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Abstract

Background: High-throughput (omic) data have become more widespread in both quantity and frequency of use,

thanks to technological advances, lower costs and higher precision. Consequently, computational scientists are

confronted by two parallel challenges: on one side, the design of efficient methods to interpret each of these data in

their own right (gene expression signatures, protein markers, etc.) and, on the other side, realization of a novel,

pressing request from the biological field to design methodologies that allow for these data to be interpreted as a

whole, i.e. not only as the union of relevant molecules in each of these layers, but as a complex molecular signature

containing proteins, mRNAs and miRNAs, all of which must be directly associated in the results of analyses that are

able to capture inter-layers connections and complexity.

Results: We address the latter of these two challenges by testing an integrated approach on a known cancer

benchmark: the NCI-60 cell panel. Here, high-throughput screens for mRNA, miRNA and proteins are jointly analyzed

using factor analysis, combined with linear discriminant analysis, to identify the molecular characteristics of cancer.

Comparisons with separate (non-joint) analyses show that the proposed integrated approach can uncover deeper

and more precise biological information. In particular, the integrated approach gives a more complete picture of the

set of miRNAs identified and the Wnt pathway, which represents an important surrogate marker of melanoma

progression. We further test the approach on a more challenging patient-dataset, for which we are able to identify

clinically relevant markers.

Conclusions: The integration of multiple layers of omics can bring more information than analysis of single layers

alone. Using and expanding the proposed integrated framework to integrate omic data from other molecular levels

will allow researchers to uncover further systemic information. The application of this approach to a clinically

challenging dataset shows its promising potential.
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Background
Due to the rapid advances in high-throughput technolo-

gies, the quantitative monitoring of various biological

molecules at the genomic scale (transcriptomics, post-

transcriptomics and proteomics, i.e. omics) is now easily

made available to number of laboratories at quickly drop-

ping costs. However, any single omic screen cannot fully
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unravel the complexity of a biological entity: integration

of multiple layers of information, (multi-omic) is therefore

required to understand more of these systems.

This study presents first the integrated analysis (tran-

scriptional, post-transcriptional and translational data,

[1,2]) of the multi-panel cancer dataset NCI-60, a set of 60

diverse human cancer cell lines derived from 9 different

tissues (http://discover.nci.nih.gov/cellminer/home.do). A

scheme of the process is outlined in Figure 1. Build-

ing on our previous approach to integrate transcriptional

and post-transcriptional data [3], the exemplar goal of
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Figure 1 Flowchart of data integration analysis. General outline of data integration, where three steps are involved: (1) mRNA, miRNA and

protein omic data are standardized and merged into one matrix (joint matrix); (2) FA is done on the joint matrix to identify the tissue-specific factors,

through which key molecules, including mRNAs, miRNAs and proteins, are filtered; (3) Functional analysis is performed using DAVID to extract

cancer-related features.

this analysis is the identification of multimolecular fea-

tures able to describe the tissues of origin of each sample.

This dataset is also processed with non-joint approaches

and alternative tools to quantify the information added

by our proposed method. All these analyses and results

are discussed in the body of the article. As a more chal-

lenging and practically relevant case we then tested our

approach on the large multi-molecular ovarian cancer

patients dataset (TGCA dataset, [4]). The results, based

on our proposed approach, are presented in a separate

Section at the end of this manuscript.

For data integration we used Factor Analysis (FA, [5])

applied directly on biological data without any a priori

hypothesis. This is both the potential and the limita-

tion of our approach: FA can isolate molecules that share

patterns of co-variation, meaning that cross layers asso-

ciations among molecules are already elaborated in the

results proposed, as factors contain protein, miRNA and

mRNA. However, this does not resolve the biological

causes behind these associations: reasons of this common

variance have then to be searched manually by an expert

curator. Co-variation may therefore be attributed to the

expression of genes under the same transcription factor,

binding to the proper promoter sites spread across the

genome, or to the repression of a function due to the

silencing of co-expressedmiRNAs, only to name a few.We

made the conscious choice to leave interpretation to man-

ual expert curation to allow maximum flexibility in the

interpretation, spanning from annotations for functions

or pathways to co-localization on the genome. Neverthe-

less, the use of a priori knowledge (namely the tumor

tissue of origin for NCI-60 and clinical classifications

for TGCA) to constrain via linear discriminant analy-

sis (LDA, [6]) the relation between the latent variables

under study and the factors obtained, eases the process

of results’ interpretation, as it gives a phenotypic support

to the molecular interpretation of the latent structures.

We remark here that alternative approaches to constrain

the factors model are possible and can lead to compara-

ble results. In particular, LDA can be replaced with other

classifiers such as Bayesian classifiers [7-9], Support Vec-

tor Machine [10], K-nearest-neighbor [11]. More details
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on alternative methods are discussed below and proposed

in the Results and discussion section.

Related work

The earliest attempts of data integration reported in lit-

erature analyze data from individual omics separately and

only downstream of these parallel analyses results are

merged (only to list a few [12-15]). This, although relevant,

implies the loss of important properties which can only

be uncovered when multiple omic dataset are viewed as

a whole. The theoretical background behind this assump-

tion lies in the definition of emergent property in Systems

Theory, now becoming popular/familiar in Systems Biol-

ogy [16-19]. Emergent properties indicate how some fea-

tures of a system can only become observable when the

system is studied as a whole and not as the sum of its

parts. The justification -in a biological context- for the

need to integrate mRNA, miRNA and protein expression

has experimentally been quantified only recently [20].

