
Multilevel Parallelism in Computational Chemistry using
Common Component Architecture and Global Arrays

Manojkumar Krishnan Yuri Alexeev Theresa L. Windus Jarek Nieplocha
Pacific Northwest National Laboratory

Richland, WA 99352, USA.
{manoj, yuri.alexeev, theresa.windus, jarek.nieplocha}@pnl.gov

ABSTRACT
The development of complex scientific applications for high-end
systems is a challenging task. Addressing complexity of the
involved software and algorithms is becoming increasingly
difficult and requires appropriate software engineering approaches
to address interoperability, maintenance, and software
composition challenges. At the same time, the requirements for
performance and scalability to thousand processor configurations
magnifies the level of difficulties facing the scientific programmer
due to the variable levels of parallelism available in different
algorithms or functional modules of the application. This paper
demonstrates how the Common Component Architecture (CCA)
and Global Arrays (GA) can be used in context of computational
chemistry to express and manage multi-level parallelism through
the use of processor groups. For example, the numerical Hessian
calculation using three levels of parallelism in NWChem
computational chemistry package outperformed the original
version of the NWChem code based on single level parallelism by
a factor of 90% when running on 256 processors.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
Parallel programming.

General Terms
Algorithms, Performance, Design (c) 2005 Association for
Computing Machinery.

Keywords
Multilevel parallelism, Component, Global Arrays, Parallel
programming, Processor groups.

1. INTRODUCTION
Exploiting all available forms of parallelism is becoming
increasingly important for programming forthcoming high-end
systems. Such systems, containing tens or hundreds of thousands

of processors, present a challenge to many important scientific
applications. Many of the applications that require high-end
systems tend to be composed of algorithms with variable
computation/communication granularity. The question on how to
partition computational resources and manage them to execute the
overall application effectively is becoming critical for our ability
to take advantage of the massively parallel hardware. One strategy
to limit the negative effect of Amdahl’s law on the overall
efficiency and scalability of the application is to execute the finer
granularity algorithms on smaller subsets of processors, where
their efficiency and speedup are high.

Common Component Architecture [1, 2] has been proposed as a
technology for building complex scientific applications as a
collection of reusable components that encapsulate the required
fundamental algorithms, solvers, and methods. These components
are designed from scratch or adopted from existing applications or
libraries to form reusable building blocks with standardized
interfaces. The main motivation is to be able to reuse and swap
components as needed with minimum effort.

This paper describes how CCA and GA processor groups can be
deployed together to manage multilevel parallelism in
computational chemistry algorithms. This effort has been pursued
in the context of NWChem [3], a large (2.5million lines of code)
software suite that encompasses multiple theories, algorithms, and
methods in the molecular computational chemistry domain.
NWChem was developed using multiple programming languages
(Fortran, C, C++, and Python) and programming models (MPI,
Global Arrays). Although NWChem has been designed from
scratch to work on massively parallel systems, until now it was
unable to effectively exploit variable degrees of parallelism
available in the set of algorithms and methods it offers. As a
result, the scalability of some important calculations was limited
by the least scalable parts of the simulation. To address this
scalability limitation, it was necessary to add group awareness in
the Global Arrays toolkit [4], in addition to CCA and the
processor group management MPI offers. The Global Arrays [5,
6], shared memory programming toolkit, has been used by
NWChem as the primary programming model and became the
enabling technology for rapid and scalable implementation of
algorithms in this application area.

A large number of computational chemistry methods such as
numerical Hessian, simulated annealing and global optimization
methods, fragment molecular orbital method (FMO) [7], and
vibrational self-consistent field can benefit from decomposition of
the workload at variable levels of granularity. The common
element for all these methods is numerous computations of
limited scalable single operation (energy or gradient). The

ACM acknowledges that this contribution was authored or co-authored
by a contractor or affiliate of the [U.S.] Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
SC|05 November 12-18, 2005, Seattle, Washington, USA.
(c) 2005 ACM 1-59593-061-2/05/0011…$5.00.

efficient management of CPUs can significantly improve
performance. In our paper, this is demonstrated for a numerical
Hessian method. Numerical Hessian is computed from numerical
gradients which in turn are computed numerically from energy
calculations. Each energy calculation has limited scalability and
may require multiple nodes due to memory requirements. Thus to
compute numerical gradients, subgroups need to be created. There
is always an optimum number of CPUs in the group which defines
optimum number of CPUs that should be allocated for a single
numerical gradient calculation. The proper allocation considers
computational efficiency as well as available memory. If chosen
incorrectly, the allocation may lead to workload imbalance and
overall poor performance.

