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Abstract

We show how to extend a recently proposed multi-level Monte Carlo approach to the continuous

time Markov chain setting, thereby greatly lowering the computational complexity needed to compute

expected values of functions of the state of the system to a specified accuracy. The extension is non-

trivial, exploiting a coupling of the requisite processes that is easy to simulate while providing a small

variance for the estimator. Further, and in a stark departure from other implementations of multi-level

Monte Carlo, we show how to produce an unbiased estimator that is significantly less computationally ex-

pensive than the usual unbiased estimator arising from exact algorithms in conjunction with crude Monte

Carlo. We thereby dramatically improve, in a quantifiable manner, the basic computational complexity

of current approaches that have many names and variants across the scientific literature, including the

Bortz-Kalos-Lebowitz algorithm, discrete event simulation, dynamic Monte Carlo, kinetic Monte Carlo,

the n-fold way, the next reaction method, the residence-time algorithm, the stochastic simulation algo-

rithm, Gillespie’s algorithm, and tau-leaping. The new algorithm applies generically, but we also give an

example where the coupling idea alone, even without a multi-level discretization, can be used to improve

efficiency by exploiting system structure. Stochastically modeled chemical reaction networks provide

a very important application for this work. Hence, we use this context for our notation, terminology,

natural scalings, and computational examples.

Keywords: continuous time Markov chain, reaction network, computational complexity, Gillespie, next

reaction method, random time change, tau-leaping, variance.

1 Introduction

This paper concerns the efficient computation of expectations for continuous time Markov chains. Specifi-

cally, we extend the multi-level Monte Carlo approach of Giles [18], with related earlier work by Heinrich

[24], to this setting. We study the wide class of systems that can be written using the random time change

representation of Kurtz [15, Chapter 6] [32] in the form

X(t) = X(0) +

R∑

k=1

Yk

(∫ t

0
λk(X(s))ds

)
ζk, (1)

where the Yk are independent unit-rate Poisson processes, ζk ∈ R
d, and the functions λk are the associated

intensity, or propensity, functions. While such models are used in nearly all branches of the sciences,
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especially in the studies of queues and populations, their use has recently exploded in the biosciences, and

we use this application area for the setting of our work. We will formally introduce these models in Section

2, however we begin by demonstrating how two different models, one from chemistry and one from queuing,

can be represented via (1).

First, consider a linear reversible chemical network

S1

κ1

⇄
κ2

S2,

in which molecules of type S1 convert to molecules of type S2 at rate κ1X1, where X1 is the number of S1

molecules, and molecules of type S2 convert to S1 at rate κ2X2. Here we are assuming the system satisfies

mass action kinetics, see Section 2. The usual stochastic model, written in the framework of (1), is then

X(t) = X(0) + Y1

(∫ t

0
κ1X1(s)ds

)(
−1
1

)
+ Y2

(∫ t

0
κ2X2(s)ds

)(
1
−1

)
.

Next, consider an M/M/k queue in which arrivals are happening at a constant rate λ > 0, and there are

k servers, with each serving at a rate µ > 0. Letting X(t) denote the number of customers in the queue at

time t,

X(t) = X(0) + Y1 (λt)− Y2

(
µ

∫ t

0
(X(s) ∧ k) ds)

)
,

where we define a ∧ b
def
= min{a, b}.

There are multiple algorithms available to compute exact sample paths of continuous time Markov

chains, and, though they are all only slight variants of each other, they go by different names depending upon

the branch of science within which they are being applied. These include the Bortz-Kalos-Lebowitz algo-

rithm, discrete event simulation, dynamic Monte Carlo, kinetic Monte Carlo, the n-fold way, the residence-

time algorithm, the stochastic simulation algorithm, the next reaction method, and Gillespie’s algorithm,

where the final two are the most commonly referred to algorithms in the biosciences. As the computational

cost of exact algorithms scales linearly with the number of jump events (i.e. reactions), such methods be-

come computationally intense for even moderately sized systems. This issue looms large when many sample

paths are needed in a Monte Carlo setting. To address this, approximate algorithms, and notably the class

of algorithms termed “tau-leaping” methods introduced by Gillespie [21] in the chemical kinetic setting,

have been developed with the explicit aim of greatly lowering the computational complexity of each path

simulation while controlling the bias [3, 5, 6, 27, 34, 35].

A common task in the study of stochastic models, and the main focus of this paper, is to approximate

Ef(X(T )), where f is a scalar-valued function of the state of the system which gives a measurement of

interest. For example, the function f could be:

1. f(X(T )) = Xi(T ), yielding estimates for mean values, or

2. f(X(T )) = Xi(T )Xj(t), which can be used with estimates for the mean values to provide estimates

of variances (when i = j) and covariances (when i 6= j), or

3. f(X(T )) = 1{X(T )∈B}, the indicator function giving 1 if the state is in some specified set. Such

functions could also be used to construct histograms, for example, since Ef(X(T )) = P{X(T ) ∈
B}.

Suppose we use an exact simulation algorithm to approximate Ef(X(T )) to O(ǫ) accuracy in the sense

of confidence intervals. To do so, we need to generate n = O(ǫ−2) paths so that the standard deviation of

the usual Monte Carlo estimator,

µn =
1

n

n∑

j=1

f(X[j](T )),
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where X[j] are independent realizations generated via an exact algorithm, is O(ǫ). If we let N > 0 be the

order of magnitude of the number of computations needed to produce a single sample path using an exact

algorithm, then the total computational complexity becomes O(Nǫ−2). (Here, and throughout, we work in

terms of expected computational complexity.)

When N ≫ 1, which is the norm as opposed to the exception in many settings, it may be desirable

to make use of an approximate algorithm. Suppose Ef(X(T )) − Ef(Zh(T )) = O(h), where Zh is an

approximate path generated from a time discretization with a magnitude of h (i.e. we have a weakly order

one method). We first make the trivial observation that the estimator

µn =
1

n

n∑

j=1

f(Zh,[j](T )), (2)

where Zh,[j] are independent paths generated via the approximate algorithm with a step size of h, is an

unbiased estimator of Ef(Zh(T )), and not Ef(X(T )). However, noting that

Ef(X(T ))− µn =
[
Ef(X(T ))− Ef(Zh(T ))

]
+
[
Ef(Zh(T ))− µn

]
, (3)

we see that choosing h = O(ǫ), so that the first term on the right is O(ǫ), and n = O(ǫ−2), so that the

standard deviation is O(ǫ), delivers the desired accuracy. With a fixed cost per time step, the computational

complexity of generating a single such path is O(ǫ−1) and we find that the total computational complexity

is O(ǫ−3). Second order methods lower the computational complexity to O(ǫ−2.5), as h may be chosen to

be O(ǫ1/2).
The discussion above suggests that the choice between exact or approximate path computation should

depend upon whether ǫ−1 or N is the larger value, with an exact algorithm being beneficial when N < ǫ−1.

It is again worth noting, however, that the estimators built from approximate methods are biased, and while

analytic bounds can be provided for that bias [5, 6, 34] these are typically neither sharp nor computable,

and hence of limited practical value. The exact algorithm, on the other hand, trivially produces an unbiased

estimator, so it may be argued that ǫ−1 ≪ N is necessary before it is worthwhile to switch to an approximate

method.

In the diffusive setting the multi-level Monte Carlo approach has the remarkable property of lowering

the standard O(ǫ−3) cost of computing an O(ǫ) accurate Monte Carlo estimate of Ef(X(T )) down to

O(ǫ−2 log(ǫ)2) [18]. Here, we are assuming that a weak order one and strong order 1/2 discretization

method, such as Euler–Maruyama, is used. Further refinements have appeared in [19, 20, 25, 28, 30], and

the same ideas have been applied to partial differential equations [9, 13]. A key motivation for multi-level

Monte Carlo is that optimizing the overall expected value computation is a different, and typically more

relevant, goal than optimizing along each path. Computing an expectation using only an exact algorithm

(or an algorithm with a very fine time-step) can require a large number of paths and an extremely large

number of random variables and state updates. In general, the total number of paths cannot be reduced. The

computational benefits of multi-level Monte Carlo arise because the number of random variables and state

updates needed to approximate the expectation can be drastically reduced by averaging over a very carefully

chosen combination of coordinated realizations, many of which are much cheaper to compute than an exact

realization.

In this paper we extend the multi-level approach to the continuous time Markov chain setting, and espe-

cially the stochastic chemical kinetic setting. The extension involves a non-trivial coupling of the requisite

processes that is easy to simulate while providing a very small variance for the estimator. In fact, showing

the practical importance of the coupling (found in this paper in both equations (18) and (22)), which was

first used in [33] and later in [5] as an analytical tool and subsequently in [1] towards the problem of com-

puting parameter sensitivities, could be viewed as the most important contribution of this paper. Further,
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and in a stark departure from other implementations of multi-level Monte Carlo, we provide a second multi-

level Monte Carlo algorithm which exploits the representation (1) to produce an unbiased estimator giving

the desired accuracy with significantly less computational complexity than an exact algorithm alone. The

authors believe that this unbiased multi-level Monte Carlo will become a standard, generic algorithm for

approximating expected values of continuous time Markov chains, and especially stochastically modeled

chemical reaction networks.

We emphasize that the gains in computational efficiency reported in this work apply to generic models,

and do not rely on any specific structural properties. However, the ideas have the potential to be fine-tuned

further in appropriate cases; for example by exploiting known analytical results or multi-scale partitions.

We provide such an example in Section 9. We also emphasize that our complexity analysis does not involve

asymptotic limits. In particular, we do not consider infinitely large system size, where stochastic effects

vanish, or infinitesimally small discretization time-step, where the benefits of an approximate method evap-

orate.

The outline of the remainder of the paper is as follows. In Section 2, we consider stochastically mod-

eled chemical reaction networks, which is our main application area, discussing how such models can be

represented via (1). In Section 3, we introduce an equivalent model to (1) that incorporates the natural tem-

poral and other quantitative scales. Consideration of such a scaled model is critical for realistic quantitative

comparisons of accuracy versus cost for computational methods, though it plays no role in the actual sim-

ulations. In Section 4, we briefly review Euler’s method, often called tau-leaping in the chemical kinetic

setting. In Section 5, we review the original multi-level Monte Carlo method. In Section 6, we extend

multi-level Monte Carlo to the continuous time Markov chain setting in two different ways. In the first,

exact algorithms are not used and we are led to an efficient method with an unquantified bias. In the second,

exact algorithms play a key role and allow us to develop unbiased estimators. In both cases, we quantify

precisely the generic computational efficiencies obtained, relative to standard Monte Carlo. In Section 7, we

provide the delayed proofs of the main analytical results of Section 6. In Section 8, we briefly discuss some

implementation issues. In Section 9, we provide computational examples demonstrating our main results.

Finally, in Section 10 we provide some brief conclusions.