More recent approaches have attempted to directly inte-

grate multi-omic data. We cite here iCluster [21] as it

is fundamentally based on the same principles as our

own approach (FA). However, iCluster uses an unsu-

pervised technique to identify the best factors (there

named clusters) that is theminimization of the Proportion

of Deviance (POD). Our approach, conversely, recom-

mends LDA or other classifiers which aim at maximizing

the accuracy of factors combinations in predicting some

external categories (tissue of origin, response to ther-

apy) it is therefore a supervised approach. Depending

on the problem under study, supervised or unsupervised

approaches may be necessary. We remark here that the

ability to predict structures in the absence of external

information (i.e. unsupervised) comes at higher computa-

tional costs for iCluster versus our approach (days versus

minutes). PARADIGM [22] is another approach aiming

at the integration of heterogeneous data and, addition-

ally, at the inference of connections among the identified

molecules. To date this method does not includemiRNAs,

and recovers connections on the bases of the signaling

pathways it has been trained with (therefore excluding

association due, for example, to co-localization on the

genome). Integration of PARADIGM with our approach

(provided they can both be input with the same data)

could bring complementary information on multiomic

analyses.

Finally, for the specific case of the NCI-60 cancer

cell line dataset, since it has been deeply profiled for

many types of research (drug response, chromosomal

aberrations, mutational status, etc.) we highlight, among

the wide range of literature existing, the following 3

researches, as they utilize as objective function for the

evaluation of their results the appropriateness of the pre-

diction of the tissue of origin. In [23] the authors perform

miRNA profiling with the purpose of determining tissue-

specific markers. We used these results as control of the

coherence of our findings for miRNAs. Blower and co-

workers [24] performed miRNAs screen on the NCI-60

cell lines, and suggest as future work to integrate vari-

ous layers of omics to extract major information, therefore

supporting the type of analysis here proposed. From their

observations the authors conclude that cell line groupings

based on miRNA expression are generally consistent with

tissue type and with cell line clustering based on mRNA

expression, although mRNA expression seems to be more

informative. We will show in our work that indeed -

when integrated- the two layers can bring even more

information. Very recently, other authors [25] proposed

a method to reconstruct association modules containing

cancer aberrations drivers. The method evaluates a large

number of variables including the effects of Copy Num-

ber Variations, genes mutations and methylations on the

expression of mRNA and miRNA as well as the direct-

and anti-correlation among mRNAs and between mRNAs

and miRNAs. Although there are strong and well known

limitations in the consideration of such direct types of

correlations (see [3,24,26]) we think that the integration

of our approach (for the mRNA, miRNA, protein asso-

ciation) with this one (for the DNA layer processing)

could bring additional insight into the characterization of

cancers, and can represent future work in this direction.

Methods
Materials

The NCI-60 is a set of 60 human cancer cell lines

derived from 9 diverse tissues including melanomas

(ME), leukemias (LE), breast (BR), renal kidney (RE),

ovary (OV), nervous central system (CNS), non-small

cell lung (LC), prostate (PR) and colon (CO) canc-

ers (http://discover.nci.nih.gov/cellminer/home.do). Since

1992 these cell lines have been intensively studied and

they have also, more recently, been processed with high-

throughput technologies. The datasets here used are

obtained from two different publications, where the same

60 NCI-60 cell lines are considered, prepared according

to the same experimental protocol and sampled. Profiles

of mRNA and miRNA can be found in [27] produced

using Agilent technologies, while in [15] mRNA profiles

are obtained with Affymetrix HG-U95A and HG-U133A

chips and the protein level is analyzed by reverse-phase

protein lysate arrays (RPLA).

Data preprocessing

The three omic datasets (mRNAs, miRNAs and proteins)

were downloaded from CellMiner (http://discover.nci.

nih.gov/cellminer/home.do). The proprietary Affymetrix

.CEL files were loaded and processed as described in the

original publications, and finally mRNA and miRNA were

http://discover.nci.nih.gov/cellminer/home.do
http://discover.nci.nih.gov/cellminer/home.do
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treated with quantile normalization [28]. Since mRNA

profiles are obtained from different labs and platforms,

to account for unexpected variance or noise, we first fil-

tered the mRNAs showing differential behavior between

the 2 datasets (Pearson correlation >0.5). In general, mul-

tiple probes on a chips map on a single gene (Entrez

Gene), therefore, for each gene, we calculated all the Pear-

son statistics between each probe in the two datasets

[15,27]. For each gene, the maximum value was cho-

sen as representative of the correlation of the two genes

between the two studies, obtaining 27808 probes (16734

Entrez Gene IDs). In order to further compact and prop-

erly join the datasets, multiple probes treatment was then

performed to cluster probes from the same gene (hierar-

chical clustering, cutoff height = 0.6). For each cluster

we choose the mean value to represent the expression

of the gene, leading to a 24040 × 60 matrix from the

above 27808 probes. We limited the number of mRNAs

to probes that showed relatively high and diverse expres-

sion across the NCI-60, by calculating, for each mRNA

probe (p) two values: maximum probe intensity, max(p),

and probe inter-quartile range, IQR(p), across the dataset.

