking at the sixth term, by Lemma 3.8 and (3.3) we obtain

E

\left[ 

 | Fd(Y )| q

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2q
1

\rho (Y )q

\right] 

 

\leq C2q2
 - q\ell M - q

0 F q
max

\Biggl( 

EY

\Biggl[ 

E\theta 

\Biggl[ 

\biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) 2q
\Biggr] \Biggr] 

+ 1

\Biggr) 

,

when p \geq 2q, while for 2 \leq p < 2q we get

E

\left[ 

 | Fd(Y )| q

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\rho (Y | \cdot )

\rho (Y )
 - 1

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2q
1

\rho (Y )q
1Ec

\right] 

 

\leq 2p - 2qCp2
 - p\ell /2M

 - p/2
0 F q

max

\biggl( 

EY

\biggl[ 

E\theta 

\biggl[ \biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) p\biggr] \biggr] 

+ 1

\biggr) 

.

The other terms can be treated similarly, and therefore, adding in the bound from (3.5),
we determine that there exists a constant C, dependent only on p and q, such that

E

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

1

2

\Bigl( 

gd
(a) + gd

(b)
\Bigr) 

 - gd

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q\biggr] 

\leq C2 - min(p,2q)\ell /2M
 - min(p,2q)/2
0 F q

max

\Biggl( 

EY

\Biggl[ 

E\theta 

\Biggl[ 

\biggl( 

\rho (Y | \theta )

\rho (Y )

\biggr) min(p,2q)
\Biggr] \Biggr] 

+ 1

\Biggr) 

,

completing the proof of the second assertion.

Remark 3.10. It follows from Assumption 3.1 that
\bigm| 

\bigm| 

\bigm| 

\bigm| 

max
d\in D

fd(\theta )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\leq Fmax

for any \theta . Given that the antithetic property (2.4) holds, the same proof strategy leads to

E[| ∆P\ell ,1| 
q] = E

\biggl[ \bigm| 

\bigm| 

\bigm| 

\bigm| 

gmax  - 
1

2

\Bigl( 

g(a)max + g(b)max

\Bigr) 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

q\biggr] 

= O(2 - min(p,2q)\ell /2),

where p is as defined in Assumption 3.4.

Remark 3.11. Without the antithetic technique, the best that can be deduced from Lem-
ma 3.9 is that

E

\Bigl[ 

| gd
(a)  - gd| 

q
\Bigr] 

= E

\Bigl[ 

| gd
(a)  - Gd  - gd +Gd| 

q
\Bigr] 

\leq 2q - 1
E

\Bigl[ 

| gd
(a)  - Gd| 

q
\Bigr] 

+ 2q - 1
E [| gd  - Gd| 

q] = O(2 - q\ell /2)

for 1 \leq q \leq p. This leads to the variance of the nonantithetic correction ∆P\ell = P\ell  - P
(a)
\ell  - 1

being O(2 - \ell ). Since we now have \beta = 1 in Theorem 2.1, the nonantithetic MLMC estimator
is in the second regime regardless of the value of p \geq 2. The resulting total computational
complexity is thus O(\varepsilon  - 2(log \varepsilon  - 1)2), which is not optimal.D
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4. Numerical experiments.

4.1. Problem setting. To demonstrate the efficiency of our MLMC estimator, we conduct
some numerical experiments using a modified version of the model originally introduced in
[1] and explored further in [25]. The original version of this artificial cost-effectiveness model
compares a new treatment to some standard of care on the prevention of a critical event,
denoted by E. We extend this to three decision options, D = \{ 1, 2, 3\} . We also modify
the model to include correlations between odds ratios (OR) of the critical events (ORE,2,
ORE,3), treatment costs (CT,2, CT,3), and probabilities of side effects (PSE,2, PSE,3). The
resulting vector \theta consists of 12 random variables, L, QE , QSE , CE , CSE , CT,2, CT,3, PE,1,
ORE,2, ORE,3, PSE,2, PSE,3. The model contains only three constants, CT,1, PSE,1, \lambda , while
two parameters, PE,2 and PE,3, are defined as functions of PE,1, ORE,2 and PE,1, ORE,3,
respectively. We refer the reader to Table 1 for a detailed description of these model inputs.
For each treatment d \in D, the net benefit is defined by

fd(\theta ) = PSE,dPE,d

\biggl[ 

\lambda 

\biggl( 

L
1 +QE

2
 - QSE

\biggr) 

 - (CSE + CE)

\biggr] 

+ PSE,d(1 - PE,d) [\lambda (L - QSE) - CSE ]

+ (1 - PSE,d)PE,d

\biggl[ 

\lambda L
1 +QE

2
 - CE

\biggr] 

+ (1 - PSE,d)(1 - PE,d)\lambda L - CT,d.