2 The basic stochastic model for chemical reaction networks

In this section we discuss how the basic stochastic model for chemical reaction networks can be represented

via (1) for suitable choices of λk and ζk. A chemical reaction network consists of the interaction of multiple

species, {S1, . . . , Sd}, through different possible reactions. If we denote by ζk ∈ R
d the change to the state

of the system after each occurrence of the kth reaction, then we have

X(t) = X(0) +
∑

k

Rk(t)ζk,

where Xi(t) gives the number of molecules of Si at time t, and Rk(t) is the number of times the kth reaction

has taken place up until time t. To model Rk, each reaction channel is assumed to have an associated

intensity, or propensity, function, λk : Rd → R≥0, and for the standard Markov chain model, the number of

times that the kth reaction occurs by time t can then be represented by the counting process

Rk(t) = Yk

(∫ t

0
λk(X(s))ds

)
,

where the Yk are independent unit-rate Poisson processes; see, for example, [32], [15, Chapter 6], or the

recent survey [7]. The state of the system then satisfies (1). This formulation is termed a “random time
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change representation” and is equivalent to the “chemical master equation representation” found in much of

the biology and chemistry literature.

A common choice of intensity function for chemical reaction systems, and the one we adopt throughout,

is that of mass action kinetics. Under mass action kinetics, the intensity function for the kth reaction is

λk(x) = κk

d∏

i=1

xi!

(xi − νki)!
1{xi≥νki}, (4)

where νki denotes the number of molecules of Si required for one instance of the reaction. Note that

λk(x) = 0 whenever xi ≤ 0 and νki 6= 0. We note that none of the core ideas of this paper depend upon the

fact that λk are mass-action kinetics and the assumption is made for analytical convenience and historical

consistency.

This model is a continuous time Markov chain in Z
d with generator

(Af)(x) =
∑

k

λk(x)(f(x+ ζk)− f(x)),

where f : Zd → R. Kolmogorov’s forward equation, termed the chemical master equation in much of the

biology literature, for this model is

d

dt
P (x, t|π) =

∑

k

λk(x− ζk)1{x−ζk∈Z
d
≥0

}P (x− ζk, t|π)−
∑

k

λk(x)P (x, t|π),

where for x ∈ Z
d
≥0, P (x, t|π) represents the probability that X(t) = x, conditioned upon the initial distri-

bution π.

Example 1

To solidify notation, we consider the network

S1

κ1

⇄
κ2

S2, 2S2
κ3→ S3,

where we have placed the rate constants κk above or below their respective reactions. For this example,

equation (1) is

X(t) = X(0) + Y1

(∫ t

0
κ1X1(s)ds

)

−1
1
0


+ Y2

(∫ t

0
κ2X2(s)ds

)


1
−1
0




+ Y3

(∫ t

0
κ3X2(s)(X2(s)− 1)ds

)


0
−2
1


 .

Using ζ1 = [−1, 1, 0]T , ζ2 = [1,−1, 0]T , and ζ3 = [0,−2, 1]T , the generator A satisfies

(Af)(x) = κ1x1(f(x+ ζ1)− f(x)) + κ2x2(f(x+ ζ2)− f(x)) + κ3x2(x2 − 1)(f(x+ ζ3)− f(x)).

3 Scaled models

To quantify the relative computational complexity of different methods, it is important that the natural scal-

ings of a model be taken into account. However, we stress that such a change to the representation of the
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model does not change the simulation—we simulate the unscaled model but analyze the methods on an

appropriately scaled version.

Letting N be some natural parameter of the system, which is usually taken to be the abundance of the

most abundant component, we scale the model by setting XN
i = N−αiXi, where αi ≥ 0 is chosen so that

XN
i = O(1). The general form of such a scaled model is

XN (t) = XN (0) +
∑

k

Yk

(
Nγ

∫ t

0
N ckλk(X

N (s))ds

)
ζNk , (5)

where γ and ck are scalars, |ζNk | = O(N−ck), and both XN and λk(X
N ) are of order one. Note that we are

explicitly allowing for |ζNk | to be smaller than N−ck , a point made explicit in and around equation (7). We

note that we should write λN
k , as the resulting intensity function may depend upon N , though we drop the

superscript N for notational convenience. It is now natural to take

N = Nγ
∑

k

N ck

as the order of magnitude for the number of computations required to generate a single path using an exact

algorithm. We will demonstrate how to arrive at such a scaled model for chemical systems below, however

we first discuss the parameter γ.

The parameter γ should be interpreted as being related to the natural time-scale of the model. That is, if

γ > 0 then the shortest timescale in the problem is much smaller than 1, while if γ < 0 it is much larger.

The analysis in this paper is most applicable in the case that γ ≤ 0, for otherwise the error bounds grow

quite rapidly. However, and as will be demonstrated in the examples section, the methods developed can

still behave very well even when γ > 0, pointing out that the present analysis does not fully capture the

behavior of the methods.

We will show how to derive a model of the form (5) in the case of chemical reaction networks with mass

action kinetics. Let N ≫ 1, where N is the abundance of the most abundant species, or some other large

parameter. Suppose we have a model of the form

X(t) = X(0) +
∑

k

Yk

(∫ t

0
λ′
k(X(s))ds

)
ζk,

where the λ′
k are of the form

λ′
k(x) = κ′k

∏

i

xi!

(xi − νki)!
.

For each species, define the normalized abundance by XN
i (t)

def
= N−αiXi(t), where αi ≥ 0 should be

selected so that XN
i = O(1). Here XN

i may be the species number (αi = 0), the species concentration,

or something else. Since the rate constants may also vary over several orders of magnitude, we write

κ′k = κkN
βk where the βk are selected so that κk = O(1). Under the mass-action kinetics assumption, we

have that λ′
k(X(s)) = Nβk+νk·αλk(X

N (s)), where λk is deterministic mass-action kinetics with parameter

κk [29], and we recall that νk is the source vector of the kth reaction. Our model has therefore become

XN (t) = XN (0) +
∑

k

Yk

(∫ t

0
Nβk+νk·αλk(X

N (s))ds

)
ζNk ,

where ζNki
def
= ζki/N

αi (so ζNk is the scaled reaction vector). Define γ ∈ R via

γ
def
= max

{i,k : ζN
ki
6=0}
{βk + νk · α− αi}.

6



Then, for each k define

ck
def
= βk + νk · α− γ. (6)

With these definitions, our chemical model becomes (5).

Returning to the general setting of (5), for each k we define

ρk
def
= min{αi : ζNki 6= 0}, (7)

so that |ζNk | ≈ N−ρk , and define ρ
def
= min{ρk}. We have that ρ ≥ 0, and by the choice of γ we have

ck − ρk ≤ 0 for all k. Further, we point out that γ is chosen so that ck = 0 for at least one k. Also, if

‖∇f‖∞ is bounded, then

N ck(f(x+ ζNk )− f(x)) = O(N ck−ρk),

with ck − ρk = 0 for at least one k. Finally, it is worth explicitly noting that the classical scaling holds if

and only if ck ≡ ρk ≡ 1 and γ = 0 [5, 31].

Remark 1. We emphasise that the models (1) and (5) are equivalent in that XN is the scaled version of

X . The scaling is essentially an analytical tool as now both XN and λk(X
N (·)) are O(1), and in Section

7 it will be shown how the representation (5) is useful in the quantification of the behavior of different

computational methods. However, we stress that the scaling itself plays no role in the actual simulation of

the processes, with the small exception that it can inform the decision for the size of the time step of an

approximate method.

Example 2

To solidify notation, consider the reversible isometry

S1

100
⇄
100

S2

with X1(0) = X2(0) = 10,000. In this case, it is natural to take N = 10,000 and α1 = α2 = 1. As the

rate constants are 100 =
√

10,000, we take β1 = β2 = 1/2 and find that γ = 1/2 and ρ1 = ρ2 = 1. The

normalized process XN
1 satisfies

XN
1 (t) = XN

1 (0)− Y1

(
N1/2N

∫ t

0
XN

1 (s)ds

)
1

N
+ Y2

(
N1/2N

∫ t

0
(2−XN

1 (s))ds

)
1

N
,

where we have used that XN
1 +XN

2 ≡ 2.

Example 3

We provide a deterministic example to further explain the use of the scalings. Consider the ordinary differ-

ential equation

ẋ(t) = λN − µx(t),

where λ, µ = O(1), N ≫ 1, and x0 = O(N). Of course, the solution to this system is

x(t) =
λN

µ
−
(
λN

µ
− x0

)
e−µt.

However, defining xN = N−1x, we see that xN satisfies

ẋN (t) = λ− µxN (t),

7



with xN0 = O(1). Solving yields

xN (t) =
λ

µ
−
(
λ

µ
− xN0

)
e−µt.

Note, then, that solving for either x or xN automatically yields the other after scaling. Also note the

important property that in the ODE governing x, the driving force, λN , was an extremely large value.

However, the forcing function of xN , which is simply λ, was O(1).

Example 3 points out an important feature: the functions λk of (5), together with their derivatives, are

much better behaved, in terms of their magnitude, than the intensity functions of the original model (1).

Therefore, after possibly redefining the kinetics by multiplication with a cutoff function, see, for example,

[5, 6], it is reasonable to assume that each λk is, in fact, a globally Lipschitz function of XN . We formalize

this assumption here.

Running assumption: Throughout, we assume that the functions λk of (5) are globally Lipschitz.

4 A review of Euler’s method in the current setting

We briefly review Euler’s method, termed tau-leaping in the chemical kinetic literature [21], as applied to

the models (1), and equivalently (5). The basic idea of tau-leaping is to hold the intensity functions fixed

over a time interval [tn, tn + h] at the values λk(X(tn)), where X(tn) is the current state of the system,

and, under this assumption, compute the number of times each reaction takes place over this period. As

the waiting times for the reactions are exponentially distributed this leads to the following algorithm, which

simulates up to a time of T > 0. Below and in the sequel, for x ≥ 0 we will write Poisson(x) to denote

a sample from the Poisson distribution with parameter x, with all such samples being independent of each

other and of all other sources of randomness used.

Algorithm 1 (Euler tau-leaping). Fix h > 0. Set Zh(0) = x0, t0 = 0, n = 0 and repeat the following until

tn = T :

(i) Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.

(ii) For each k, let Λk = Poisson(λk(Zh(tn))h).

(iii) Set Zh(tn+1) = Zh(tn) +
∑

k Λkζk.

(iv) Set n← n+ 1.

Several improvements and modifications have been made to the basic algorithm described above over

the years. Some concern adaptive step-size selection along a path [11, 22]. Others focus on ensuring non-

negative population values [3, 10, 12, 37]. The latter issue is easily dealt with in our context; for example, it

is sufficient to return a value to zero if it ever goes negative in the course of a simulation. This is discussed

further in subsection 6.2.

Analogously to (1), a path-wise representation of Euler tau-leaping defined for all t ≥ 0 can be given

through a random time change of Poisson processes:

Zh(t) = Zh(0) +
∑

k

Yk

(∫ t

0
λk(Zh ◦ η(s))ds

)
ζk, (8)

8



where the Yk are as before, and η(s)
def
=

⌊ s
h

⌋
h. Thus, Zh ◦ η(s) = Zh(tn) if tn ≤ s < tn+1. Noting that

∫ tn+1

0
λk(Zh ◦ η(s))ds =

n∑

i=0

λk(Zh(ti))(ti+1 − ti)

explains why this method is called Euler tau-leaping. Following (5), for each i ∈ {1, . . . , d} we let ZN
h,i

def
=

N−αiZh,i, so the scaled version of (8) is

ZN
h (t) = ZN

h (0) +
∑

k

Yk

(
Nγ

∫ t

0
N ckλk(Z

N
h ◦ η(s))ds

)
ζNk , (9)

where all other notation is as before. We again stress that the models (8) and (9) are equivalent, with (8)

usually giving the counts of each component and (9) providing the normalized abundances.

