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ABSTRACT 
The development of complex scientific applications for high-end 
systems is a challenging task. Addressing complexity of the 
involved software and algorithms is becoming increasingly 
difficult and requires appropriate software engineering approaches 
to address interoperability, maintenance, and software 
composition challenges. At the same time, the requirements for 
performance and scalability to thousand processor configurations 
magnifies the level of difficulties facing the scientific programmer 
due to the variable levels of parallelism available in different 
algorithms or functional modules of the application. This paper 
demonstrates how the Common Component Architecture (CCA) 
and Global Arrays (GA) can be used in context of computational 
chemistry to express and manage multi-level parallelism through 
the use of processor groups. For example, the numerical Hessian 
calculation using three levels of parallelism in NWChem 
computational chemistry package outperformed the original 
version of the NWChem code based on single level parallelism by 
a factor of 90% when running on 256 processors. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming – 
Parallel programming. 

General Terms 
Algorithms, Performance, Design (c) 2005 Association for 
Computing Machinery. 

Keywords 
Multilevel parallelism, Component, Global Arrays, Parallel 
programming, Processor groups. 

1. INTRODUCTION 
Exploiting all available forms of parallelism is becoming 
increasingly important for programming forthcoming high-end 
systems. Such systems, containing tens or hundreds of thousands 

of processors, present a challenge to many important scientific 
applications. Many of the applications that require high-end 
systems tend to be composed of algorithms with variable 
computation/communication granularity. The question on how to 
partition computational resources and manage them to execute the 
overall application effectively is becoming critical for our ability 
to take advantage of the massively parallel hardware. One strategy 
to limit the negative effect of Amdahl’s law on the overall 
efficiency and scalability of the application is to execute the finer 
granularity algorithms on smaller subsets of processors, where 
their efficiency and speedup are high.  

Common Component Architecture [1, 2] has been proposed as a 
technology for building complex scientific applications as a 
collection of reusable components that encapsulate the required 
fundamental algorithms, solvers, and methods. These components 
are designed from scratch or adopted from existing applications or 
libraries to form reusable building blocks with standardized 
interfaces. The main motivation is to be able to reuse and swap 
components as needed with minimum effort. 

This paper describes how CCA and GA processor groups can be 
deployed together to manage multilevel parallelism in 
computational chemistry algorithms. This effort has been pursued 
in the context of NWChem [3], a large (2.5million lines of code) 
software suite that encompasses multiple theories, algorithms, and 
methods in the molecular computational chemistry domain. 
NWChem was developed using multiple programming languages 
(Fortran, C, C++, and Python) and programming models (MPI, 
Global Arrays). Although NWChem has been designed from 
scratch to work on massively parallel systems, until now it was 
unable to effectively exploit variable degrees of parallelism 
available in the set of algorithms and methods it offers. As a 
result, the scalability of some important calculations was limited 
by the least scalable parts of the simulation. To address this 
scalability limitation, it was necessary to add group awareness in 
the Global Arrays toolkit  [4], in addition to CCA and the 
processor group management MPI offers. The Global Arrays [5, 
6], shared memory programming toolkit, has been used by 
NWChem as the primary programming model and became the 
enabling technology for rapid and scalable implementation of 
algorithms in this application area.  

A large number of computational chemistry methods such as 
numerical Hessian, simulated annealing and global optimization 
methods, fragment molecular orbital method (FMO) [7], and 
vibrational self-consistent field can benefit from decomposition of 
the workload at variable levels of granularity. The common 
element for all these methods is numerous computations of 
limited scalable single operation (energy or gradient). The 
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efficient management of CPUs can significantly improve 
performance. In our paper, this is demonstrated for a numerical 
Hessian method. Numerical Hessian is computed from numerical 
gradients which in turn are computed numerically from energy 
calculations. Each energy calculation has limited scalability and 
may require multiple nodes due to memory requirements. Thus to 
compute numerical gradients, subgroups need to be created. There 
is always an optimum number of CPUs in the group which defines 
optimum number of CPUs that should be allocated for a single 
numerical gradient calculation. The proper allocation considers 
computational efficiency as well as available memory. If chosen 
incorrectly, the allocation may lead to workload imbalance and 
overall poor performance. 