This net benefit, as in [1], is multilinear, with the consequence that expected values of random
variables can be plugged in to form estimates of the EVSI. However, the additional decision
options, correlations, and larger number of parameters make the problem more realistic, and
computationally challenging, than the original version. Repeating the standard Monte Carlo
estimation with 108 i.i.d. samples of \theta 10 times, EVPI is estimated as 4,063.5 with the standard
error equal to 0.66.

Our final modification to improve practical relevance is to assume an annual population
that experiences this disease as 2,500, a technology horizon of 10 years, and an annual discount
factor of 1.035, giving a total discounted population that will benefit from sampling as 21,519.
Estimated per-person EVSI is multiplied by this factor to get a population EVSI which can
be compared with experiment costs.

We consider three hypothetical experiment designs for which we want to estimate the
EVSI. Unlike [1, 25], all experiments inform more than one parameter, and we consider cases
where the parameters being studied (subset of \theta informed by sample information Y ) are
correlated with those not being studied (subset of \theta not informed by Y ). These modifications
again improve the practical relevance of the example.

1. An observational study on side effects in a cohort of np = 100 patients on treat-
ment d = 2, which informs three parameters QSE , CSE , and PSE,2. The sam-
ple information Y in this scenario, denoted by Scenario 1, is defined as the three-
dimensional vector (Y1, Y2, Y3), where Y1 \sim N(QSE , 4/np), Y2 \sim N(CSE , 10

4/np), and
Y3 \sim Binomial(np, PSE,2). The hypothetical study costs are $50,000 for setup and
$250 for each patient giving a total of $75,000.D
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Table 1

Model inputs involved in our experiments. Note that log-normal(µ,Σ) and logit-normal(µ,Σ) denote the

log-normal and logit-normal distributions, respectively, with µ and Σ being the mean vector and the covariance

matrix of the corresponding normal distribution, respectively. The logit function logit(p) is the transformation

mapping probability p to the logarithm of the odds log(p/(1− p)).

Description Parameter Distribution

Lifetime remaining L N(30, 25)

QALY after critical event, per year QE logit-normal (0.6, 1/36)

QALY decrement due to side effects QSE N(0.7, 0.01)

Cost of critical event CE N(2× 105, 108)

Cost of side effect CSE N(105, 108)

Cost of treatment d = 1 CT,1 0 (constant)

Cost of treatments d = 2, 3 CT,d N

\biggl( \biggl( 

1.5× 104

2× 104

\biggr) 

,

\biggl( 

300 100
100 500

\biggr) \biggr) 

Probability of critical event PE,1 Beta(15, 85)
on treatment d = 1

Odds ratios of critical event ORE,d log-normal

\biggl( \biggl( 

−1.5
−1.75

\biggr) 

,

\biggl( 

0.11 0.02
0.02 0.06

\biggr) \biggr) 

relative to treatment d = 1
(PE,d/(1− PE,d))/(PE,1/(1− PE,1))

Probability of critical event PE,d Derived from
on treatments d = 2, 3 PE,1 and ORE,d

Probability of side effect PSE,1 0 (constant)
on treatment d = 1

Probability of side effect PSE,d logit-normal

\biggl( \biggl( 

−1.4
−1.1

\biggr) 

,

\biggl( 

0.10 0.05
0.05 0.25

\biggr) \biggr) 

on treatments d = 2, 3

Monetary value of 1 QALY λ $75,000 (constant)

2. A small two-arm randomized controlled trial (RCT) comparing treatments d = 1
and d = 3 with np = 100 patients, which informs three parameters ORE,3, CT,3,
and PSE,3. The sample information Y in this scenario, denoted by Scenario 2, is
defined as the three-dimensional vector (Y1, Y2, Y3), where Y1 \sim N(log(ORE,3), 4/np),
Y2 \sim N(CT,3, 10

4/np), and Y3 \sim Binomial(np, PSE,3). This hypothetical RCT costs
$200,000 for setup plus $1000 for each randomized patient, giving a total of $400,000.