Remark 2. Historically, the time discretization parameter for the methods described in this paper has been

τ , leading to the name “τ -leaping methods.” We choose to break from this tradition so as not to confuse τ
with a stopping time, and we denote our time-step by h to be consistent with much of the numerical analysis

literature.

5 A review of multi-level Monte Carlo

Given a stochastic process, X(·), let f : Rd → R be a function of the state of the system which gives a

measurement of interest. Our task is to approximate Ef(X(T )) efficiently. As discussed in Section 1, using

the “crude Monte Carlo” estimator (2) with a weakly first order method will provide an estimate with an

accuracy of O(ǫ), in the sense of confidence intervals, at a computational cost of O(ǫ−3).
In multi-level Monte Carlo (MLMC) paths of varying step-sizes are generated and are coupled in an

intelligent manner so that the computational complexity is reduced to O(ǫ−2(log ǫ)2) [18]. Sometimes even

the log(ǫ) terms can be reduced further [17]. Suppose we have an approximate method, such as Euler’s

method in the diffusive setting, which is known to be first order accurate in a weak sense, and 1/2 order

accurate in a strong L2 sense. The MLMC estimator is then built in the following manner. For a fixed

integer M , and ℓ ∈ {0, 1, . . . , L}, where L is to be determined, let hℓ = TM−ℓ. Reasonable choices for M
include 2, 3, and 4. We will denote Zℓ as the approximate process generated using a step-size of hℓ. Choose

L = O(ln(ǫ−1)), so that hL = O(ǫ) and Ef(X(T ))− Ef(ZL(T )) = O(ǫ), and the bias (i.e. the first term

on the right hand side of (3)) is of the desired order of magnitude. We then have

Ef(ZL(T )) = E[f(Z0(T ))] +
L∑

ℓ=1

E[f(Zℓ(T ))− f(Zℓ−1(T ))], (10)

where the telescoping sum is the key feature to note. We will now denote the estimator of E[f(Z0(T ))]
using n0 paths by Q̂0, and the estimator of E[f(Zℓ(T ))− f(Zℓ−1(T ))] using nℓ paths as Q̂ℓ. That is

Q̂0
def
=

1

n0

n0∑

i=1

f(Z0,[i](T )), and Q̂ℓ
def
=

1

nℓ

nℓ∑

i=1

(f(Zℓ,[i](T ))− f(Zℓ−1,[i](T ))), (11)

where the important point is that both Zℓ,[i](T ) and Zℓ−1,[i](T ) are generated using the same randomness,

but are constructed using different time discretizations (see [18, 26] for details on how to do this in the

diffusive setting). We then let

Q̂
def
=

L∑

ℓ=0

Q̂ℓ, (12)

9



be the unbiased estimator for E[f(ZL(T ))]. Assuming that we can show Var(f(Zℓ(T )) − f(Zℓ−1(T ))) =
O(hℓ), which follows if the method has a strong error of order 1/2 and f is Lipschitz, we may set

nℓ = O(ǫ−2Lhℓ),

which yields Var(Q̂) = O(ǫ2), but with a total computational complexity of O(ǫ−2(log ǫ)2). We make the

following observations.

1. The gains in computational efficiency come about for two reasons. First, a coordinated sequence of

simulations are being done, with nested step-sizes, and the simulations with larger step-size are much

cheaper than those with very fine step sizes. Second, while we do still require the generation of paths

with fine step-sizes, the variance of f(Zℓ) − f(Zℓ−1) will be small, thereby requiring significantly

fewer of these expensive paths in the estimation of Q̂ℓ of (11).

2. For the analysis in [18], it is necessary to know both the weak (for the choice of hL) and strong (for

the variance of Q̂ℓ) behavior of the numerical method, even though we are only solving the weak

approximation problem.

3. The estimator (12) is a biased estimator of Ef(X(T )), and the number of levels L was chosen to

ensure that the bias is within the desired tolerance.

6 Multi-level Monte Carlo for continuous time Markov chains

We now consider the problem of estimating Ef(XN (T )), where XN satisfies the general system (5). We

again stress that as XN of (5) is equivalent to the process X of (1), efficiently approximating values of the

form Ef(XN (T )), for suitable f , is equivalent to efficiently approximating values of the form Eg(X(T )),
for suitable functions g. The scaled systems are easier to analyze because the temporal and other quantitative

scales have been made explicit.

Recall that N = Nγ
∑

k N
ck gives the order of magnitude of the number of steps needed to generate

a single path using an exact algorithm. As discussed in Section 1, to approximate Ef(XN (T )) to an order

of accuracy of ǫ > 0 using an exact algorithm (such as Gillespie’s algorithm or the next reaction method)

combined with the crude Monte Carlo estimator, we need to generate ǫ−2 paths. Thus, we have a total

computational complexity of O(Nǫ−2) .

We will now extend the core ideas of multi-level Monte Carlo as described in Section 5 to the continuous

time Markov chain setting with Euler tau-leaping, given in (9), as our approximation method. We again fix

an integer M > 0, and for ℓ ∈ {ℓ0, . . . , L}, where both ℓ0 and L are to be determined, let hℓ = TM−ℓ. We

then denote by ZN
ℓ the approximate process (9) generated with a step-size of hℓ. By [6], for suitable f

Ef(XN (T ))− Ef(ZN
ℓ (T )) = O(hℓ).

Choose L = O(ln(ǫ−1)), so that hL = O(ǫ) and the bias is of the desired order of magnitude. We then

introduce another telescoping sum

Ef(ZN
L (T )) = E[f(ZN

ℓ0 (T ))] +

L∑

ℓ=ℓ0+1

E[f(ZN
ℓ (T ))− f(ZN

ℓ−1(T ))]. (13)

We will again denote the estimator of E[f(ZN
ℓ0
(T ))] using n0 paths by Q̂0, and the estimator of E[f(ZN

ℓ (T ))−
f(ZN

ℓ−1(T ))] using nℓ paths by Q̂ℓ. That is

Q̂0
def
=

1

n0

n0∑

i=1

f(ZN
ℓ0,[i]

(T )), and Q̂ℓ
def
=

1

nℓ

nℓ∑

i=1

(f(ZN
ℓ,[i](T ))− f(ZN

ℓ−1,[i](T ))), (14)

10



where we hope that ZN
ℓ,[i] and ZN

ℓ−1,[i] can be generated in such a way that Var(Q̂ℓ) is small. We will then let

Q̂
def
= Q̂0 +

L∑

ℓ=ℓ0+1

Q̂ℓ, (15)

be the unbiased estimator for E[f(ZN
L (T ))]. The choices for nℓ will depend upon the variances of Q̂ℓ.

The main requirements for effectively extending MLMC to the current setting now come into focus.

First, we must be able to simulate the paths ZN
ℓ and ZN

ℓ−1 simultaneously in a manner that is efficient and

produces small variances between the paths. Second, we must be able to quantify this variance in order to

control the variance of the associated Q̂ℓ terms of (14). Both requirements demand a good coupling of the

processes ZN
ℓ and ZN

ℓ−1.

We motivate our choice of coupling by first treating two simpler tasks. First, consider the problem of

trying to understand the difference between Z1(t) and Z2(t), where Z1, Z2 are Poisson processes with rates

13.1 and 13, respectively. A simple approach is to let Y1 and Y2 be independent, unit-rate Poisson processes,

set

Z1(t) = Y1(13.1t) and Z2(t) = Y2(13t),

and consider Z1(t) − Z2(t). Using this representation, these processes are independent and, hence, not

coupled. Further, the variance of their difference is the sum of their variances, and so

Var(Z1(t)− Z2(t)) = Var(Z1(t)) + Var(Z2(t)) = 26.1t.

Another choice is to let Y1 and Y2 be independent unit-rate Poisson processes, and set

Z1(t) = Y1(13t) + Y2(0.1t) and Z2(t) = Y1(13t),

where we have used the additivity property of Poisson processes. The important point to note is that both

Z1 and Z2 are using the process Y1(13t) to generate simultaneous jumps. The process Z1 then uses the

auxiliary process Y2(0.1t) to jump the extra times that Z2 does not. The processes Z1 and Z2 will jump

together the vast majority of times, and hence are tightly coupled; by construction Var(Z1(t) − Z2(t)) =
Var(Y2(0.1t)) = 0.1t. More generally, if Z1 and Z2 are instead inhomogeneous Poisson processes with

intensities f(t) and g(t), respectively, then we could let Y1, Y2, and Y3 be independent, unit-rate Poisson

processes and define

Z1(t) = Y1

(∫ t

0
f(s) ∧ g(s)ds

)
+ Y2

(∫ t

0
f(s)− (f(s) ∧ g(s)) ds

)
,

Z2(t) = Y1

(∫ t

0
f(s) ∧ g(s)ds

)
+ Y3

(∫ t

0
g(s)− (f(s) ∧ g(s)) ds

)
,

where we are using that, for example,

Y1

(∫ t

0
f(s) ∧ g(s)ds

)
+ Y2

(∫ t

0
f(s)− (f(s) ∧ g(s)) ds

)
D
= Y

(∫ t

0
f(s)ds

)
,

where Y is a unit rate Poisson process and we recall that a ∧ b
def
= min{a, b}.

We now return to the main problem of coupling the processes ZN
ℓ and ZN

ℓ−1, each satisfying (9) with

their respective step-sizes. We couple the processes ZN
ℓ and ZN

ℓ−1 in the following manner, which is similar

11



to a coupling originally used in [33], and later in [5], as an analytical tool, and subsequently in [1] towards

the problem of computing parameter sensitivities:

ZN
ℓ (t) = ZN

ℓ (0) +
∑

k

Yk,1

(
NγN ck

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s)) ∧ λk(Z

N
ℓ−1 ◦ ηℓ−1(s))ds

)
ζNk

+
∑

k

Yk,2

(
NγN ck

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(Z

N
ℓ ◦ ηℓ(s)) ∧ λk(Z

N
ℓ−1 ◦ ηℓ−1(s))ds

)
ζNk ,

(16)

ZN
ℓ−1(t) = ZN

ℓ−1(0) +
∑

k

Yk,1

(
NγN ck

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s)) ∧ λk(Z

N
ℓ−1 ◦ ηℓ−1(s))ds

)
ζNk

+
∑

k

Yk,3

(
NγN ck

∫ t

0
λk(Z

N
ℓ−1 ◦ ηℓ−1(s))− λk(Z

N
ℓ ◦ ηℓ(s)) ∧ λk(Z

N
ℓ−1 ◦ ηℓ−1(s))ds

)
ζNk ,

(17)

where the Yk,i, i ∈ {1, 2, 3}, are independent, unit-rate Poisson processes, and for each ℓ, we define ηℓ(s)
def
=

⌊s/hℓ⌋hℓ. Note that we essentially used the coupling of the simpler examples above (pertaining to Z1 and

Z2) for each of the reaction channels.

The paths of the coupled processes can easily be computed simultaneously and the distributions of the

marginal processes are the same as the usual scaled Euler approximate paths (9) with similar step-sizes.