In total, 6162 probes (out of 41,000) appeared in both

the top half of max(p) and the top half of IQR(p). Multi-

ple probes processing was also performed on the protein

dataset and a 157 × 60 matrix (94 Entrez Gene IDs) was

finally obtained. All the 365 miRNAs from [27] were used

without any additional filtering. As a last step, the pre-

processed datasets of mRNA, miRNA and protein were

standardized across all samples using the mean as base-

line: x = (xexp−c)/c, where xexp represents the expression

level and c the mean on all the samples of the same

molecule. The three omic datasets were finally joined in a

single (6162 + 157 + 365) × 60 matrix on which FA was

performed.

Models definition

FA is a statistical method used to uncover the structure

underlying a relatively large set of variables, which can be

described as X = FL+ e, where X is the omic joint matrix

with samples representing the variables, F is the factors’

scores matrix representing the latent structure of X, L is

the factors’ loadings matrix which shows the relationships

between factors and variables, and e is the unique factors

matrix. The maximum number(n) of meaningful latent

features (factors) can be computed based on the general

rationale that -upon factorization- the components of a

matrix that explain less variance than the original stan-

dardized variables should be discarded, as they do not

carry relevant information. Since the number obtained

represents a maximum, after which factors may loose

meaning and interpretability, it is useful to compute FA

for all possible number of factors between 1 and n. Each of

these FA results is named a model (M i, i=1,..n) here, and

labeled with the corresponding number of factors (M1,

Mn), each Model is therefore characterized by a growing

number of factors named Fj, j = 1 . . . i.

Factors selection

Models were then selected based on their ability to dis-

tinguish cancers according to any of the relevant prop-

erties available (in our case tissue of origin for NCI-60,

or response to thserapy for TGCA) using LDA. The

χ2-test was used to estimate the significance of the

LDA accuracy. The significant factors consist of lists

of relevant molecules, weighted by their factors’ scores

(threshold set to 2.6). The key point here is that these

factors directly contain proteins, mRNAs and miRNAs

that do not need further processing to be associated.

These molecules’ groups are then annotated to ease the

interpretation of the properties emerging from this joint

analysis.

Functional analysis

For each cancer subtype, the identified key mRNAs and

proteins are annotated directly using DAVID, i.e. Gene

Ontology (GO, [29]) PANTHER [30], BIOCARTA [31],

KEGG [32] and RACTOME [33]. To examine the signif-

icance of the enrichment, a modified Fisher exact test

(EASE score, [34]) was used to calculate the p-value, and

FDR was further adopted to correct for multiple hypoth-

esis testing (threshold 0.05), having the human genome as

background. The miRNAs were annotated based on their

targets identified via TargetScan [35].

Comparison with other approaches

We compared our FA-based approach with othermethods

in two ways: i) joint analysis versus separate analysis and

ii) FA-based joint approach versus other joint method.

In the first comparison, the separate analysis treated the

mRNA, miRNA and protein datasets as separate matri-

ces and imputed them separately in the pipeline FA+LDA,

this outputs, for each omic layer a combination of tissue-

specific factors. The key molecules in each omic layer are

merged tissue-wise for functional annotation as described

in Functional Analysis.

The second comparison tests the results on a different

way of integrating the 3 omic layers using other classical

methodologies, i.e. the combination of hierarchical clus-

tering (HC) and SAM [36]. The joint (6162+157+320)×

60 matrix is used as input to HC via the function hclust

in the R package stats, which results in different clus-

ters (groups) specific to different tissues of origin. SAM

is then used to group the clusters and to identify the

key molecules (from 3 omic layers). Functional analysis is

done similarly to the FA-based integratedmethod. Further

description about the comparisons is discussed in Results

and discussion section
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Results and discussion
For our dataset, the maximum number of meaningful fac-

tors is n=16. In the present manuscript we chose to focus

on cancers tissue types, since they represent an easy-to-

validate feature for which novel information can be rapidly

integrated (see also Related work Section). LDA identi-

fies as the best model to discriminate the samples with

respect to the tissue of origin the 8-factor model (M8)

which can significantly discriminate the tissue of origins

with accuracy (0.833). In particular, F1, F2, F3, F4, F5, F7

and F8 of this model can be used to discriminate respec-

tively ME, CO, LE, RE, OV, LC and CNS cancers from

other tissues of origin with significantly high accuracy

(>0.9, see Table 1 for details). For the separate analysis,

the best models to discriminate the tissue of origin are

M8 (among M1-M14) for mRNA (accuracy 0.783), M10

(among M1-M20) for proteins (accuracy 0.833) and M9

(amongM1-M16) for miRNA (accuracy 0.633), details on

the factors can also be found in Table 1.

In the rest of this section we report the biological mean-

ing of the factor which loadings show the clearest relation

with the tissue of origin in the integrated analysis, that is

F 1 for melanomas (full molecules list in Additional file

1). In particular, we highlight how the method is able to

identify two relevant types of information: a complete and

up-to-date set of miRNAs -which involvement in tumor-

ous processes is being increasingly appreciated-, and the

crucial players in the Wnt pathway which importance in

Melanomas is discussed in light of the most recent find-

ings. Finally, a comparison with the results obtained with

other approaches is also reported.