3. A larger multicenter two-arm randomized controlled trial comparing treatments d = 1
and d = 3 with np = 1000 patients, which informs six parameters PE,1, ORE,3, CT,3,
PSE,3, CSE , and CE . The sample information Y in this scenario, denoted by Scenario 3,
is defined as the six-dimensional vector (Y1, . . . , Y6), where Y1 \sim Binomial(np, PE,1),
Y2 \sim N(log(ORE,3), 4/np), Y3 \sim N(CT,3, 10

4/np), Y4 \sim Binomial(np, PSE,3), Y5 \sim 
N(CSE , 10

4/np), and Y6 \sim N(CE , 10
4/np). This hypothetical multicenter RCT costs

$200,000 for setup, $1500 for each randomized patient, and $50,000 for each additional
100 patients added to the study (owing to the cost of establishing a new center). The
total cost is $4,200,000.

4.2. Results and discussion. Throughout our experiments below, we always set M0 = 16.
Here we refer the reader to [12, p. 516] for the discussion on how to choose M0 to minimize
the total complexity of the MLMC estimator. Except for PSE,2 for Scenario 1 and PSE,3 for
Scenarios 2 and 3, the exact posterior distributions of the relevant random input parametersD
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given Y are available and used as importance distributions. Regarding PSE,2 for Scenario 1,
we approximate the prior distribution by the beta distribution with the same mean and
variance, for which the exact posterior distribution given Y3 is available and can be used as
an importance distribution. We employ the same approach for PSE,3 for Scenarios 2 and 3.

Following the MLMC implementation by Giles [9, section 3], we first conduct convergence
tests on a sequence of the correction variables ∆P\ell and then estimate EVPI - EVSI for various
values of the root-mean-square accuracy \varepsilon . The required computational costs for our MLMC
estimator are compared with those for the standard nested Monte Carlo estimator of the form

1

N

N
\sum 

n=1

P
(n)
L

for the same maximum level L with the MLMC estimator. Here we note that this nested Monte
Carlo estimator is different from that given in (1.5). We also note that function approximation
techniques [25, 14, 15] may be applied to this example. However, performance comparison
with the nested MCMC estimator or function approximation-based estimators is beyond the
scope of this article and will be addressed in future work.

The results for Scenario 1 are shown in Figure 1. In the left top panel, the variances of
both P\ell and ∆P\ell are plotted as functions of the level \ell . Here the variances are estimated
empirically by using 105 i.i.d. samples at each level. While the variance of P\ell takes an almost
constant value, the variance of ∆P\ell decreases geometrically as the level increases. The linear
regression of the data for the range 2 \leq \ell \leq 8 provides an estimation of \beta as 1.62, which
is slightly better than what we expect from the theoretical analysis. Using the same i.i.d.
samples of P\ell and ∆P\ell , we also estimate their absolute mean values, which are plotted as
functions of \ell in the right top panel. The absolute mean value of P\ell takes an almost constant
value, whereas the absolute mean value of ∆P\ell decreases geometrically as the level increases.
The linear regression of the data for the range 2 \leq \ell \leq 8 provides an estimation of \alpha as 1.16,
which again is slightly better than our theoretical result. These convergence results confirm
that our MLMC estimator is in the first regime of Theorem 2.1 for this scenario.

For a given root-mean-square accuracy \varepsilon , the necessary maximum level L and the cor-
responding numbers of samples N\ell for \ell = 0, . . . , L are estimated by using [9, Algorithm 1].
Each line in the left bottom panel of Figure 1 shows the values of N\ell for a particular value
of \varepsilon \in \{ 0.5, 1, 2, 5, 10, 20\} . It can be seen that the required maximum level L increases as \varepsilon 
decreases so that the bias becomes small enough. For each fixed \varepsilon , the number of samples N\ell 

deceases geometrically with the level, and most of the samples are allocated on the lower levels.
In fact, the optimal allocation of N\ell is given by N\ell \propto \varepsilon  - 22 - (\beta +\gamma )\ell /2 [9], and our experimental
results agree quite well with this.

It should be noted that the values of both \alpha and \beta are estimated on the fly as the compu-
tation is performed, with the value of \alpha being used to determine when the bias E[P  - PL] has
converged sufficiently as L increases. Further details on the MLMC software implementation
are available in [9].

The total computational cost for the MLMC estimator is given by the sum
\sum L

\ell =0 2
\ell N\ell =:

CMLMC, and it is expected from Theorem 2.1 and the above convergence results that \varepsilon 2CMLMC

is independent of \varepsilon . On the other hand, the total computational cost for the nested MonteD
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Figure 1. MLMC results for Scenario 1.