This paper makes several contributions. First it describes how 
CCA can be deployed in the context of multi-level parallelism on 
a high-performance computer. To the best of our knowledge, this 
is the first work reporting usage of CCA in this context. Second, 
the paper discusses how this technology can be used to exploit 
variable concurrency in the computational chemistry area. Third 
the paper validates the overall strategy by demonstrating 
performance improvements for NWChem Hessian calculations. 
For example, numerical Hessian calculation using three levels of 
parallelism outperformed the original version of the code based on 
one level of parallelism by a factor of 90% when running on 256 
processors. 

2. COMMON COMPONENT 
ARCHITECTURE 
The Common Component Architecture (CCA) provides means for 
scientific programmers to manage the complexity of large-scale 
scientific simulations and to move toward a plug-and-play 
environment for high-performance computing [2]. The CCA is a 
component model specifically designed to address the needs of 
high-performance scientific computing by the CCA Forum [1]. 
From an application scientist’s perspective, components allow 
software developers to describe the calling interfaces of libraries 
and applications in a manner that hides low-level details, such as 
implementation language, compiler, parallelism, or location on a 
network. Components encapsulate the knowledge, experience, and 
work of other scientists, and they provide building blocks that 
speedup application development. To exploit these benefits in 
applications, we have developed CCA component interfaces for 
NWChem [3].  

While the details of the CCA specification [8] are beyond the 
scope of this paper, we highlight the key points that are most 
pertinent for the combined parallel use of NWChem components 
in the multiple-program multiple-data (MPMD) mode as well as 
in the single-program multiple-data (SPMD) mode [2, 9, 10].  The 
CCA approach consists of three main elements: components, 
ports, and frameworks. Briefly, components are basic units of 
software functionality that can be composed together at runtime to 
form applications, while ports are the abstract interfaces through 
which components interact. Frameworks manage components as 
they are assembled into applications and executed. One of the 
fundamental assumptions in the CCA is that components may be 
written in different programming languages. To facilitate language 
interoperability, the Scientific Interface Definition Language 
(SIDL) from Babel [11, 12] has been broadly adopted to describe 

CCA interfaces of scientific components, including NWChem 
component. 
Babel is an interface definition language (IDL)-based tool that 
automatically generates code to glue multi-language components 
together. It relies on the Scientific Interface Definition Language 
(SIDL) [11] for the definitions of calling interfaces through 
defined types (i.e., interfaces and classes) and declared methods. 
Since component technologies are an evolutionary step beyond 
object-oriented programming, the CCA has been able to leverage 
Babel and SIDL in the development of its component framework 
[2]. The CCA specification is written in SIDL, and component 
developers write SIDL files to describe their ports and the classes 
that use or provide those ports. Using SIDL enables the 
encapsulation of implementation details of CCA-compliant 
components.  

2.1 MCMD Driver Architecture 
Ccaffeine [13], the main CCA framework implementation for high 
performance computing, supports both the single 
program/multiple data (SPMD) and multiple program/multiple 
data (MPMD) models. In the context of CCA, we refer these 
models as single or multiple component/multiple data (SCMD, 
MCMD) models [2].  

In the CCA framework, by default applications run as single 
program, multi-component applications, where each component is 
loaded across all of the processors.  However, to create the 
dynamic environment to improve application efficiency and 
manage the resources effectively, we will be instantiating 
components on subgroups of processors.  In CCA, this means that 
the BuilderService capability must be exploited to its fullest.  
BuilderServices in CCA provide means to programmatically 
assemble and modify applications (instantiate and destroy 
components), and means for an arbitrary code to become a part of 
the CCA framework [2]. These services facilitate dynamic 
behavior of the application itself, for example, swapping 
components based on numerical or computational performance 
[14]. BuilderService also enables encapsulation of groups of 
components so that they can be treated as a single component. 
This enables effective management of large component-based 
applications, including the assembly of multi-scale or multi-
physics simulations, where complex applications representing a 
particular length scale or type of physics can be encapsulated and 
treated as a single component while exposing only a limited 
number of ports. 