More precisely, the system (16)–(17) is the scaled version of, and is hence equivalent to, the system

Zℓ(t) =Zℓ(0) +
∑

k

Yk,1

(∫ t

0
λk(Zℓ ◦ ηℓ(s)) ∧ λk(Zℓ−1 ◦ ηℓ−1(s))ds

)
ζk

+
∑

k

Yk,2

(∫ t

0
λk(Zℓ ◦ ηℓ(s))− λk(Zℓ ◦ ηℓ(s)) ∧ λk(Zℓ−1 ◦ ηℓ−1(s))ds

)
ζk,

Zℓ−1(t) =Zℓ−1(0) +
∑

k

Yk,1

(∫ t

0
λk(Zℓ ◦ ηℓ(s)) ∧ λk(Zℓ−1 ◦ ηℓ−1(s))ds

)
ζk

+
∑

k

Yk,3

(∫ t

0
λk(Zℓ−1 ◦ ηℓ−1(s))− λk(Zℓ ◦ ηℓ(s)) ∧ λk(Zℓ−1 ◦ ηℓ−1(s))ds

)
ζk,

(18)

where now the marginal processes are distributionally equivalent to the approximate processes (8) with

similar step-sizes, and all notation is as before. The natural algorithm to simulate the representation (18)

(and hence (16)–(17)) to a time T > 0 is the following.

Algorithm 2 (Simulation of the representation (18)). Fix an integer M ≥ 2. Fix hℓ > 0 and set hℓ−1 =
M × hℓ. Set Zℓ(0) = Zℓ−1(0) = x0, t0 = 0, n = 0. Repeat the following steps until tn ≥ T :

(i) For j = 0, . . . ,M − 1,

(a) Set

• Ak,1 = λk(Zℓ(tn + j × hℓ)) ∧ λk(Zℓ−1(tn)).

• Ak,2 = λk(Zℓ(tn + j × hℓ))−Ak,1.

• Ak,3 = λk(Zℓ−1(tn))−Ak,1.

(b) For each k, let

• Λk,1 = Poisson(Ak,1hℓ).

12



• Λk,2 = Poisson(Ak,2hℓ).

• Λk,3 = Poisson(Ak,3hℓ).

(c) Set

• Zℓ(tn + (j + 1)× hℓ) = Zℓ(tn + j × hℓ) +
∑

k(Λk,1 + Λk,2)ζk.

• Zℓ−1(tn + (j + 1)× hℓ) = Zℓ−1(tn + j × hℓ) +
∑

k(Λk,1 + Λk,3)ζk.

(ii) Set tn+1 = tn + hℓ−1.

(iii) Set n← n+ 1.

We make the following observations. First, while Algorithm 2 formally simulates the representation

(18), the scaled version of the process generated via Algorithm 2 satisfies (16)–(17). Second, we do not

need to update either Zℓ−1 or λk(Zℓ−1) during the workings of the inner loop of j = 0, . . . ,M − 1. Third,

at most one of A2, A3 will be non-zero during each step, with both being zero whenever λk(Zℓ(tn)) =
λk(Zℓ−1(tn)). Therefore, at most two Poisson random variables will be required per reaction channel at

each step and not three. Fourth, the above algorithm, and hence the couplings (18) and/or (16)–(17), is no

harder to simulate, from an implementation standpoint, than the usual Euler tau-leaping. Fifth, while two

paths are being generated, it should be the case that max{A2, A3} is small for each step. Hence the work in

computing the Poisson random variables will fall on Λk,1,1 which is the same amount of work as would be

needed for the generation of a single path of Euler tau-leaping.

In Section 7 we will prove the following theorem, which is one of our main analytical results.

Theorem 1. Suppose (ZN
ℓ , ZN

ℓ−1) satisfy (16) and (17) with ZN
ℓ (0) = ZN

ℓ−1(0). Then, there exist functions

C1, C2, that do not depend on hℓ, such that

sup
t≤T

E|ZN
ℓ (t)− ZN

ℓ−1(t)|2 ≤ C1(N
γT )N−ρ(Nγhℓ) + C2(N

γT )(Nγhℓ)
2.

In particular, for γ ≤ 0 the values C1(N
γT ) and C2(N

γT ) may be bounded above uniformly in N .

Remark 3. The specific forms of C1(N
γT ) and C2(N

γT ) for Theorem 1 and Theorem 2 below are given

in Section 7. However, we note here that if γ > 0, the factors C1(N
γT ) and C2(N

γT ) could be huge,

leading to upper bounds in Theorem 1 and Theorem 2 of no practical use. So we henceforth assume that

γ ≤ 0 and thus regard C1(N
γT ) and C2(N

γT ) as constants independent of N . We note that the classical

chemical kinetics scaling, with γ = 0, satisfies this assumption. However, good performance is observed in

Section 9 with γ > 0, suggesting that further analysis may extend the range of validity for this method.

Note that Theorem 1 together with f Lipschitz gives us the estimate

∣∣Var
(
f(ZN

ℓ (t))
)
− Var

(
f(ZN

ℓ−1(t))
)∣∣ ≤ E

∣∣f(ZN
ℓ (t))− f(ZN

ℓ−1(t))
∣∣2

≤ CE|ZN
ℓ (t)− ZN

ℓ−1(t)|2
≤ C

[
C1(N

γT )N−ρ(Nγhℓ) + C2(N
γT )(Nγhℓ)

2
]
, (19)

which we will use to control the variance of Q̂ℓ in (14).

1The cost of generating a Poisson random variable generally increases with the size of the mean
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Before further exploring MLMC in the current setting, we present a coupling of the exact process XN

and the approximate process ZN
ℓ . We will later use this coupling to produce an unbiased MLMC estimator.

We define XN and ZN
ℓ via

XN (t) =XN (0) +
∑

k

Yk,1

(
NγN ck

∫ t

0
λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
ζNk

+
∑

k

Yk,2

(
NγN ck

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)
ζNk ,

(20)

ZN
ℓ (t) =ZN

ℓ (0) +
∑

k

Yk,1

(
NγN ck

∫ t

0
λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
ζNk

+
∑

k

Yk,3

(
NγN ck

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
ζNk ,

(21)

where all notation is as before. Note that the distributions of the marginal processes XN and ZN
ℓ are equal

to those of (5) and (9). The unscaled processes satisfy

X(t) =X(0) +
∑

k

Yk,1

(∫ t

0
λk(X(s)) ∧ λk(Zℓ ◦ ηℓ(s))ds

)
ζk

+
∑

k

Yk,2

(∫ t

0
λk(X(s))− λk(X(s)) ∧ λk(Zℓ ◦ ηℓ(s))ds

)
ζk,

Zℓ(t) =Zℓ(0) +
∑

k

Yk,1

(∫ t

0
λk(X(s)) ∧ λk(Zℓ ◦ ηℓ(s))ds

)
ζk

+
∑

k

Yk,3

(∫ t

0
λk(Zℓ ◦ ηℓ(s))− λk(X(s)) ∧ λk(Zℓ ◦ ηℓ(s))ds

)
ζk,

(22)

which is equivalent to (20) and (21), and whose marginal processes have the same distributions as (1) and

(8).

The natural algorithm to simulate (22), and hence (20)–(21), is the next reaction method [2, 16], where

the system is viewed as having dimension 2d with state (XN , ZN
ℓ ), and each of the “next reactions” must

be calculated over the Poisson processes Yk,1, Yk,2, Yk,3. See [2] for a thorough explanation of how the next

reaction method is equivalent to simulating representations of the forms considered here. Below, we will

denote a uniform[0, 1] random variable by rand(0, 1), and we remind the reader that if U ∼ rand(0, 1), then

ln(1/U) is an exponential random variable with a parameter of one. All random variables generated are

assumed to be independent of each other and all previous random variables.

Algorithm 3 (Simulation of the representation (22)). Initialize. Fix hℓ > 0. Set X(0) = Zℓ(0) = x0 and

t = 0. Set Z̃ℓ = Zℓ(0). Set Ttau = hℓ. For each k ∈ {1, . . . , R} and i ∈ {1, 2, 3}, set Pk,i = ln(1/rk,i),
where rk,i is rand(0, 1), and Tk,i = 0.

(i) For each k, set

• Ak,1 = λk(X(t)) ∧ λk(Z̃ℓ).

• Ak,2 = λk(X(t))−Ak,1.

• Ak,3 = λk(Z̃ℓ)−Ak,1.
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(ii) For each k ∈ {1, . . . , R} and i ∈ {1, 2, 3}, set

∆tk,i =

{
(Pk,i − Tk,i)/Ak,i, if Ak,i 6= 0

∞, if Ak,i = 0
.

(iii) Set ∆ = mink,i{∆tk,i}, and let µ ≡ {k, i} be the indices where the minimum is achieved.

(iv) If t+∆ ≥ Ttau,

(a) Set Z̃ℓ = Zℓ(t).

(b) For each k ∈ {1, . . . , R} and i ∈ {1, 2, 3}, set Tk,i = Tk,i +Ak,i × (Ttau − t).

(c) Set t = Ttau.

(d) Set Ttau = Ttau + hℓ.

(e) Return to step (i) or quit.

(v) Else,

(a) Update. For {k, i} = µ, where µ is from (iii),

• If i = 1, set X(t+∆) = X(t) + ζk and Zℓ(t+∆) = Zℓ(t) + ζk.

• If i = 2, set X(t+∆) = X(t) + ζk.

• If i = 3, set Zℓ(t+∆) = Zℓ(t) + ζk

(b) For each k ∈ {1, . . . , R} and i ∈ {1, 2, 3}, set Tk,i = Tk,i +Ak,i ×∆.

(c) Set Pµ = Pµ + ln(1/r), where r is rand(0, 1), and µ is from (iii).

(d) Set t = t+∆.

(e) Return to step (i) or quit.

The following theorem, which should be compared with Theorem 1, is proven in Section 7 and is our

second main analytical result.

Theorem 2. Suppose (XN , ZN
ℓ ) satisfy (20) and (21) with XN (0) = ZN

ℓ (0). Then, there exist functions

C1, C2, that do not depend on hℓ, such that

sup
t≤T

E|XN (t)− ZN
ℓ (t)|2 ≤ C1(N

γT )N−ρ(Nγhℓ) + C2(N
γT )(Nγhℓ)

2.

Moreover, for γ ≤ 0 the values C1(N
γT ) and C2(N

γT ) may be bounded above uniformly in N .

We are now in a position to develop MLMC in the stochastic chemical kinetic setting. Recall our

assumption that γ ≤ 0, so C1 and C2 in Threorems 1 and 2 are bounded. We return to the Q̂ℓ terms in

(14). Supposing that the test function f is uniformly Lipschitz in our domain of interest (note that this is

automatic for any reasonable f in the case when mass is conserved), then for ℓ > ℓ0, we know from (19)

that

Var(Q̂ℓ) ≤ C
1

nℓ

[
C1(N

γT )N−ρ(Nγhℓ) + C2(N
γT )(Nγhℓ)

2
]
.