Before entering these details, we can generally observe

an interesting flow of information, changing with the dif-

ferent type of data being integrated and thus annotated

in the analysis. In particular, we can observe that the

joint analysis (Table 2, columns 2-4) gives fully relevant

molecular information only when all 3 types of molecules

are being annotated. In fact, although pigmentation dur-

ing development, pigmentation, melanocyte differentia-

tion, pigment cell differentiation and melanin metabolic

process are constantly statistically significant, Melanogen-

esis and melanin metabolic process only appear when

proteins or proteins and miRNAs are included for anno-

tation. Compared to the separate analysis -although both

methods give complete molecular information on biologi-

cal processes related to pigmentation during development,

pigmentation, melanocyte differeniation and pigment cell

differentiation- the joint analysis enriches the descrip-

tion of Melanogenesis, that is the major process upstream

the melanocyte differentiation and pigmentation. Con-

versely, the separate analysis cannot report as enriched the

melanin biosynthetic process and melanin metabolic pro-

cess, which are processes related to the basal melanocyte

physiology (see Table 2, columns 5-7).

Relevance of miRNAs in Melanoma The miRNA list

identified by the proposed integrated method are shown

in the worksheet Joint in Additional file 1. Our results

indicate that miR-204 and miR-211 are important in

melanoma cell lines and this is consistent with spe-

cific tumor profiles previously reported [23]. In partic-

ular, miR-211 transcription is described to be regulated

by the microphthalmia-associated transcription factor

(MITF), a master switch of melanocytes development

and melanoma progression via Wnt/β-catenin signaling.

In a deeper investigation [37] an additional mechanism

of action is proposed: MITF transcriptionally induces

miR-211 to inhibit the translation of POU3F2/BRN2

(POU class 3 homebox 2), therefore increasing the inva-

sive potential of tumor cells. Consistently, in our anal-

ysis MITF as well as POU3F2 appear to be relevant in

the melanoma. Sakurai and colleagues [38] found that

Table 1 Models and factors that discriminate the tissue of origins via joint and separate analysis

Methods Joint Separate

Data mRNA & Prot &miRNA mRNA Prot miRNA

Best Model M8 M8 M10 M9

Tissue & Factor

ME F1 (0.98, 3 × 10−13) F1 (0.98, 3 × 10−13) F4 (0.93, 7 × 10−9) F1 (0.98, 3 × 10−13)

CO F2 (0.97, 8 × 10−11) F2 (1, 7 × 9−15) F8 (0.92, 1 × 10−5) F2 (0.95, 2 × 10−9)

LE F3 (1.0, 9 × 10−15) F3 (1, 9 × 10−15) F1 (0.98, 1 × 10−12) F3 (1.0, 9 × 10−15)

RE F4 (0.98, 7 × 10−13) F4 (0.97, 7 × 10−13) F10 (0.93, 1 × 10−7) F7 (0.93, 3 × 10−7)

OV F5 (0.9, 2 × 10−3) F5 (0.92, 1 × 10−5) F3 (0.9, 3 × 10−3) F9 (0.92, 8 × 10−5)

LC F7 (0.95, 8 × 10−10) F7 (0.92, 8 × 10−7) F2 (0.93, 3 × 10−8) NA

CNS F8 (0.97, 5 × 10−10) F8 (0.93, 2 × 10−5) F7 (0.95, 5 × 10−8) F8 (0.95, 1 × 10−3)

The first 3 rows in the table describe a hierarchy of information about the factor analyzed to extract information relevant for the tissue of origins listed in column 1.

Namely: the type of analysis, that is joint or separate. Within the separate analysis 3 options are possible i.e. analysis of mRNA only, or miRNA only or proteins only.

Finally, the factor analysis model (M) chosen to describe the tissue is noted in row 3, the number indicates the number of factors obtained from the analysis. Finally

each cell in the matrix indicate which factor among the ones available in the model better describe each tissue type. In each cell, accuracy (acc.) and p-value related to

the ability of the Factor to predict the tissue are reported.
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Table 2 Comparison of the functional annotation results from different methods for Melanoma

Molecules

Joint Analysis FA (HC) Separate Analysis FA (HC)

mRNA mRNA mRNA mRNA mRNA mRNA

&Prot &Prot +Prot +Prot

Biological terms &miRNA +miRNA

GO:0048066 pigmentation during development X (X) X (X) X (X) X (X) X (X) X (X)

GO:0043473 pigmentation X (X) X (X) X (X) X (X) X (X) X (X)

GO:0030318 melanocyte differentiation X (X) X (X) X (X) X (X) X (X) X (X)

GO:0050931 pigment cell differentiation X (X) X (X) X (X) X (X) X (X) X (X)

GO:0042438 melanin biosynthetic process X ( X) X (X) X (X) - (X) - (-) - (-)

GO:0006582 melanin metabolic process - (-) X (X) X (-) - (-) - ( -) - (-)

GO:0046148 pigment biosynthetic process - (-) - (X) - (-) - (-) - (-) - (-)

hsa04916:Melanogenesis - ( -) X (-) X (-) - (-) - (-) - (-)

BP00193:Developmental processes - (-) X (-) - (-) - (-) X (X) - (-)