In most existing CCA applications, user normally starts up a 
framework and then instantiates components.  However, in the 
MCMD case, to accomplish the dynamic creation and destruction 
of components, we need to create and start an MCMD driver. The 
driver starts the framework as a component and then attaches 
other components to that framework as needed. Some components 
are typically loaded into all processes, while others are loaded 
only into subsets of processes. These separate components are 
managed by the MCMD driver component and interfaced by other 
components, which for example handle the data exchange. 
Because of the inherent complexity of partitioning the process 
space and of launching parallel jobs with different inputs or 
executables on every process, MCMD applications can be most 
easily created using the CCA's BuilderService from a so-called 
builder component. This component would compute the desired 
partition of the available set of processes and then use 



BuilderService on each process to load and connect the 
appropriate set of components. The builder would then invoke the 
GoPort on the MCMD driver component to initiate the 
simulation. 

3. PROCESSOR GROUPS AND GA 
PROGRAMMING MODEL 
The Global Array (GA) toolkit provides a high-level programming 
model that offers a shared memory style communication in 
context of distributed data structures. NWChem and several other 
computational chemistry packages rely on GA as the underlying 
programming model. Processes can communicate with each other 
by creating and accessing GA distributed matrices as well as 
conventional message-passing (MPI). GA is compatible with MPI 
and allows full interoperability with software such as numerical 
linear algebra libraries developed on top of MPI. Each process 
can independently and asynchronously access any two-
dimensional patch of a GA distributed matrix, without requiring 
cooperation by the application code in any other process. Each 
process is assumed to have fast access to some portion of each 
distributed matrix, and slower access to the remainder. These 
speed differences define the data as being ‘local’ or ‘remote’, 
respectively. If the data is ‘local’, a process can directly access the 
memory block to retrieve data instead of using ‘get’ access. The 
GA toolkit offers support for both task and data parallelism. Task 
parallelism is supported through the one-sided (noncollective) 
copy operations that transfer data between global memory 
(distributed/shared array) and local memory. In addition, each 
process is able to access directly data held in a section of a global 
array that is logically assigned to that process. The one-sided 
communications used by Global Arrays eliminate the need for the 
programmer to account for responses by remote processors. The 
data parallel computing model is supported through the set of 
collectively called functions that operate on either entire arrays or 
sections of global arrays.  The set includes BLAS-like operations 
(copy, additions, transpose, dot products, matrix multiplication, 
etc,). These are collective data-parallel operations that are called 
by all processes in the parallel job. 

 

The development of multi-level parallel algorithms in NWChem 
has been enabled by introduction of the processor group support 
in GA [4]. Due to the required compatibility of GA with MPI, the 
MPI approach to the processor group management was followed 
as closely as possible. However, in shared memory programming, 
management of memory and shared data rather than management 
of processor groups itself is the primary focus. More specifically 
we need to determine how to create, efficiently access, update, 
and destroy shared data in the context of the processor 
management capabilities that MPI already provides. For example, 
Figure 1 illustrates the concept of using shared arrays. The three 
processor groups (Group1, Group2, and Group3 in Figure 1) 
execute tasks that operate on three arrays: A, B, and C. Array A is 
in the scope of all three processor groups. Array B is distributed 
on processor Group 1. Array C is distributed on processor group 
3. All arrays can be accessed using collective (individual and 
multiple arrays) and one-sided (non-collective) operations. 

One of the fundamental group-aware GA operations involves the 
ability to create shared arrays on subsets of processors. Every 
global array has only one associated processor group specifying 
the group that created the array. Another useful operation is the 
data-parallel copy operation that works on arrays (or subsections) 
defined on different processor groups as long as the intersection 
of these groups is a non-empty set. In the GA programming 
model, data distributed in a processor group (containing M 
processors) can be redistributed to another processor group 
(containing N processors) regardless of the number of processors 
in each group and the data layout. This can be done as a collective 
call across processors in both the groups or as a non-collective 
one-sided operation. This feature enabled development of 
applications with nontrivial relationships between processor 
groups. 

The concept of the default processor group is a powerful 
capability added to enable rapid development of new group-based 
codes and simplify conversion of the existing non-group aware 
codes. Under normal circumstances, the default group for a 
parallel calculation is the MPI “world group” (contains the 
complete set of processors user allocated). However, in GA, a call 
is available that can be used to change the default group to a 
processor subgroup. This call must be executed by all processors 
in the subgroup. Once the default group has been set, all 
operations are implicitly assumed to occur on the default 
processor group unless explicitly stated otherwise. By default, GA 
shared arrays are created on the default processor group and 
global operations by default are restricted to the default group. 
Inquiry functions, such as the number of nodes and the node ID, 
return values relative to the default processor group.  