Note that if N−ρ ≤ hℓ, the leading order of the error is the h2ℓ term. As a heuristic argument for this

behavior, note that if N−ρ ≤ hℓ and N is large while hℓ is small, then the processes are nearing a scaling

regime in which deterministic dynamics would be a good approximation for the model XN . In this case,

one should expect that the squared difference between two Euler paths should behave like the usual order

one error, squared.
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We may now conclude that the variance of the estimator Q̂ defined in (15) satisfies

Var(Q̂) = Var(Q̂ℓ0) +
L∑

ℓ=ℓ0+1

Var(Q̂ℓ)

≤ K0

n0
+

L∑

ℓ=ℓ0+1

C
1

nℓ

[
C1(N

γT )N−ρ(Nγhℓ) + C2(N
γT )(Nγhℓ)

2
]
,

where K0 = Var(f(ZN
ℓ0
(T ))). For h > 0 we define

A(h)
def
= N−ρ(Nγh) + (Nγh)2. (23)

Letting n0 = O(ǫ−2), and for ℓ > ℓ0 letting

nℓ = O
(
ǫ−2(L− ℓ0)A(hℓ)

)
,

we see that

Var(Q̂) = O(ǫ2).

As the computational complexity of generating a single path of the coupled processes (ZN
ℓ , ZN

ℓ−1) is O(h−1
ℓ ),

we see that the total computational complexity of the method with these choices of nℓ is of order

n0h
−1
ℓ0

+
L∑

ℓ=ℓ0+1

nℓh
−1
ℓ = ǫ−2h−1

ℓ0
+

L∑

ℓ=ℓ0+1

ǫ−2(L− ℓ0)A(hℓ)h
−1
ℓ

= ǫ−2


h−1

ℓ0
+ (L− ℓ0)

L∑

ℓ=ℓ0+1

(N−ρNγ + hℓN
2γ)




≤ ǫ−2

(
h−1
ℓ0

+ ln(ǫ)2N−ρNγ + ln(ǫ−1)
1

M − 1
hℓ0N

2γ

)
, (24)

where we used that
L∑

ℓ=ℓ0+1

hℓ ≤ hℓ0

∞∑

ℓ=1

1

M ℓ
= hℓ0

1

M − 1
. (25)

A more careful choice of nℓ can potentially reduce the ln(ǫ) terms further, see for example [18], but in

the present case, the computational complexity will be dominated by ǫ−2h−1
ℓ0

in most nontrivial examples.

Further, as will be discussed in Section 8, the nℓ can be chosen algorithmically, by optimizing for a given

problem.

6.1 An unbiased MLMC

We now build an unbiased MLMC estimator for Ef(XN (T )) in a similar manner as before with a single

important difference: at the finest scale, we couple XN with ZN
L . That is, we use the identity

Ef(XN (T )) = E[f(XN (T ))− f(ZN
L (T ))] +

L∑

ℓ=ℓ0+1

E[f(ZN
ℓ )− f(ZN

ℓ−1)] + Ef(ZN
ℓ0 (T )).
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For appropriate choices of n0, nℓ, and nE , we define the estimators for the three terms above via

Q̂E
def
=

1

nE

nE∑

i=1

(f(XN
[i] (T )− f(ZN

L,[i](T ))),

Q̂ℓ
def
=

1

nℓ

nℓ∑

i=1

(f(ZN
ℓ,[i](T ))− f(ZN

ℓ−1,[i](T ))), for ℓ ∈ {ℓ0 + 1, . . . , L},

Q̂0
def
=

1

n0

n0∑

i=1

f(ZN
ℓ0,[i]

(T )),

and note that

Q̂
def
= Q̂E +

L∑

ℓ=ℓ0+1

Q̂ℓ + Q̂0 (26)

is an unbiased estimator for Ef(XN (T )). Applying both Theorems 1 and 2 yields

Var(Q̂E) ≤ K1(N
γT )

1

nE
A(hL),

Var(Q̂ℓ) ≤ K2(N
γT )

1

nℓ
A(hℓ), for ℓ ∈ {ℓ0 + 1, . . . , L},

where K1(N
γT ) and K2(N

γT ) are independent of hℓ, and, under our assumption that γ ≤ 0, can be

bounded uniformly in N . It follows that the choice

nE = O(ǫ−2A(hL)),

nℓ = O
(
ǫ−2(L− ℓ0)A(hℓ)

)
, for ℓ ∈ {ℓ0, . . . , L},

n0 = O(ǫ−2),

(27)

gives us

Var(Q̂) = Var(Q̂E) +

L∑

ℓ=ℓ0+1

Var(Q̂ℓ) + Var(Q̂0)

= O(ǫ2) +
L∑

ℓ=ℓ0+1

O(ǫ2(L− ℓ0)
−1) +O(ǫ2)

= O(ǫ2).

The computational complexity is now of order

nEN +

L∑

ℓ=ℓ0+1

nℓh
−1
ℓ + n0h

−1
ℓ0

= Nǫ−2A(hL) +

L∑

ℓ=ℓ0+1

ǫ−2(L− ℓ0)A(hℓ)h
−1
ℓ + ǫ−2h−1

ℓ0

= ǫ−2


NA(hL) + (L− ℓ0)

L∑

ℓ=ℓ0

(N−ρNγ + hℓN
2γ) + h−1

ℓ0




≤ ǫ−2

(
NA(hL) + h−1

ℓ0
+ ln(ǫ)2N−ρNγ + ln(ǫ−1)

1

M − 1
hℓ0N

2γ

)
, (28)

where we again made use of the inequality (25).
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6.2 Some observations

A few observations are in order. First, in the above analysis of the unbiased MLMC estimator, the weak error

of the process ZN
h plays no role. Thus, there is no reason to choose hL = O(ǫ) for a desired accuracy of

ǫ > 0. Without having to worry about the bias, we have the opportunity to simply choose hL “small enough”

for Var(XN (·)−ZN
L (·)) to be small, which can be approximated with a few preliminary simulations before

the full MLMC is carried out (see Section 8 for more implementation details).

Second, one of the main impediments to the use of tau-leaping methods has been the possibility for

paths to leave the non-positive orthant. In fact, there have been multiple papers written on the subject of

how to enforce non-negativity of species numbers with [3, 10, 12, 37] representing just a sample. We note

that for the unbiased MLMC estimator (26) it almost does not matter how, or even if, non-negativity is

enforced. So long as the processes are well defined on all of Z
d, for example by defining the intensity

functions λk in some reasonable way, and so long as we can still quantify the relations given in Theorems

1 and 2, everything above still holds. The cost, to the user, of poorly defining what happens if Zh leaves

the positive orthant will simply be the need for the generation of more paths to reduce the variance of the

(still unbiased) estimator. Of course, this cost could be quite high as negativity of population numbers can

lead to instability if they have not defined the intensity functions outside the positive orthant in a reasonable

manner. However, in Section 8 we discuss how intelligent implementation of the method can greatly reduce

this cost by ensuring that the approximate paths remain stable with high probability.

Third, inspecting (24) and (28) shows that the unbiased MLMC estimator (26) has an additional term

of O(NA(hL)ǫ
−2) in its computational complexity bound, as compared with the biased MLMC estimator

(15). The authors feel that NA(hL) would have to be quite substantial to warrant not using the unbiased

version.

Fourth, note that we always have the following:

Computational complexity of unbiased MLMC = O
(
ǫ−2(NA(hL) + h−1

ℓ0
+ log term)

)

≪ O
(
ǫ−2N

)

=
Computational complexity of exact algorithm

with crude Monte Carlo.

(29)

Thus, under our standing assumption γ ≤ 0, the unbiased MLMC estimator should be the method of choice

over using an exact algorithm alone together with crude Monte Carlo, which is by far the most popular

method today. For example, consider the case when the system satisfies the classical scaling, for which

ρ = 1, γ = 0 and ck ≡ 1. In this case, N = N and, as there is little reason to use an approximate method

with a time step that is smaller than the order of magnitude of the wait time between jumps for an exact

method, we may assume that hL > 1/N = N−ρ. Therefore, in this specific case, A(hL) = O(h2L) and the

computational speedup predicted by (28) and/or (29) is of the order

Speed-up factor ≈ ǫ−2N

ǫ−2(Nh2L + h−1
ℓ0

+ log(ǫ))
=

N

Nh2L + h−1
ℓ0

+ log(ǫ)
.

Thus we have

Speed-up factor ' min
(
h−2
L , Nhℓ0

)
.

Therefore, even though the method is unbiased, the computational burden has been shifted from the exact

process to that of an approximate process with a crude time-step. This behavior is demonstrated in an

example found in Section 9, though on a system not satisfying the classical scaling.
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Note also that (29) holds even if N , the approximate cost of computing a single path, is not extremely

large. For example, even if the cost is only in the hundreds, or maybe thousands, of steps per exact path, the

above analysis points out that if great accuracy is required (so that ǫ−2 is very large), the unbiased MLMC

estimator will still decrease the computational complexity substantially. It should be pointed out that in

these cases of moderate N , we will typically have γ ≤ 0 and so the analysis will hold.

The conclusion of this analysis, backed up by the examples in Section 9, is that MLMC methods, with

processes coupled via the representations (18) and (22), and the unbiased MLMC in particular, produce

substantial gains in computational efficiency and could become standard algorithms in the sciences. Further

attention, however, needs to be given to the case γ > 0, and this will be a focus for future work.

7 Delayed proofs of Theorems 1 and 2

We begin by focussing on the proof of Theorem 2, which is restated here for completeness.

Theorem 2. Suppose (XN , ZN
ℓ ) satisfy (20) and (21) with XN (0) = ZN

ℓ (0). Then, there exist functions

C1, C2, that do not depend on hℓ, such that

sup
t≤T

E|XN (t)− ZN
ℓ (t)|2 ≤ C1(N

γT )N−ρ(Nγhℓ) + C2(N
γT )(Nγhℓ)

2.

Moreover, for γ ≤ 0 the values C1(N
γT ) and C2(N

γT ) may be bounded above uniformly in N .

We start with the following lemma.

Lemma 3. Suppose (XN , ZN
ℓ ) satisfy (20) and (21) with XN (0) = ZN

ℓ (0). Then, there exist positive

constants c1, c2, independent of N , γ, and T , such that for t ≥ 0

E|XN (t)− ZN
ℓ (t)| ≤ c1

(
ec2N

γt − 1
)
(Nγhℓ).

Proof. Note that

E|XN (t)−ZN
ℓ (t)|

= E

∣∣∣∣
∑

k

Yk,2

(
NγN ck

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)
ζNk

−
∑

k

Yk,3

(
NγN ck

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
ζNk

∣∣∣∣

≤
∑

k

|ζNk |
[
EYk,2

(
NγN ck

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)

+ EYk,3

(
NγN ck

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)]

=
∑

k

|ζNk |NγN ck

∫ t

0
E|λk(X

N (s))− λk(Z
N
ℓ ◦ ηℓ(s))|ds

≤ NγC

∫ t

0
E|XN (s)− ZN

ℓ ◦ ηℓ(s)|ds,

where C > 0 is some constant and we used that the λk are assumed to be Lipschitz. Adding and subtracting

the obvious terms yields

E|XN (t)− ZN
ℓ (t)| ≤ NγC

∫ t

0
E|ZN

ℓ (s)− ZN
ℓ ◦ ηℓ(s)|ds+NγC

∫ t

0
E|XN (s)− ZN

ℓ (s)|ds. (30)
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The integrand of the first term on the right hand side of (30) satisfies

E|ZN
ℓ (s)− ZN

ℓ ◦ ηℓ(s)| ≤
∑

k

|ζNk |NγN ckE

∫ s

ηℓ(s)
λk(Z

N
ℓ (ηℓ(r))dr ≤ C̃Nγhℓ, (31)

where C̃ > 0 is a constant, and we recall that λ is O(1) in our region of interest. Collecting the above yields

E|XN (t)− ZN
ℓ (t)| ≤ Ĉ1N

2γthℓ + Ĉ2N
γ

∫ t

0
E|XN (s)− ZN

ℓ (s)|ds,

for some positive constants Ĉ1, Ĉ2 that are independent of N , γ, and T . The result now follows from

Gronwall’s inequality.