GO:0010033 response to organic substance - (-) X (-) - (-) - (-) - (-) - (-)

GO:0019233 sensory perception of pain - (-) X (-) - (-) - (-) - (-) - (-)

GO:0030029 actin filament-based process - (X) - (X) - (-) - ( -) - (-) - (-)

GO:0030036 actin cytoskeleton organization - (X) - (X) - (-) - (-) - (-) - (-)

GO:0001501 skeletal system development - (-) - (-) - (-) - (-) X (X) - (-)

Comparison of the annotations done on the joint versus the separate analysis for the FA based method (indicated with FA). The table also contains the comparison

with the alternative method hierarchical clustering and SAM (indicated by HC, the results are listed in parentheses in each cell and refer to the application of HC to the

joint or separate analysis coherently with the FA annotation in the same cell). & indicate that the annotations are done on the corresponding molecules treated jointly

and + indicates that annotation is done downstream of 3 independent analyses.

miR-211 participates to the expression of Preferentially

Expressed Antigen of Melanoma (PRAME, c23). In our

case, PRAME is identified as key gene and the functional

analysis results show that it may work in the apoptosis/cell

death and proliferation processes.Moreover, in our results

cell death and apoptosis emerge as related to the pres-

ence of miR-363 and miR-146a. High levels of miR-146a

were in fact revealed in the melanoma cell lines, and their

function is known to be related to their metastatic poten-

tial [23]. Finally, we identified a set of miRNAs in the

miR-509-miR-514 cluster, including miR-509-3-5p, miR-

509-3p, miR-509-5p, miR-513c and miR-514. Comparing

to other tissues, all these miRNAs showed a high level of

expression in melanomas, consistent with literature find-

ings [23,39]. This miRNA cluster is located on Xq27.3 in

the human genome, very close to the Melanoma Anti-

gen family A genes (MAGEA1, MAGEA4 and MAGEA8)

and CSAG2 (CSAG family, member 2), which are key

mRNAs and expressed at a high level in our data. There-

fore, this miRNA cluster, along with melanoma associated

antigens, is likely to be cis-transcribed and may represent

a molecular signature able to distinguish melanoma from

all other tumor tissues. The separate analysis highlighted

two more miRNAs: miR-224 and miR-502-3p, which are

melanoma-relevant. However, no connections between

mRNAs/proteins and miRNAs were found.

Emergence of theWnt Pathway in Melanoma We then

turned our attention to the genes known in literature to be

related to melanoma. In particular, human pigmentation

appears to be one of the main modulators of individuals’

risk of developing malignant melanoma [40]. Among the

relevant genes we identified, Dopachrome Tautomerase

(DCT) is reported to play a critical role in lowering the

oxidative stress melanocytes are physiologically subjected

to during pigmentation; it is also known that levels of DCT

are elevated in melanoma cell lines which are particularly

resistant to chemotherapy and radiation [41]. Edn Recep-

tor Type B (EDNRB) is another relevant gene essential

for the development of melanocytes and has been associ-

ated with melanoma progression [42]. Finally, Tyrosinase

(TYR) and Tyrosinase Related Protein 1 (TYRP1/gp75),

two proteins involved in the melanocyte pigmentary

machinery, are increasingly used as differentiation mark-

ers given their emerging role in malignant transformation

and tumor progression [43]. In our results, these genes

all contribute to the emergence of the Melanogenesis

annotation, the physiological process driving differenti-

ation of neural crest progenitors, their migration and

maturation into functional melanocytes. Consequently,

we chose to investigate the connection among all the

genes related to this annotation, making use of STRING

(http://string.embl.de/, [44]). This database of known and

http://string.embl.de/
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predicted protein interactions, includes direct (physical)

and indirect (functional) associations derived from four

sources: genomic context, high-throughput experiments,

coexpression and literature. The 4 sources can be further

extended into 8 types of evidences and in a STRING map,

edges’ color represent the different types of evidence. The

confidence score (set here to the default valuemedium) is

an indicator of the robustness of the connection.

As it is shown in Figure 2, the mild increase in the num-

ber of molecules between the joint and separate analysis

(11 in Figure 2(a) versus 6 in Figure 2(b)) is nonethe-

less able to drastically change the informative content

of the findings. Genes CTNNB1 and GSK3B emerging

in the joint analysis are of particular relevance. These

tightly interacting molecules related to the Wnt canonical

pathway, are known to crucially regulate melanoblasts fate

[45] and even to be involved in melanoma [46]. CTNNB1

and GSK3B genes codify for protein β-catenin and its

repressor, Glycogen Synthase Kinase 3-β , respectively.