4. NWCHEM CCA COMPONENT 
Our implementation of the model class contains a molecule class, 
which maintains molecular structure information, and method 
implementations for molecular energy and energy derivative 
evaluations. All methods use Cartesian coordinates in the 
arguments and return values for chemistry models. Provided the 
chemistry models return quantities in the same reference frame as 
the given coordinates, the details of symmetry implementation and 
molecule reorientation will not cause conflicts between model 
implementations. Although the specific implementation of a 
model varies based on the design of the particular quantum 

Figure 1. An example of multilevel parallelism in Global 
Arrays.  
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chemistry package used, the initialization of a model generally 
requires the collection of input parameters such as the level of 
theory, choice of atomic orbital basis set, and molecular structure. 
An implementation of the ModelFactory interface is provided to 
collect input parameters and provide them to the initialization 
member of the model class, returning the initialized model via its 
port. 

NWChem is a computational chemistry code created for massively 
parallel computations. It has many theoretical and algorithmic 
methods available for electronic structure calculations with 
Gaussian and plane-wave basis sets as well as classical molecular 
dynamics capabilities. Although NWChem uses object-oriented 
principles, it is implemented in a combination of Fortran, C, and 
Python (with Python used mostly for prototyping capabilities). 
Therefore, the CCA Model Factory instantiates essentially the 
same NWChem object for all initializations because it is not 
“true” C++ object. For our purposes it does not restrict our 
implementation in any way. 

Our first implementation of the NWChem Model Factory and 
model functionality used C++ and C++ wrappers because the 
CCA Ccaffeine framework [13] initially worked only with C++ 
components. However, the latest versions of the framework are 
Babel aware, and allow the component developer to use languages 
supported by Babel. We have now implemented the NWChem 
model functionality with native Fortran, which makes our 
development much more straightforward. This approach will also 
enable other components that rely on lower level routines to be 
implemented easily. 

Implementation of the Model and ModelFactory interfaces 
provides the basic functionality of quantum chemical codes [15]. 
The paradigm followed here is to build higher level application-

specific component systems on top of these core chemistry 
components, using existing general-purpose components when 
possible. 

5. EXAMPLE APPLICATION USING 
MULTI-LEVEL PARALLELISM  
In this section, we describe the multi-level parallelism scheme that 
may be applied to perform numerical Hessian, simulated 
annealing, and other methods. Our previous work [15] on 
components technology involved two quantum chemistry 
packages, Massively Parallel Quantum Chemistry (MPQC) [16, 
17], NWChem [3] and Global Arrays (GA) [6, 18]. All of these 
packages are designed for high performance on parallel hardware. 

5.1 Numerical Hessian Architecture 
Numerical Hessians [19, 20] are perhaps the simplest example of 
what can be accomplished with CCA architecture. We 
intentionally chose this system to demonstrate the power of 
multilevel parallelism. However, the multilevel parallel scheme 
used in this example also opens the door to a rich set of 
algorithms that require a very dynamic architecture to enable 
advancement in large scale chemical simulations. In the overall 
algorithm, a CCA MCMD Hessian driver component is used to 
instantiate NWChem Quantum Mechanics (QM) components on 
subsets of processors to calculate gradients.  These components in 
turn, may need to calculate numerical gradients and will therefore, 
need to create subgroups to calculate multiple energies.  This 
particular algorithm offers essentially three levels of parallelism as 
shown in Figure 2: one at the CCA (Hessian) level, one at the 
gradient level and another to calculate the energy (each energy 
itself can use a large number of processors). 