Carlo estimator, denoted by CNMC, is of order \varepsilon 
 - 2 - 1/\alpha theoretically, so that \varepsilon 2CNMC should

be proportional to \varepsilon  - 1/\alpha and depends strongly on \varepsilon . Based on this observation, the values of
\varepsilon 2CMLMC and \varepsilon 2CNMC are plotted as functions of \varepsilon with dashed and solid lines, respectively,
in the right bottom panel. As expected, \varepsilon 2CNMC increases significantly as \varepsilon decreases, while
\varepsilon 2CMLMC takes an almost constant value. As a consequence, the superiority of the MLMC
estimator becomes more remarkable for smaller \varepsilon . For the smallest value \varepsilon = 0.5 in this
experiment, the MLMC estimator achieves computational saving of factor 52. This factor is
expected to get even larger if we set a smaller value for \varepsilon .

We obtain similar results for Scenarios 2 and 3 as shown in Figures 2 and 3, respectively.
The estimated values of \alpha and \beta are 0.99 and 1.48, respectively, for both these scenarios, which
agrees quite well with our theoretical finding. The MLMC estimator achieves computational
saving of factors 35 and 118 for the smallest value \varepsilon = 0.5. The estimates of the difference
EVPI - EVSI are 4,039, 3,033, and 2,277 for the three scenarios, respectively, with the root-
mean-square accuracy equal to 0.5. Subtracting these values from the estimate of EVPI, whichD
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Figure 2. MLMC results for Scenario 2.

is 4,064, the per-person EVSI is estimated as 25, 1,031, and 1,787, respectively. Although we
round the estimates to the nearest integers here for simplicity, each EVSI is estimated with
the root-mean-square accuracy at most 0.66+0.5 = 1.06. As comparison, by using the MLMC
estimator for EVPPI [11], the per-person EVPPI for (QSE , CSE , PSE,2), (ORE,3, CT,3, PSE,3),
and (PSE,1, ORE,3, CT,3, PSE,3, CSE , CE) is estimated as 86, 1,400, and 1,914, each of which is
certainly larger than the corresponding EVSI, confirming face validity of our EVSI estimates.

Multiplying the EVSI estimates by the discounted population that will benefit from sam-
pling gives the population EVSI of $537,975, $22,186,089, and $38,454,453 (with the root-
mean-square accuracy at most 1.06\times 21,519 = 22,810) for Scenarios 1, 2, and 3, respectively,
which are all larger than their hypothetical costs and are thus cost-effective. Subtracting
the study costs gives the expected net benefit of sampling (ENBS) [27]. In our three scenar-
ios, the ENBS values are estimated as $462,975, $21,786,089, and $34,254,453, respectively.
The ENBS for the third experiment, the large multicenter randomized controlled trial, is the
highest and is thus the study that should be funded.D

o
w

n
lo

ad
ed

 1
0
/1

6
/2

0
 t

o
 8

1
.1

1
0
.2

1
4
.1

5
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

MLMC ESTIMATION OF THE EXPECTED VALUE OF SAMPLE INFORMATION 1257

Figure 3. MLMC results for Scenario 3.

5. Conclusions. In this paper, we have developed a multilevel Monte Carlo estimator
for EVSI, the expected value of sample information. The key difference from the multilevel
estimation for EVPPI, as studied in [11], is to use Bayes’ theorem directly to rewrite the
expectation with respect to the posterior distribution of input random variables \theta given an
observation Y into the ratio of the expectations with respect to the prior distribution of \theta , and
then to estimate each of the expectations by using the same i.i.d. samples of \theta . As shown in
Lemma 3.9, we prove under Assumptions 3.1 and 3.4 that the nested ratio expectation can be
efficiently estimated by using the antithetic multilevel Monte Carlo estimator. Plugging this
result into a slightly generalized version of [11, Theorem 3], our antithetic multilevel estimator
is shown to achieve a root-mean-square accuracy \varepsilon at a cost of optimal O(\varepsilon  - 2). As mentioned
in Remark 3.11, without the antithetic technique, we can only expect a suboptimal result
for the overall computational complexity. Our theoretical analysis is supported by numerical
experiments.

In future work, following the idea from [3, 12], we will examine the use of an adaptiveD
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number of inner samples for \theta with an aim to bring about further computational savings for
estimating EVSI. For the outer samples of Y which are far away from the decision manifold
K, a smaller number of inner samples than M02

\ell may be sufficient to ensure that

argmax
d\in D

gd = argmax
d\in D

gd
(a) = argmax

d\in D
gd

(b) = dopt

holds with high probability. Thus it is only the outer samples of Y which are close to K that
require great accuracy for estimating the inner conditional expectation. In this way we expect
to reduce the value of \gamma while maintaining the fast decay of E[| ∆P\ell | ] and V[∆P\ell ] as derived
in Theorem 3.6. This should reduce the total computational cost by some constant factor,
approximately independent of the desired accuracy.
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