We note that Lemma 3 is a worst case scenario due to the appearance of the term Nγ in the exponent.

However, considering the network S1
Nγ

→ 2S1 (exponential growth), shows this to be a sharp estimate. A

future research direction will be classifying those networks for which this upper bound can be decreased

substantially.

We are now in position to prove Theorem 2.

Proof. (of Theorem 2.) We have

XN (t)− ZN
ℓ (t) = MN (t) +

∫ t

0
FN (XN (s))− FN (ZN

ℓ ◦ ηℓ(s))ds,

where

MN (t)
def
=

∑

k

[
Yk,2

(
NγN ck

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)

−NγN ck

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

]
ζNk

−
∑

k

[
Yk,3

(
NγN ck

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)

+NγN ck

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

]
ζNk ,

is a martingale, and

FN (x) =
∑

k

NγN ckλk(x)ζ
N
k .

Note that based upon our assumptions, we have that

|FN (x)− FN (y)| ≤ CNγ |x− y|, (32)

where C > 0 is a constant that does not depend upon N or γ. The quadratic covariation matrix of MN is

[MN ](t) =
∑

k

ζNk (ζNk )T (JN
k,2(t) + JN

k,3(t)),

where

JN
k,2(t)

def
= Yk,2

(
NγN ck

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)

JN
k,3(t)

def
= Yk,3

(
NγN ck

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
.
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Thus,

E[MN ](t) =
∑

k

ζNk (ζNk )TNγN ckE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
ℓ ◦ ηℓ(s))

∣∣ ds,

and, in particular,

E[MN ]ii(t) =
∑

k

(ζNik )
2NγN ckE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
ℓ ◦ ηℓ(s))

∣∣ ds. (33)

We note that

|XN (t)− ZN
ℓ (t)|2 ≤ 2|MN (t)|2 + 2

∣∣∣∣
∫ t

0
FN (XN (s))− FN (ZN

ℓ ◦ ηℓ(s))ds
∣∣∣∣
2

, (34)

and we may handle the two terms on the right hand side of the above equation separately.

First, by (33) and the Burkholder-Davis-Gundy inequality,

E[|MN (t)|2] ≤
∑

i

∑

k

(ζNik )
2NγN ckE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
ℓ ◦ ηℓ(s))

∣∣ ds

=
∑

k

|ζNk |2NγN ckE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
ℓ ◦ ηℓ(s))

∣∣ ds

≤ 2CNγN−ρ
E

∫ t

0

∣∣XN (s)− ZN
ℓ ◦ ηℓ(s)

∣∣ ds,

(35)

where C is a constant independent of N , t, and γ. After adding and subtracting ZN
ℓ (s), using (31), and

applying Lemma 3, we conclude that for t ≤ T

E[|MN (t)|2] ≤ (c1N
γTec2N

γT )N−ρ(Nγhℓ), (36)

for some constants c1, c2 that do not depend upon T , γ, or N , and which will change during the course of

the proof.

Turning to the second term on the right hand side of (34), making use of (32) we have for some C > 0
independent of T , γ, and N ,

E

(∫ t

0
|FN (XN (s))− FN (ZN

ℓ ◦ ηℓ(s))|ds
)2

≤ CN2γ
E

(∫ t

0
|ZN

ℓ ◦ ηℓ(s)− ZN
ℓ (s)|ds

)2

+ CN2γ
E

(∫ t

0
|XN (s)− ZN

ℓ (s)|ds
)2

. (37)

The expected value in the first term on the right hand side of (37) can be bounded via

E

(∫ T

0
|ZN

ℓ ◦ ηℓ(s)− ZN
ℓ (s)|ds

)2

≤ TE

∫ T

0
|ZN

ℓ ◦ ηℓ(s)− ZN
ℓ (s)|2ds

= T
n∑

i=1

∫ ti+h

ti

E|ZN
ℓ ◦ ηℓ(s)− ZN

ℓ (s)|2ds.
(38)

We have that

E|ZN
ℓ ◦ ηℓ(s)− ZN

ℓ (s)|2 ≤
∑

k

|ζNk |2
[
NγN ckE

∫ s

ηℓ(s)
λk(Z

N
ℓ ◦ ηℓ(r))dr

+N2γN2ckE

(∫ s

ηℓ(s)
λk(Z

N
ℓ ◦ ηℓ(r))dr

)2]

≤ CNγN−ρhℓ + CN2γh2ℓ ,

(39)
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for some constant C > 0. Combining (38) and (39) shows

E

(∫ T

0
|ZN

ℓ ◦ ηℓ(s)− ZN
ℓ (s)|ds

)2

≤ T 2(CNγN−ρhℓ + CN2γh2ℓ ). (40)

Combining (40) with (37) then yields

E

(∫ t

0
|FN (XN (s))− FN (ZN

ℓ ◦ ηℓ(s))|ds
)2

≤ c1N
2γT 2N−ρ(Nγhℓ) + c2T

2N2γ(Nγhℓ)
2

+ c3tN
2γ

∫ t

0
E|XN (s)− ZN

ℓ (s)|2ds,
(41)

for some constants c1, c2, c3 that do not depend upon T , N , or γ. Equations (34), (36), and (41) yield

E[|XN (t)− ZN
ℓ (t)|2] ≤ (c1N

γTec2N
γT )N−ρ(Nγhℓ) + c1N

2γT 2N−ρ(Nγhℓ) + c2T
2N2γ(Nγhℓ)

2

+ c3tN
2γ

∫ t

0
E|XN (s)− ZN

ℓ (s)|2ds.

The result now follows from Gronwall’s inequality.

We turn our focus to the proof of Theorem 1, which is restated here for completeness.

Theorem 1. Suppose (ZN
ℓ , ZN

ℓ−1) satisfy (16) and (17) with ZN
ℓ (0) = ZN

ℓ−1(0). Then, there exist functions

C1, C2, that do not depend on hℓ, such that

sup
t≤T

E|ZN
ℓ (t)− ZN

ℓ−1(t)|2 ≤ C1(N
γT )N−ρ(Nγhℓ) + C2(N

γT )(Nγhℓ)
2.

In particular, for γ ≤ 0 the values C1(N
γT ) and C2(N

γT ) may be bounded above uniformly in N .

Proof. (of Theorem 1.) A direct proof can be written along the lines of that for Theorem 2. A separate,

cruder, proof would simply add and subtract XN (t) to |ZN
ℓ (t) − ZN

ℓ−1(t)|2 and use Theorem 2 combined

with the triangle inequality.

8 Implementation issues

The analysis in Sections 6 and 7 specified an order of magnitude for the number of paths, nℓ, to be used at

each level so as to attain the desired accuracy. This was needed to prove that the computational complexity

can be greatly reduced with an appropriate choice of the nℓ. However, the analysis does not tell us what the

nℓ should be with precision, nor does it tell us that these are the optimal nℓ, which, of course, will depend

on the function f , and the model itself.

Letting Vℓ denote the variance of Q̂ℓ for a given nℓ, and CPUℓ be the CPU time needed to generate nℓ

paths, we know that

CPUℓ ≈
Kℓ

Vℓ
,

for some Kℓ as both CPUℓ and 1/Vℓ scale linearly with nℓ. Further, for a given tolerance, ǫ, we need

Var(Q̂) =
∑

ℓ

Vℓ = (ǫ/1.96)2, (42)
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for, say, a 95% confidence interval (where the quantity 1.96 will be changed depending upon the size of the

confidence interval desired). We may approximate each Kℓ with a number of preliminary simulations (not

used in the full implementation), and then minimize

∑

ℓ

Kℓ

Vℓ
,

subject to the constraint (42). This will give us target variances, Vℓ, for each level, and an estimate on the

time needed until the computation is completed. We may then simulate each level until enough paths have

been generated for the variance of the estimator at that level to be below the target Vℓ. Note that this is

similar to the strategy proposed in [18].

We make the important observation that with such an optimizing pre-computation, we can choose both

L and ℓ0, that is the finest and crudest levels, before attempting the full calculation. This reduces the

probability of the approximate processes becoming negative, or non-physical in other ways, during the

course of a simulation. This, in turn, helps keep the approximate processes stable, which leads to increased

efficiency. Further, if we find during such a pre-computation that no choice of levels and number of paths

will be significantly faster than using an exact algorithm combined with crude Monte Carlo, then we should

simply revert to solely using an exact algorithm. We may conclude, therefore, that the developed method

will never, for any example, be appreciably slower than using an exact algorithm with crude Monte Carlo.

As will be demonstrated in the next section, however, the method will often times, even in cases not yet

predicted by the analysis, be significantly faster.

Finally, we note that in each of the examples in Section 9, and each method tested, we use Matlab’s

built in Poisson random number generator. Further, we produce the necessary approximate paths in batches

ranging from the 100s to 10s of thousands so as to reduce the number of separate calls to the Poisson random

number generator.

9 Examples

We present three examples to demonstrate the performance of the proposed method.

Example. We begin by considering a model of gene transcription and translation also used in [6]:

G
25→ G+M, M

1000→ M + P, P + P
0.001→ D, M

0.1→ ∅, P
1→ ∅.

Here, a single gene is being transcribed into mRNA, which is then being translated into proteins, and finally

the proteins produce stable dimers. The final two reactions represent degradation of mRNA and proteins,

respectively. We suppose the system starts with one gene and no other molecules, so X(0) = (1, 0, 0)
where X1, X2, X3 give the molecular counts of the mRNA, proteins, and dimers, respectively. Finally, we

suppose that we want to estimate the expected number of dimers at time T = 1 to an accuracy of ±1 with

95% confidence. Thus, we want the variance of our estimator to be smaller than (1/1.96)2 ≈ .2603. We

will also estimate the second moment of the number of dimers, which could be used in conjunction with the

mean to estimate the variance. For comparison purposes, we will use each method discussed in this paper

to approximate the mean, and will use an exact method combined with crude Monte Carlo and the unbiased

MLMC method to approximate the second moment.

While ǫ = 1 for the unscaled version of this problem, the simulation of just a few paths of the system

shows that there will be approximately 23 mRNA molecules, 3,000 proteins, and 3,500 dimers at time

T = 1. Therefore, for the scaled system, we are asking for an accuracy of ǫ̃ = 1/3500 ≈ 0.0002857. Also,

a few paths (100 is sufficient) shows that the order of magnitude of the variance of the normalized number of
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Mean Variance EX2
3 (1) # paths CPU Time # updates

3714.2 ± 1.0 ≈ 1,232,418 1.5035 ×107 ± 8 ×103 4,740,000 1.49 ×105 CPU S 8.27 ×1010

Table 1: Performance of an exact algorithm with crude Monte Carlo. The mean number of dimers at time 1

is reported with 95% a confidence interval. The approximated variance of the number of dimers is provided

for completeness. An estimate of the second moment is also provided with a 95% confidence interval.