 

 

 

Figure 2. Example of three level parallelism in numerical Hessian computations.  The top layer involves the CCA framework and 
the lower layer involves subgroup capability within NWChem and GA. 
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In our case, a driver Hessian component is created which then 
uses the CCA BuilderServices to start the framework, to create 
multiple processor subgroups and then create different 
instantiations of QM ModelFactory component on processor 
subgroups via the provided ModelFactory port, to calculate 
gradients as shown in Figure 2. ModelFactory instantiates a 
Model class which is provided in model options (NWChem in our 
case). One of the Model class methods is used to compute 
numerical gradient. The Model is configured via CCA’s parameter 
port. The input parameters are theory, basis set, and NWChem 
input file where the Cartesian coordinates and startup NWChem 
options for numerical gradient are set. 

NWChem relies on GA for its underlying parallel programming 
model, and subgroups are formed in the Hessian MCMD driver by 
relying on the default group capability described in Section 3.  
This capability of GA allowed the components to be instantiated 
and then operate in a more transparent fashion than in the case of 
MPI which requires explicit specification of the corresponding 
processor group communicator in all the communication 
interfaces. In particular, the development of this component due 
to the implicit nature of processor groups required virtually no 
changes to the original computational code in NWChem (except 
for changes to the infrastructure described below) that was 
designed to exploit only one level of parallelism. 

Each of the QM components then needs to compute a gradient.  
This requires multiple energy computations which can efficiently 
run on subgroups.  Here again, groups are formed and the 
energies are computed in a task parallel fashion as shown in 

Figure 3.  In addition to the GA capabilities, additional 
modifications are required within NWChem parallel infrastructure 
to facilitate their use.  Cloning of local information (e.g. runtime 
database, molecular orbitals) is necessary so that each subgroup 
has all of the required information to accomplish the required task 
(in this case an energy evaluation).  Task parallelism and load 
balancing in the gradient level is required to obtain an even 
workload distribution.  This type of load balancing is also 
required in the Hessian driver component. 

With the CCA’s MCMD model, our Hessian MCMD driver 
manages all of the available parallel processors dynamically by 
instantiating and connecting infrastructure components based on 
application logic. Multiple QM Components of the NWChem 
model are run simultaneously on different subsets of the available 
processes. These separate elements are managed by the MCMD 
driver component and supported by GA to handle the data 
exchange between the various elements. Because of the 
complexity of partitioning up the process space and of launching 
parallel jobs with different inputs or executables on every process, 
numerical Hessians can perhaps be created through the use of the 
CCA’s BuilderService framework service from an MCMD driver 
component. This component would compute the desired partition 
of the available processes and instantiate multiple QM 
components based on the number of gradient and energy 
calculations. 

It should be noted here that there is no restriction that requires 
each of the subgroups at a particular level to perform the same 
work as in this example.  This architecture allows for maximum 

Figure 3. MCMD Driver launches multiple instances of NWChem QM components on subsets of processors (also assigns a GA 
communicator for every instance). Each NWChem QM component does multiple energy computations on subgroups.   
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flexibility in the high performance algorithm and some processor 
groups could be computing gradients while others could be doing 
optimizations or other tasks.  Of course load balance would be a 
critical component of any such algorithm. 

6. EXPERIMENTAL RESULTS 
Water clusters form local networks which exhibit large 
cooperative effects. Infrared (IR) spectroscopy can provide 
structural information of the network and its connectivity. If the 
spectroscopic signatures (positions and intensities of IR bands) of 
the different hydrogen bonding networks are known, then the 
experimental spectra can be directly related to a structure [21]. 
Quantum chemistry calculations can provide the necessary IR 
spectra of the local networks to link “structural-spectral” 
correspondence and is accomplished by computing Hessians 
(from which IR frequencies can be easily obtained) for different 
size water clusters. The Hessians of water clusters up to 20 water 
molecules have been computed by Xantheas et al [22]. The 
proposed scheme will allow researchers to compute Hessians of 
significantly larger clusters by efficiently utilizing large number of 
CPUs. 

 

In the case study we will demonstrate the proposed approach on 
computing numerical Hessian of (H20)5. The calculations have 
been done at the MP2/cc-pVDZ level of theory on already 
optimized (H20)5 [23]. First and second derivatives of the energy 
with respect to nuclear displacements were computed with the 
NWChem component. The calculations were performed on the 
massively parallel Linux cluster (dual-node 1.5 GHz Itanium with 
Quadrics QsNet-II interconnect) at the Molecular Science 
Computing Facility in the William R. Wiley Environmental 
Molecular Sciences Laboratory at Pacific Northwest National 
Laboratory. 