Notably the former is the key factor of the highly con-

served canonical Wnt signaling pathway, which activation

culminates in the β-catenin cytosolic accumulation and

nuclear translocation. Then its interaction with transcrip-

tion factors results in the regulation of target genes medi-

ating cell fate, proliferation, and migration. Mutations or

aberrant expression of canonical Wnt pathway compo-

nents, have been identified to promote deregulation of

β-catenin-responsive genes affecting cell differentiation

and apoptosis, and are thus responsible of tumor initiation

and progression. In particular in colon and liver cancers

Figure 2Melanogenesis. Network of interaction among the molecules related to Melanogenes using STRING (http://string.embl.de/) obtained

from different methods, including joint and separate analysis based on FA+LDA (combination of factor analysis and linear discriminant analysis) and

HC+SAM (combination of hierarchical clustering and SAM). (a) Joint approach (FA+LDA) and (b)Separate approach (FA+LDA) are from the

joint and separate analyses based on FA+LDA methods, respectively. The loss of connectivity due to the lack of molecules CTNNB1 and GSK3B in the

separate analysis corresponds to a loss of information related to the Wnt signaling pathway which is of utmost relevance in melanocyte

differentiation and melanoma onset. (c) Joint approach (HC+SAM) and (d) Separate approach (HC+SAM) illustrate the results from the joint

and separate analyses based on HC+SAMmethods, respectively. Similarly to the FA+LDA methods, joint analysis shows better performance than

the separate analysis since the latter is not able to identify the key factor TYR for melanogenesis. Overall, regarding melanogenesis, FA+LDA

methods outperforms HC+SAM, and the joint analysis is more informative than the separate analysis. Joint analysis based on FA+LDA only is able to

uncover the emergentmelanogenesis process in melanoma.

http://string.embl.de/
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canonical Wnt signaling produces enhanced quantities

of cytoplasmic and nuclear localized β-catenin, which

correlates with invasion and poor prognosis. Conversely

β-catenin in melanoma is associated with good outcome

and improved survival, while its reduced expression is

linked to cancer progression, including metastasis. A wide

range of studies have validated the immunohistochemi-

cal detection of nuclear β-catenin as a survival marker in

several cancers, solidifying the importance of this path-

way in oncogenesis and in tumor progression [47]. Since

increased nuclear β-catenin is found in the majority of

benign nevi and in tumors with low proliferative index, it

has been considered as a surrogate marker of cell differen-

tiation and useful to identify the histological phenotype of

tissue lesions [48,49].

What is unique to the joint analysis (see Figure 2(a)),

is that, within Melanogenesis the contribution of the

Wnt/β-catenin signaling pathway emerges. Without gene

CTNNB1 (missing in the separate analysis, Figure 2(b))

it is not possible to mention the canonical Wnt signaling

pathway and therefore, all the above considerations, that

are crucially related to the characterization of melanoma

and carcinogenesis, have to be ignored. In summary

through our computational results we can conclude that

the joint approach is able to obtain more information then

the separate one, from the same data. As a consequence,

our findings can be informative on the mechanism under-

lying the biology of tumors and therefore contribute to

understanding the nature of the neoplastic lesion, which

is of crucial importance to identify a suitable and effective

therapy.

Comparison with other integrated approaches

Preprocessing, definition of joint and separate analyses

and the method used to evaluate the significance of the

discrimination (χ2-test) are the same used in the FA

based-method. Results on the annotations are listed in

parentheses in Table 2.

Alternative Joint Analysis The hierarchical clustering

results show that the joint analysis can significantly dis-

criminate the tissues with global accuracy 0.62 (p-value <

10−7) lower than the FA based method (0.83). The accu-

racy and p-values for discriminating individual tissues

from others are CNS (1, 2 × 10−12), CO (0.93, 1 × 10−11),

LE (0.95, 9.4 × 10−14), ME(0.98, 1 × 10−11), LC(0.93, 1 ×

10−7), RE(0.98, 4 × 10−11). For a detailed and fair com-

parison SAM was used to select the most differen-

tially expressed molecules, through comparison of the

melanoma cluster with all other tissues. SAM identified

an heterogeneous signature of 159mRNAs, 2 proteins and

21 miRNAs for melanoma (FDR ≤ 0.001, � = 2.6). Sim-

ilarly to the FA-based joint analysis, mRNAs and proteins

were significantly enriched in the biological terms pig-

mentation during development, pigmentation, melanocyte

differentiation, pigment cell differentiation and melanin

biosynthetic process. However, the important pathway

melanogenesis did not appear to be significantly enriched.

Only five genes, DCT, EDNRB, MITF, TYR and TYRP1

are found in the melanogenesis pathway, again missing

the essential Wnt signaling pathway genes: CTNNB1 and

GSK3B (see Figure 2(c)). Comparing to the FA joint anal-

ysis, more miRNAs (21 versus 14) were identified. In

particular, the miR-509-514 cluster is shared with the FA

joint analysis, but no nearby genes, such as MAGEA1,

MAGEA4, MAGEA8 and CSAG2 were identified in the

list of key mRNAs, nor proteins.

Separate Analysis Using hierarchical clustering, both

mRNAs and miRNAs can perfectly discriminate ME

from other tissues (0.98, 1 × 10−11 ). Conversely, pro-

teins alone are not able to identify ME and therefore we

did not apply SAM to this dataset. On the contrary, on

mRNAs, SAM was able to identify 149 molecules, sig-

nificantly enriched in pigmentation during development,

pigmentation, melanocyte differentiation and pigment

cell differentiation. As in the clustering joint analysis,

the melanogenesis pathway information did not emerge

as an enriched one, and only DCT, EDNRB, MITF and

TYRP1 were included, see Figure 2(d). Regarding the miR-

NAs, 20 molecules -most of which are shared by the two

(joint and separate) analyses- are found to characterize

ME, meaning that no additional nor diminished informa-

tion appears when comparing miRNA results to the joint

analysis. Considering the nearby genes of the miR-509-

miR-514, only MAGEA6 (Melanoma Antigen family A 6)

and LOC100130935 (CSAG2) located at Xq28, which are

also highly expressed in ME, are found in the mRNA list.