Step-size Mean # paths CPU Time # updates

h = 3−7 3,712.3 ± 1.0 4,750,000 13,374.6 S 6.2× 1010

h = 3−6 3,707.5 ± 1.0 4,750,000 6,207.9 S 2.1× 1010

h = 3−5 3,693.4 ± 1.0 4,700,000 2,803.9 S 6.9× 109

h = 3−4 3,655.2 ± 1.0 4,650,000 1,219.0 S 2.6× 109

Table 2: Performance of Euler tau-leaping with crude Monte Carlo for the computation of the first moment

of X3, the number of dimers. The bias of the method is apparent.

dimers is approximately 0.11. Thus, the approximate number of exact sample paths we will need to generate

can be found by solving

1

n
Var(normalized # dimers) = (ǫ̃/1.96)2 =⇒ n = 5.18× 106.

Therefore, we will need approximately five million independent sample paths generated via an exact algo-

rithm.

We also note that with the rough orders of magnitude computed above for the different molecular counts

at time T = 1, we have N ≈ 3,500, α1 ≈ .38, and α2 = α3 ≈ 1. Therefore, we have that Nγ ≈
23, 000/3, 000 = 7.6 =⇒ γ ≈ 0.2485 for this problem (where we chose the “stiffest” reaction for this

calculation, which is that of M →M + P ). However, we note that the parameter γ changes throughout the

simulation and is quite a bit higher near t ≈ 0.

Implementing the modified next reaction method, which produces exact sample paths [2], on our ma-

chine2 (using Matlab), each path takes approximately 0.03 CPU seconds to generate. Therefore, the ap-

proximate amount of time to solve this particular problem will be 155,000 CPU S, which is about forty

three hours. The outcome of such a simulation is detailed in Table 1 where “# updates” refers to the total

number, over all paths, of steps, and is used as a crude quantification for the computational complexity of

the different methods under consideration.

Next, we solved the problem using Euler tau-leaping with various step-sizes, combined with a crude

Monte Carlo estimator. The results of those simulations are detailed in Table 2. Note that the bias of

the approximate algorithm has become apparent.3 We then implemented the biased version of MLMC

with various step-sizes. The results of those simulations are detailed in Table 3, where the approximations

and CPU times should be compared with those of Euler tau-leaping. The CPU times stated include the

time needed to solve the embedded optimization problem discussed in Section 8. Note that the gain in

computational complexity, as quantified by the # updates, over straight tau-leaping with a finest level of

hL = 3−7 is 56 fold, with straight tau-leaping taking 17.1 times longer. Also note that the bias of the

approximation method is still apparent.

Finally, we implemented the unbiased version of MLMC with various step-sizes. The results of those

simulations are detailed in Table 4. As in the biased MLMC case, the CPU times stated include the time

2We used an Apple machine with 8GB Ram and an i7 chip.
3This data also appears in [6].
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Step-size parameters Mean CPU Time # updates

M = 3, L = 7 3,712.6 ± 1.0 781.8 S 1.1 ×109
M = 3, L = 6 3,708.5 ± 1.0 623.9 S 7.9 ×108
M = 3, L = 5 3,694.5 ± 1.0 546.9 S 6.6 ×108

Table 3: Performance of biased MLMC with M = 3, ℓ0 = 2, and L ranging from 7 to 5. The reported times

include the time needed for the pre-computations used to choose the number of paths per level as discussed

in Section 8.

Step-size parameters Mean CPU Time Var. of estimator # updates

M = 3, L = 6 3,713.9 ± 1.0 1,063.3 S 0.2535 1.1 ×109
M = 3, L = 5 3,714.7 ± 1.0 1,114.9 S 0.2565 9.4 ×108
M = 3, L = 4 3,714.2 ± 1.0 1,656.6 S 0.2595 1.0 ×109
M = 4, L = 4 3714.2 ± 1.0 1,334.8 S 0.2580 1.1 ×109
M = 4, L = 5 3,713.8 ± 1.0 1,014.9 S 0.2561 1.1 ×109

Table 4: Performance of unbiased MLMC with ℓ0 = 2, and M and L detailed above. The reported times

include the time needed for the pre-computations used to choose the number of paths per level as discussed

in Section 8.

needed to solve the embedded optimization problem discussed in Section 8. We see that the unbiased MLMC

estimator behaves as the analysis predicts: there is no bias for any choice of M or L, and the required CPU

time are analogous to Euler’s method with a course time-step. Further, the exact algorithm with crude

Monte Carlo, by far the most commonly used method in the literature, demanded approximately 80 times

more updates and 140 times more CPU time than our unbiased MLMC estimator, with the precise speedups

depending upon the choice of M and L.

We feel it is instructive to give more details to at least one choice of M and L for the unbiased MLMC

estimator. For the case with M = 3, L = 5, and ℓ0 = 2, we provide in Table 5 the relevant data for the

different levels. As already stated in Table 4, the total time with the optimization problem was 1,114.9 CPU

S, more than the total CPU time reported in Table 5, which does not include the time needed to solve the

optimization problem. Note that most of the CPU time was taken up at the coarsest level, as is common

with MLMC methods and predicted by the analysis. Also, while the exact algorithm with crude Monte

Carlo demanded the generation of almost five million exact sample paths, we needed only 3,900 such paths

at our finest level. This difference is the main reason for the dramatic reduction in CPU time. Of course,

we needed more than eight million paths at the coarsest level, but these paths are very cheap to generate.

Finally, we note that the optimization problem divided up the total desired variance into non-uniform sizes

with the more computationally intensive levels generally being allowed to have a higher variance.

In Table 6 we provide the data pertaining to the estimate of the second moment using the unbiased

version of MLMC with M = 3 and L = 5 that appears in the second row of Table 4. The 95% confidence

interval for the second moment is 1.5031 ×107 ± 9 ×103, which should be compared with the confidence

interval generated using an exact method.

Example. We turn now to a simple example that allows us to study how the behavior of the developed
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Level # paths Mean Var. estimator CPU Time # updates

(X,Z3−5) 3,900 20.1 0.0658 279.6 S 6.8 ×107
(Z3−5 , Z3−4) 30,000 39.2 0.0217 49.0 S 8.8 ×107
(Z3−4 , Z3−3) 150,000 117.6 0.0179 71.7 S 1.5 ×108
(Z3−3 , Z3−2) 510,000 350.4 0.0319 112.3 S 1.7 ×108

Euler, h = 3−2 8,630,000 3,187.4 0.1192 518.4 S 4.7 ×108
Totals N.A. 3,714.7 0.2565 1031.0 S 9.5 ×108

Table 5: Details of the different levels for the implementation of the unbiased MLMC method with M = 3,

L = 5, and ℓ0 = 2. By (X,Z3−5) we mean the level in which the exact process is coupled to the approximate

process with h = 3−5, and by (Z3−ℓ , Z3−ℓ+1) we mean the level with Z3−ℓ coupled to Z3−ℓ+1 .

Level Estimate Var. of estimator 95% Confidence inteval

(X,Z3−5) 157,000 5.8 ×106 N.A.

(Z3−5 , Z3−4) 303,000 2.0 ×106 N.A.

(Z3−4 , Z3−3) 894,000 2.2 ×106 N.A.

(Z3−3 , Z3−2) 2.4888 ×106 4.2 ×106 N.A.

Euler, h = 3−2 1.1188 ×107 5.7 ×106 N.A.

Totals 1.5031 ×107 2.0 ×107 1.5031 ×107 ± 9 ×103

Table 6: Details of the different levels for the implementation of the unbiased MLMC method with M = 3,

L = 5, and ℓ0 = 2 for the approximation of the second moment.

methods depends upon the parameter γ. Consider the family of models indexed by θ,

A
θ
⇄
θ
B,

with,

XA(0) = XB(0) = ⌊1,000 θ−1⌋,

where ⌊x⌋ is the greatest integer less than or equal to x. The stochastic equation governing XA, giving the

number of A molecules, is

XA(t) = XA(0) + Y1

(∫ t

0
θ(2, 000θ−1 −XA(s))ds

)
− Y2

(∫ t

0
θXA(s)ds

)
,

with the Euler approximation given by

ZA(t) = ZA(0) + Y1

(∫ t

0
θ(2, 000θ−1 − ZA ◦ η(s))ds

)
− Y2

(∫ t

0
θZA ◦ η(s)ds

)
.

Letting N = XA(0), we see that θ = Nγ , implying

γ = ln(θ)/ ln(N).

Note, in particular, that γ > 0 ⇐⇒ θ > 1, with γ being a strictly increasing function of θ. Therefore,

we may test the dependence of the behavior of the MLMC method on this model by varying the single
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θ Method Estimate of XA(1) CPU time # Paths Speedup

.1 Crude MC 9,999.97 ± 0.20 1,476.9 S 164,800 N.A.

.1 MLMC: M = 3, L = 4, ℓ0 = 0 10,000.07 ± 0.19 6.5 S N.A. 227.2

.5 Crude MC 1,999.90 ± 0.16 1,110.9 S 124,100 N.A.

.5 MLMC: M = 3, L = 4, ℓ0 = 1 2,000.10 ± 0.16 15 S N.A. 74.1

1 Crude MC 999.96 ± 0.11 1,464.4 S 163,800 N.A.

1 MLMC: M = 3, L = 5, ℓ0 = 2 999.99 ± 0.11 28 S N.A. 52.3

2 Crude MC 500.01 ± 0.11 739.9 S 82,700 N.A.

2 MLMC: M = 6, L = 6, ℓ0 = 3 499.96 ± 0.11 21 N.A. 35.2

10 Crude MC 99.983 ± 0.044 900.2 S 100,600 N.A.

10 MLMC: M = 3, L = 6, ℓ0 = 5 99.965 ± 0.044 65 S N.A. 13.8

25 Crude MC 40.012 ± 0.028 898.0 S 100,500 N.A.

25 MLMC: M = 3, L = 6, ℓ0 = 6 39.996 ± 0.028 98 S N.A. 9.2

50 Crude MC 20.008 ± 0.0139 1,789.0 S 200,200 N.A.

50 MLMC: M = 3, L = 7, ℓ0 = 7 20.005 ± 0.0138 360 S N.A. 5.0

100 Crude MC 10.002 ± 0.0139 892.6 S 100,100 N.A.

100 MLMC: M = 3, L = 7, ℓ0 = 7 9.988 ± 0.0138 250 S N.A. 3.6

200 Crude MC 4.9996 ± 0.0088 1,120.3 S 125,400 N.A.

200 MLMC: M = 3, L = 7, ℓ0 = 7 4.9958 ± 0.0087 486 S N.A. 2.3

500 Crude MC 2.0029 ± 0.0044 1,781.6 S 199,400 N.A.

500 MLMC: M = 3, L = 7, ℓ0 = 7 1.9953 ± 0.0044 1,625.9 S N.A. 1.1

1,000 Crude MC 1.0038 ± 0.0043 897.2 100,200 N.A.

1,000 MLMC: M = 3, L = 7, ℓ0 = 7 1.0015 ± 0.0044 1,412.3 S N.A. 0.64

Table 7: Approximation of XA(1) with 95% confidence intervals. Note that the speedup factor decreases as

θ increases, with MLMC becoming less efficient than an exact method when θ = 1, 000.

parameter θ. We will let θ range from 0.1 to 1, 000 and for each θ use both an exact method with crude

Monte Carlo and the unbiased MLMC method developed here to estimate the mean number of A molecules

at time 1. We choose different values for our tolerance parameter, ǫ, for different values of θ. The results of

these computations can be found in Table 7.