The scalability of single energy calculation is shown on Figure 4. 
The most efficient calculation of course is on one or two CPUs 
but due to large memory requirements the optimal number of 
CPUs is 4. If more than 4 CPUs are allocated to compute the 
Hessian then it is inefficient. One way to address this problem is 
the introduction of subgroups. The computation of a single 

gradient calculation is performed via round robin over multiple 
energy calculations. In the case of (H20)5 there are 39 steps 
(positive and negative offsets to the coordinate per step) with a 
total of 78 energy calculations per gradient. Total number of steps 
corresponds to the total number of symmetrically unique modes. It 
is obvious that the number of subgroups allocated for one gradient 
calculation should be less than 39 and divisible by the number of 
subgroups. If not, there is workload imbalance which is 
accumulated over the total number of gradient calculations. 
Moreover, load balancing in the gradient level is required to 
obtain an even workload distribution. Thus, this application 
presents opportunities to decompose the workload at variable 
levels of granularity. It is also difficult to manage all of the 
available processors dynamically in the most efficient manner 
possible. 

To demonstrate the benefits of multi-level parallelism in 
NWChem using CCA and GA, we conducted experiments to 
compute the numerical Hessian in three different ways: 

• without groups. i.e. the native parallel code (native method) 
• with processor subgroups, each group having 4 processes. 

(native-groups method) 
• using MCMD multilevel parallelism (mcmd method). 

 

The scalability of numerical Hessian is shown in Figure 5. The 
native way of computing numerical Hessian is also not scaling 
well because the single energy calculation is not scaling beyond 4 
processors (see Figure 4). A better scaling is achieved in the case 
of native-groups method, as processor subgroups (4 processes in a 
group) are used for multiple energy calculations to compute a 
gradient. However, there is a potential chance for load imbalance. 
Consider the case of 128 processors where there are 32 processor 
subgroups calculating 39 steps per gradient. Scaling is affected 
due to coarse load imbalance, as the number of energy 
calculations is not divisible by the number of subgroups. Some of 
subgroups will compute 1 step and others will compute 2 steps 
which give 64% imbalance. The imbalance will increase with 
number of processors as shown in Figure 6.  
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Figure 5. Scalability of numerical Hessian calculation. 

Figure 4. Parallel efficiency of single energy calculation with 
single-level parallelism. 
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Thanks to the CCA MCMD model, multiple components 
(task/program) can be launched on subsets of processors. Thus, 
task parallelism and load balancing in the gradient level are 
addressed to obtain fine load distribution in this case. The MCMD 
driver dynamically instantiates components based on the number 
of energy calculations per gradient. As we see from Figure 6, load 
balancing is a serious problem beyond 32 processors, and 
therefore, the MCMD driver instantiates multiple components for 
larger processor runs (> 32 processors). Moreover, collective 
operations scale well as we have multiple NWChem instances 
running on subsets of processors, rather than a single instance of 
the NWChem application running on all the processors. Figure 7 
shows the performance improvement of mcmd and native-groups 
approach with respect to the native method.  

Based on the presented results, we recommend the following 
methodology to achieve optimal performance for a particular 
problem. First step is computing scalability of single energy 
calculation. The optimal number of processors will define number 
of processors in a subgroup for each energy calculation. The 
second step is to assign optimal number of subgroups per gradient 

calculation. This number can be estimated based on total number 
of steps needed to compute single gradient. The acceptable 
imbalance should be less than 10%. The future generation of 
numerical Hessian will be capable of deriving these parameters 
automatically at all levels. 

7. CONCLUSIONS 
This work has shown a novel usage of CCA technology and 
subgroups within GA programming model to implement flexible, 
multi-level software architecture for computational chemistry 
applications on high performance computers. This approach aims 
to better exploit variable level of parallelism in large complex 
applications. The experimental results demonstrated very 
impressive improvements in scalability by taking advantage of 
multiple levels of parallelism. In particular, the numerical Hessian 
calculation using three levels of parallelism outperformed the 
original version available in the NWChem package based on 
single level parallelism by a factor of 90% when running on 256 
processors. The MCMD Hessian driver used the processor 
resources effectively for this problem and obtained results in less 
than hour, compared to native code which took ten hours on 256 
processors.  