Application of the TCGA dataset
To asses our approach not only in terms of the

improved knowledge obtained from the joint versus

separate analysis, but also in terms of the relevance

of the information carried by the latent features, we

applied the method to a more complex dataset that

is a large high-grade serous ovarian adenocarcinomas

dataset (HGS-OvCa)[4]. For each patient several clinical

parameters are provided, namely: AgeAtDiagnosis, VITAL

STATUS, TUMORSTAGE , TUMOR GRADE, Platinum

Status, TUMORRESIDUAL, PRIMARYTHERAPYOUT-

COMESUCCESS, OverallSurvival, ProgressionFreeStatus

and ProgressionFreeSurvival. The dataset is extremely rich

and complex, including also methylation and copy num-

ber variation data (but no proteins). In order to per-

form a fair validation of the above method we only used

mRNA and miRNA data, which could nevertheless recol-

lect important clinical information found in the original
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publication. In the near future we plan to include other

omic layers (methylation/copy number) upon evaluation

of the impact of the different data distribution (binomial

and discrete respectively).

We downloaded 489 mRNA and miRNA profiles from

HGS-OvCa patients. Among these 489 patients, we

retained only the 287 that have defined information of

the response to platinum treatment (PS, PLATINUM

STATUS). The mRNA dataset is obtained from 3 plat-

forms: Affymetrix Exon 1.0, Agilent 244k Whole Genome

Expression Array and Affymetrix HT-HG-U133A, as

described in Supplementary Methods S6 of [4]. Gene

expression values were rescaled as relative gene expres-

sion values, calculated by subtracting the mean expression

value across samples from the gene estimate and divid-

ing by the standard deviation across patients. To join the

mRNA and miRNA dataset, we calculated the relative

gene expression value for miRNAs in the same way as

mRNAs. The FA+LDA approach let emerge a 13-factor

model (M13) which correlates with important aspects of

the clinical outcomes i.e. PLATINUM STATUS, that is the

response to the platinum-based chemotherapy from the

date of last primary treatment, and VITAL STATUS, or

the living/deceased patients status at follow-up. In par-

ticular, among the 13 factors in M13, F 7 can discrimi-

nate platinum resistance from platinum sensitivity with

accuracy 0.7 and F 8 can discriminate both Living and

Deceased patients significantly from all other patients

with accuracy 0.635 and 0.632, respectively.

DAVID functional annotation of the genes identified

withinM13 revealed several significantly represented bio-

logical categories related to HSG ovarian cancer (HSG

Ov-Ca), see Additional file 2 for the details of the key

molecules and the enriched biological terms. From a gen-

eral point of view functions like Immunity,Antigen presen-

tation and Inflammatory response are known to be strictly

connected and to play a fundamental role in the anti-

tumoral immune activity [50,51]. Similarly, physiological

processes like Development, ECM-interaction and Plas-

minogen cascade, normally regulating tissue remodeling,

lead to cancer growth and spreading through metastases,

when altered [52]. We found F 7 and F 8 of particular rel-

evance, as they are able to describe essential and peculiar

aspects of HSG Ov-Ca and they correlate with clini-

cal indexes referring to chemotherapy efficacy such as

resistance/sensitivity to platinum treatment and patients

survival respectively. Specifically, most of the enriched

pathways characterizing F 7 are related to Development

and Morphogenesis. All the embryonic developmental

processes such as Ectoderm development, Neurogenesis,

Developmental processes, Embryonic skeletal system devel-

opment and morphogenesis, Anterior/posterior pattern

formation share biological terms belonging to the HOX

family of homeobox genes. The precise spatial and

temporal expression of these genes is well acknowledged

to be critical in specifying organ patterning of the repro-

ductive tract during embryogenesis, and in controlling

proliferation, cell migration and DNA repair. Aberrant

activation of such embryonic pathways is implied in the

neoplastic transformation of ovarian cancer tumorigene-

sis [53]. Several studies describe the HOX genes family as

able to influence HSGOv-Ca subtypes development, their

aggressiveness and the likelihood of metastasis together

with the response to therapy, as such they are biomark-

ers investigated in histopathology [54,55]. In addition to

the HOX gene network an important transcription factor

of embryonic patterning, RUNX3(runt-related transcrip-

tion factor 3), was found to be differentially expressed

within F 7. RUNX3 has been reported to be overexpressed

in HSG Ov-Ca cells and tissues, upregulating cells pro-

liferation through downstream interference with TGF-β

(transforming growth factor beta) cellular growth inhibi-

tion [56]. It is noteworthy that RUNX3 immuno-staining

in HSG Ov-Ca subtypes samples correlate with clinical-

pathological variables, like overall survival of platinum

treated patients [57]. Hence RUNX3 is a key molecule act-

ing as prognostic factor for HSG Ov-Ca characterization,

since is involved in platinum resistance mechanisms.