The analysis of this paper predicts that as θ increases, MLMC should progressively lose its compu-

tational advantage over an exact algorithm, and this is borne out in the data provided in Table 7. Note,

however, that the unbiased version of MLMC remains significantly more efficient than an exact algorithm

until θ = 1, 000, in which case XA(0) = 1. Having θ = 1,000 is arguably the worst case scenario for an

approximate algorithm such as tau-leaping, and the coupling method performs slightly worse than using an

exact method with crude Monte Carlo. As discussed in Section 8, we would normally in this case simply

use the exact method alone. However, we report the MLMC data for the sake of comparison. Further, it is

extremely encouraging that there were still large gains in efficiency even when θ ∈ {25, 50, 100}, some-

thing not predicted by the current analysis. Interestingly, the speedup factor of MLMC over an exact method

appears, for this example, to be a function of θ. Specifically, as demonstrated by the log-log plot in Figure

1, we observed the relation

Speedup factor ≈ 54.6 θ−0.62.
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Figure 1: Log-log plot for the speedup factor of unbiased MLMC over an exact method. The best fit line,

not shown, is 4− 0.62x.

Example. We finish with a model of viral kinetics first developed in [36] by Yin et al., and subsequently

studied by Haseltine and Rawlings in [23], Ball et al., in [8], and E et al., in [14]. One reason the interest

in this model has been so high from the biological, engineering, and mathematical communities is that it

exemplifies a feature of many stochastic models arising in the biosciences: a separation of time scales. We

will use this model to demonstrate that one of the main ideas of this paper, the coupling, is not restricted to

the use of approximate methods defined using time-discretizations.

The model includes four time-varying “species”: the viral genome (G), the viral structural protein (S),

the viral template (T ), and the secreted virus itself (V ). We denote these as species 1, 2, 3, and 4, respec-

tively, and let Xi(t) denote the number of molecules of species i in the system at time t. The model involves

six reactions,

R1 : T
κ1→ T +G, κ1 = 1,

R2 : G
κ2→ T, κ2 = 0.025,

R3 : T
κ3→ T + S, κ3 = 1000,

R4 : T
κ4→ ∅, κ4 = 0.25,

R5 : S
κ5→ ∅, κ5 = 2,

R6 : G+ S
κ6→ V, κ6 = 7.5× 10−6,
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where the units of time are in days. The stochastic equations for this model are

X1(t) = X1(0) + Y1

(∫ t

0
X3(s)ds

)
− Y2

(
0.025

∫ t

0
X1(s)ds

)

− Y6

(
7.5× 10−6

∫ t

0
X1(s)X2(s)ds

)

X2(t) = X2(0) + Y3

(
1000

∫ t

0
X3(s)ds

)
− Y5

(
2

∫ t

0
X2(s)ds

)

− Y6

(
7.5× 10−6

∫ t

0
X1(s)X2(s)ds

)

X3(t) = X3(0) + Y2

(
0.025

∫ t

0
X1(s)ds

)
− Y4

(
0.25

∫ t

0
X3(s)ds

)

X4(t) = X4(0) + Y6

(
7.5× 10−6

∫ t

0
X1(s)X2(s)ds

)
.

Following [14], we assume an initial condition of X(0) = (0, 0, 10, 0)t. We see that whenever the

number of viral templates is positive, that is whenever X3 > 0, the rates of the third and fifth reactions will

be substantially larger than the others. At the times when X3 > 0 and X2 = O(1), we have that γ ≫ 1,

with γ remaining large until X2 = O(1000). However, even when X2 = O(1000), the natural time-scale

of the problem is O(1/1000), whereas the time-scale in which we would like to answer questions is O(1).
Instead of implementing our MLMC method directly, we take an alternative approach that makes use of

the idea of the coupling, though not the multi-level aspect of the paper. That is, we will build an approximate

process Z that will be used as a control variate for X . Towards that end, note that when the number of

templates is positive, reactions 3 and 5 are much faster than the others. Ignoring the other reactions, we see

that when X3 > 0, the “system” governing the dynamical behavior of S is

∅
1000X3(t)

⇄
2

S,

which has an equilibrium distribution that is Poisson with a parameter of 500X3(t), see [4]. Believing that

we may use this mean value of X2(s) in the integrated intensity of reaction 6, that is

∫ t

0
X1(s)X2(s)ds ≈

∫ t

0
X1(s)(500X3(s))ds, (43)

we hope a good approximate model for G, T , and V , which we denote by Z = (Z1, Z3, Z4) so as to remain

consistent with the enumeration of X , is

Z1(t) = X1(0) + Y1

(∫ t

0
Z3(s)ds

)
− Y2

(
0.025

∫ t

0
Z1(s)ds

)

− Y6

(
3.75× 10−3

∫ t

0
Z1(s)Z3(s)ds

)

Z3(t) = X3(0) + Y2

(
0.025

∫ t

0
Z1(s)ds

)
− Y4

(
0.25

∫ t

0
Z3(s)ds

)

Z4(t) = X4(0) + Y6

(
3.75× 10−3

∫ t

0
Z1(s)Z3(s)ds

)
.

(44)

Note that while Z is an approximate model of X , it is still a valid continuous time Markov chain satisfying

the natural non-negativity constraints. In particular, there is no time-discretization parameter in Z, which
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is where many technical problems related to tau-leaping (stability concerns, negativity of molecular counts,

etc.) arise.

We will now couple the two processes in a manner similar to (22) and build our estimator. Let ζk denote

the reaction vector for the kth reaction. Let λ6(X) = 7.5 × 10−6X1X2, and Λ6(Z) = 3.75 × 10−3Z1Z3.

For arbitrary f , we can estimate Ef(X(T )) via

Ef(X(T )) = E(f(X(T ))− f(Z(T ))) + Ef(Z(T )), (45)

where Ef(Z(T )) is estimated by crude Monte Carlo using the representation (44), which is relatively cheap
to simulate, and we estimate E(f(X(T )) − f(Z(T ))) using independent realizations from the coupled
processes (X,Z) below

X(t) = X(0) + Y1,1

(∫ t

0

min{X3(s), Z3(s)}ds
)
ζ1 + Y1,2

(∫ t

0

X3(s)−min{X3(s), Z3(s)}ds
)
ζ1

+ Y2,1

(
0.025

∫ t

0

min{X1(s), Z1(s)}ds
)
ζ2 + Y2,2

(
0.025

∫ t

0

X1(s)−min{X1(s), Z1(s)}ds
)
ζ2

+ Y3

(
1000

∫ t

0

X3(s)ds

)
ζ3

+ Y4,1

(
0.25

∫ t

0

min{X3(s), Z3(s)}(s)ds
)
ζ4 + Y4,2

(
0.25

∫ t

0

X3(s)−min{X3(s), Z3(s)}(s)ds
)
ζ4

+ Y5

(
2

∫ t

0

X2(s)ds

)
ζ5

+ Y6,1

(∫ t

0

min{λ6(X(s)),Λ6(Z(s))}ds
)
ζ6 − Y6,2

(∫ t

0

λ6(X(s))−min{λ6(X(s)),Λ6(Z(s))}ds
)
ζ6

Z(t) = Y1,1

(∫ t

0

min{X3(s), Z3(s)}ds
)
ζ1 + Y1,3

(∫ t

0

Z3(s)−min{X3(s), Z3(s)}ds
)
ζ1

+ Y2,1

(
0.025

∫ t

0

min{X1(s), Z1(s)}ds
)
ζ2 + Y2,3

(
0.025

∫ t

0

Z1(s)−min{X1(s), Z1(s)}ds
)
ζ2

+ Y4,1

(
0.25

∫ t

0

min{X3(s), Z3(s)}(s)ds
)
ζ4 + Y4,3

(
0.25

∫ t

0

Z3(s)−min{X3(s), Z3(s)}(s)ds
)
ζ4

+ Y6,1

(∫ t

0

min{λ6(X(s)),Λ6(Z(s))}ds
)
ζ6 − Y6,3

(∫ t

0

Λ6(Z(s))−min{λ6(X(s)),Λ6(Z(s))}ds
)
ζ6,

(46)

where the Yk,i’s are independent, unit-rate Poisson processes. Note that we have coupled the process

through the reaction channels 1, 2, 4, and 6, in the usual way, though not through 3 or 5, which are not

incorporated in the model for Z. Simulation of the coupled processes, which is itself just a continuous time

Markov chain in Z6
≥0, may proceed by any exact algorithm. Here we used the next reaction method [2, 16].

Supposing we want to estimate EX4(20), giving the mean number of virus molecules at time 20, we

calculate this value using both a naive application of the next reaction method with crude Monte Carlo, and

the control variate approach of (45) with the coupling (46). The details of the two computations are found

in Table 8. We see that the crude Monte Carlo implementation required 60 times more updates and 22 times

more CPU seconds than the control variate/coupling approach, again demonstrating the usefulness of the

core ideas of this paper.

10 Conclusions

This work focused on the Monte Carlo approach to estimating expected values of continuous time Markov

chains. In this context there is a trade off between the accuracy and the cost of each Monte Carlo sample.
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Method Approximation # paths CPU Time # updates

Crude Monte Carlo 13.85 ± 0.07 75,000 24,800 CPU S 1.45× 1010

Coupling 13.91 ± 0.07 N.A. 1,118.5 CPU S 2.41× 108

Table 8: Details of the approximated expected virus level at time 20 using crude Monte Carlo with an exact

algorithm and a control variate approach using the coupling (46).

Exact samples are available, but these are typically very expensive, especially in our target application of

biochemical kinetics. Approximate samples can be computed by tau-leaping, with the bias governed by a

discretization parameter, h. A realistic analysis of the cost of tau-leaping must acknowledge the importance

of system scaling. In particular, for a fixed system, in the limit h → 0 tau-leaping becomes infinitely

more expensive than exact sampling, since it needlessly refines the waiting times between reactions. In this

work, we studied tau-leaping in a general setting that incorporates system scaling without taking asymptotic

limits. Motivated by the work of Giles [18] on diffusion processes, we then introduced a new multi-level

version of the algorithm that combines coordinated pairs of tau-leaping paths at different h resolutions.

The two main conceptual advances in this work were (a) pointing out the practical benefits of a coupling

process that had previously been introduced solely as a theoretical tool, and (b) exploiting the availability

of an exact sampling algorithm to give an unbiased estimator. Our theoretical analysis of the computational

complexity showed that the new algorithm dramatically outperforms the existing state of the art in a wide

range of scaling regimes, including the classical scaling arising in chemical kinetics. The new algorithm is

straightforward to summarize and implement, and numerical results confirmed that the predicted benefits

can be seen in practice.

There are several avenues for future work in this area, including,

• using Quasi-Monte Carlo sampling to improve practical performance,

• customizing the method in the context of multi-scale or hybrid models, where it is possible to exploit

special structure in the form of fast/slow reactions or species, or where the discrete space Markov

chain is coupled to diffusion or ODE models,

• extending the theoretical analysis to the γ > 0 regime, in order to explain why we continued to

observe excellent results in practice,

• using the coupling idea without discretization to obtain a control variate method that exploits specific

problem structure, as illustrated in the third example of section 9.
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