While only a limited number of processors were used in this work, 
the proposed approach is directly applicable to systems with much 
larger processor counts. Based on proposed methodology it 
should be also straightforward to adopt other CCA components 
that are processor-group aware to implement other types of 
scientific computations, for example involving optimization and 
linear algebra. 

8. ACKNOWLEDGMENTS 
We thank our colleagues within the DoE SciDAC Center for 
Component Technology for Terascale Simulation Software 
(CCTTSS) for stimulating discussions of issues in component and 
interface design. We would also like to specially thank the 
CCTTSS members Wael Elwasif, Ben Allan, Rob Armstrong and 
Joseph Kenny for their advice and discussions in this project. 

The research described in this paper was supported by the 
Department of Energy, Office of Advanced Scientific Computing 
Research at the Pacific Northwest National Laboratory, a 
multiprogram national laboratory operated by Battelle for the U.S. 
Department of Energy under Contract DE-AC06-76RL01830. 
This research was performed in part using the Molecular Science 
Computing Facility (MSCF) in the William R. Wiley 
Environmental Molecular Sciences Laboratory, a national 
scientific user facility sponsored by the U.S. Department of 
Energy's Office of Biological and Environmental Research and 
located at the Pacific Northwest National Laboratory. Pacific 
Northwest is operated for the Department of Energy by Battelle.  

9. REFERENCES 
[1] CCA-Forum. Common Component Architecture Forum. 

http://www.cca-forum.org. 

[2] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. 
Chiu, T. L. Dahlgren, K. Damevski, W. R. Elwasif, T. G. 
W. Epperly, M. Govindaraju, D. S. Katz, L. F. Diachin, J. 
A. Kohl, M. Krishnan, G. Kumfert, S. Lefantzi, M. J. 
Lewis, A. D. Malony, L. C. McInnes, J. Nieplocha, B. 

0

10

20

30

40

50

60

70

16 32 64 128 256

Processors

%
 o

ve
rh

ea
d native-groups

mcmd

Figure 6. Load imbalance overhead at the gradient level. 
 

65

70

75

80

85

90

95

64 128 256

Processors

%
 im

pr
ov

em
en

t o
ve

r 
na

tiv
e 

co
de native-groups

mcmd

Figure 7. NWChem numerical Hessian computations. 
Percentage improvement of native-group and mcmd 

approach performance with respect to the native approach. 



Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus, and 
Zhou.S., "A Component Architecture for High-Performance 
Scientific Computing," Intl. J. High-Perf. Computing Appl., 
2004. 

[3] R. A. Kendall, E. Apra, D. E. Bernholdt, E. J. Bylaska, M. 
Dupuis, G. I. Fann, R. J. Harrison, J. L. Ju, J. A. Nichols, J. 
Nieplocha, T. P. Straatsma, T. L. Windus, and A. T. Wong, 
"High performance computational chemistry: An overview 
of NWChem a distributed parallel application," Computer 
Physics Communications, vol. 128, pp. 260-283, 2000. 

[4] J. Nieplocha, M. Krishnan, B. Palmer, V. Tipparaju, and Y. 
Zhang, "Exploiting Processor Groups to Extend Scalability 
of the GA Shared Memory Programming Model," in 
proceedings of ACM Computing Frontiers, Italy, 2005. 

[5] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, "Global 
Arrays: A Portable Shared Memory Programming Model 
for Distributed Memory Computers," in proceedings of 
Supercomputing, 1994. 

[6] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. 
Trease, and E. Apra, "Advances, Applications and 
Performance of the Global Arrays Shared Memory 
Programming Toolkit," International Journal of High 
Performance Computing Applications, 2005. 

[7] D. G. Fedorov, R. M. Olson, K. Kitaura, M. S. Gordon, and 
S. Koseki, "A new hierarchical parallelization scheme: 
Generalized distributed data interface (GDDI), and an 
application to the fragment molecular orbital method 
(FMO)," Journal of Computational Chemistry, vol. 25, pp. 
872 - 880, 2004. 

[8] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. 
Bernholdt, and J. A. Kohl, "The CCA Core Specification in 
a Distributed Memory SPMD Framework," Concurrency 
Computataions, vol. 14, pp. 1-23, 2002. 