Among the miRNAs let-7b and miR-203 in F 7 are note-

worthy (see sheet miRNA lists in Additional file 2). In

fact, let-7b andmiR-200 families are well acknowledged as

two major microRNA families frequently deregulated in

ovarian cancer and associated with tumor aggressiveness,

tumor invasion and chemoresistance [58,59].

The other relevant factor, F 8 was found to be enriched

for biological processes/pathways such as Immune res-

ponse, Cytokine/chemokine (eg. ILs, CXCLs), Interferon

(IFNs) and Macrophage mediated Immunity, Antigen pre-

sentation and Inflammation, based on the functional

analysis on both mRNAs alone and mRNAs and miR-

NAs jointly (see sheet FuncAnnos of mRNA&miRNA,

Additional file 2). Network representation from STRING

[44] of the genes involved in these biological pro-

cesses/pathways show that the relevant genes highlight

the chemokines family (red oval in Figure 3) and Inter-

feron and cytokines (black oval in Figure 3). These find-

ings are of high relevance to HSG Ov-Ca, since immunity

and inflammatory cytokines stimulation have been clearly

proven to mainly influence either the tumor phenotype

or the platinum chemotherapy response [60]. Moreover,

in an elegant large-scale study Yoshihara and colleagues

[61] compared with different approaches two sets of data

with the TCGA dataset here analyzed and found the

same set of overrepresented pathways [4]. They estab-

lished a HSG Ov-Ca gene signature consistent with the

TCGA study results, and also found a significant corre-

lation between this signature and the platinum treated

patients overall survival. Most of the immune related
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Figure 3 Interactions of genes relevant to the clinical response to Platinum treatment in TCGA. Interactions of the relevant genes in F 8 are

reconstructed using STRING (http://string.embl.de/). Highlighted are the chemokines family (red oval) and the Interferon and cytokines (black oval)

networks. Of remarkable importance is the central role played by CXCL9 (red arrow) in orchestrating the immune and inflammatory responses,

which correlate with the platinum therapy efficacy.

signaling pathways these genes belong to, emerge in our

results as well. In particular CXCL9(chemokine (C-X-C

motif ) ligand 9) (highlighted by a red arrow in Figure 3)

is overrepresented in all the biological processes enriched

in F 8. Interestingly, this gene belongs to the molecular

signature they defined as predictive of platinum therapy

response. Additionally they demonstrated that alterations

to the immune system in cancer cells are one of the most

important factors affecting survival of patients with HSG

Ov-Ca and that, in particular, high-risk ovarian cancers

are well characterized by alterations of the immune activ-

ity such as downregulation of the antigen presentation

pathway. In fact, defects in the HLA antigen presentation

machinery are known to decrease recruitment of tumor-

infiltrating lymphocytes, leading to poor prognosis in can-

cer patients because of a reduction in antitumor immune

activity [62]. Also, inflammation mediated immunity, like

Interferon or other cytokines stimulation, plays a cen-

tral role in response to the therapy since it regulates

the expression of genes in the antigen presentation

signaling [63].

Concerning the miRNA list identified by F 8 (see sheet

miRNA lists in Additional file 2) we found miR-30d*,

miR-30b*, miR-155 and let-7f-2* most related to HSGOv-

Ca. miR-30d* is of particular relevance since it has been

significantly associated with clinico-pathological indexes,

as platinum treated patients’ disease-free or overall sur-

vival [64]. Among the others, miR-155 is known to be

differentially expressed in the ovarian cancer tissue and

serum samples [65], whereas miR-30b* and let-7f-2* are

reported to regulate ovarian cancer cells proliferation and

viability [66,67].

Conclusions
We have shown how the use of integrated data and further

processing with FA can enhance the power of the analysis

and give more insight than separate approaches, based on

the same original information. In particular, future work

http://string.embl.de/
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is warranted for the integration of additional omic lev-

els, among which the genomic level, for example replacing

our approach to the correlation used in [25] to identify

mutations drivers in cancers, and importantly for the inte-

gration of epigenomic data, which binomial distribution

strongly differs from expression data.

Additional file

Additional file 1: Key molecules of melanoma identified using the FA

based joint and separate analysis for NCI datasets. This .xls file has two

sheets.The first one, named Joint, listed the molecules identified using the

FA based integrated method (joint analysis). All the molecules are identified

as a whole, but divided into three groups with the headers mRNA, miRNA

and protein, respectively, in this sheet. The second sheet, named Separate,

includes the molecules identified using the separate method. Each column

represents one set of molecules resulted from one single omic dataset.

Additional file 2: Key molecules and functional annotations for the

factors in M13 resulted from TCGA datasets. This .xls file has four

sheets. The first one, namedmRNA lists, listed the mRNAs identified for

the factors (from F 1 to F 13) in M 13 using the FA based integrated method

(joint analysis), each column includes the key mRNAs for one factor. The

second sheet, namedmiRNA lists is to list the miRNAs for each factor. The

third sheet, named FuncAnnos of mRNAs, are the functional analysis

results of mRNAs, where the mRNAs of each factor are annotated using

DAVID annotation tool to identify the significantly enriched terms. The last

sheet, named FuncAnnos of mRNAs&miRNAs, are the functional

annotations of the integration of mRNAs and miRNAs for F 7 and F 8, where

mRNAs and miRNA targets predicted using TargetScan are merged for

DAVID functional analysis.
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