[9] L. C. McInnes, B. A. Allan, R. Armstrong, S. J. Benson, D. 
E. Bernholdt, T. L. Dahlgren, L. F. Diachin, M. Krishnan, J. 
A. Kohl, J. W. Larson, S. Lefantzi, J. Nieplocha, B. Norris, 
S. G. Parker, J. Ray, and Zhou.S., "Parallel PDE-Based 
Simulations Using the Common Component Architecture," 
Argonne National Laboratory ANL/MCS-P1179-0704. To 
appear as an invited chapter in the book Numerical Solution 
of Partial Differential Equations on Parallel Computers, A. 
M. Bruaset, P. Bjorstad, and A. Tveito, editors, Springer-
Verlag, 2004. 

[10] CCA-Spec.  http://www.cca-
forum.org/docs/specification.html. 

[11] T. Dahlgren, T. Epperly, and G. Kumfert, "Babel User's 
Guide," Lawrence Livermore National Laboratory 2004. 

[12] T. Dahlgren, T. Epperly, and G. Kumfert, "Babel/SIDL 
Design-by-Contract: Status," Lawrence Livermore National 
Laboratory UCRLPRES-152674, 2003. 

[13] B. Allan, R. Armstrong, S. Lefantzi, J. Ray, E. Walsh, and 
P. Wolfe. Ccaffeine - a CCA Component Framework for 
Parallel Computing. http://www.cca-forum.org/ccafe/. 

[14] D. E. Bernholdt, R. C. Armstrong, and B. A. Allan, 
"Managing complexity in modern high end scientic 
computing through component-based software 
engineering," in proceedings of HPCA Workshop on 
Productivity and Performance in High-End Computing (P-
PHEC 2004), Madrid, Spain., 2004. 

[15] J. P. Kenny, S. J. Benson, Y. Alexeev, J. Sarich, C. L. 
Janssen, L. C. McInnes, M. Krishnan, J. Nieplocha, E. 
Jurrus, C. Fahlstrom, and T. L. Windus, "Component-based 
integration of chemistry and optimization software," Journal 
of Computational Chemistry, vol. 25, pp. 1717-1725, 2004. 

[16] C. Jansen. The Massively Parallel Quantum Chemistry 
Program. 
http://aros.ca.sandia.gov/~cljanss/mpqc/index.html. 

[17] C. L. Janssen, E. T. Seidl, and M. E. Colvin, "Object-
oriented implementation of a Parallel Ab-initio Program," 
Parallel Computing in Computational Chemistry ACS 
Symposium Series, American Chemical Society, 
Washington,DC, 1995, vol. 592, pp. 47, 1995. 

[18] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, "Global 
arrays: A nonuniform memory access programming model 
for high-performance computers," Journal of 
Supercomputing, vol. 10, pp. 169-189, 1996. 

[19] T. L. Windus, M. W. Schmidt, and M. S. Gordon, "Parallel 
algorithm for SCF analytic Hessians. I. Small scale 
algorithm," Chemical Physics Letters, vol. vol 216, pp. 375-
379, 1993. 

[20] A. M. Marquez, J. Oviedo, J. F. Sanz, and M. Dupuis, 
"Parallel Computation of second derivatives of RHF rnergy 
on distributed memory computers," Journal of 
Computational Chemistry, vol. 18, pp. 159-168, 1997. 

[21] T. S. Zwier, "The Structure of Protonated Water Clusters," 
Science 304, pp. 119-120, 2004. 

[22] G. S. Fanourgakis, A. Aprà, W. E. de Jong, and S. S. 
Xantheas, "High-level ab initio calculations for the four 
low-lying families of minima of (H2O)20. II. Spectroscopic 
signatures of the dodecahedron, fused cubes, face-sharing 
pentagonal prisms, and edge-sharing pentagonal prisms 
hydrogen bonding networks," Journal of Chemical Physics, 
vol. 122, pp. 134304-13, 2005. 

[23] S. S. Xantheas, "Ab initio studies of cyclic water clusters 
(H2O)n, n=1-6. III. Comparison of density functional with 
MP2 results," The Journal of Chemical Physics, vol. 102, 
pp. 4505-4517, 1995. 

 

 