This paper makes several contributions. First it describes how
CCA can be deployed in the context of multi-level parallelism on
a high-performance computer. To the best of our knowledge, this
is the first work reporting usage of CCA in this context. Second,
the paper discusses how this technology can be used to exploit
variable concurrency in the computational chemistry area. Third
the paper validates the overall strategy by demonstrating
performance improvements for NWChem Hessian calculations.
For example, numerical Hessian calculation using three levels of
parallelism outperformed the original version of the code based on
one level of parallelism by a factor of 90% when running on 256
processors.

2. COMMON COMPONENT
ARCHITECTURE
The Common Component Architecture (CCA) provides means for
scientific programmers to manage the complexity of large-scale
scientific simulations and to move toward a plug-and-play
environment for high-performance computing [2]. The CCA is a
component model specifically designed to address the needs of
high-performance scientific computing by the CCA Forum [1].
From an application scientist’s perspective, components allow
software developers to describe the calling interfaces of libraries
and applications in a manner that hides low-level details, such as
implementation language, compiler, parallelism, or location on a
network. Components encapsulate the knowledge, experience, and
work of other scientists, and they provide building blocks that
speedup application development. To exploit these benefits in
applications, we have developed CCA component interfaces for
NWChem [3].

While the details of the CCA specification [8] are beyond the
scope of this paper, we highlight the key points that are most
pertinent for the combined parallel use of NWChem components
in the multiple-program multiple-data (MPMD) mode as well as
in the single-program multiple-data (SPMD) mode [2, 9, 10]. The
CCA approach consists of three main elements: components,
ports, and frameworks. Briefly, components are basic units of
software functionality that can be composed together at runtime to
form applications, while ports are the abstract interfaces through
which components interact. Frameworks manage components as
they are assembled into applications and executed. One of the
fundamental assumptions in the CCA is that components may be
written in different programming languages. To facilitate language
interoperability, the Scientific Interface Definition Language
(SIDL) from Babel [11, 12] has been broadly adopted to describe

CCA interfaces of scientific components, including NWChem
component.
Babel is an interface definition language (IDL)-based tool that
automatically generates code to glue multi-language components
together. It relies on the Scientific Interface Definition Language
(SIDL) [11] for the definitions of calling interfaces through
defined types (i.e., interfaces and classes) and declared methods.
Since component technologies are an evolutionary step beyond
object-oriented programming, the CCA has been able to leverage
Babel and SIDL in the development of its component framework
[2]. The CCA specification is written in SIDL, and component
developers write SIDL files to describe their ports and the classes
that use or provide those ports. Using SIDL enables the
encapsulation of implementation details of CCA-compliant
components.

2.1 MCMD Driver Architecture
Ccaffeine [13], the main CCA framework implementation for high
performance computing, supports both the single
program/multiple data (SPMD) and multiple program/multiple
data (MPMD) models. In the context of CCA, we refer these
models as single or multiple component/multiple data (SCMD,
MCMD) models [2].

In the CCA framework, by default applications run as single
program, multi-component applications, where each component is
loaded across all of the processors. However, to create the
dynamic environment to improve application efficiency and
manage the resources effectively, we will be instantiating
components on subgroups of processors. In CCA, this means that
the BuilderService capability must be exploited to its fullest.
BuilderServices in CCA provide means to programmatically
assemble and modify applications (instantiate and destroy
components), and means for an arbitrary code to become a part of
the CCA framework [2]. These services facilitate dynamic
behavior of the application itself, for example, swapping
components based on numerical or computational performance
[14]. BuilderService also enables encapsulation of groups of
components so that they can be treated as a single component.
This enables effective management of large component-based
applications, including the assembly of multi-scale or multi-
physics simulations, where complex applications representing a
particular length scale or type of physics can be encapsulated and
treated as a single component while exposing only a limited
number of ports.

In most existing CCA applications, user normally starts up a
framework and then instantiates components. However, in the
MCMD case, to accomplish the dynamic creation and destruction
of components, we need to create and start an MCMD driver. The
driver starts the framework as a component and then attaches
other components to that framework as needed. Some components
are typically loaded into all processes, while others are loaded
only into subsets of processes. These separate components are
managed by the MCMD driver component and interfaced by other
components, which for example handle the data exchange.
Because of the inherent complexity of partitioning the process
space and of launching parallel jobs with different inputs or
executables on every process, MCMD applications can be most
easily created using the CCA's BuilderService from a so-called
builder component. This component would compute the desired
partition of the available set of processes and then use

BuilderService on each process to load and connect the
appropriate set of components. The builder would then invoke the
GoPort on the MCMD driver component to initiate the
simulation.

3. PROCESSOR GROUPS AND GA
PROGRAMMING MODEL
The Global Array (GA) toolkit provides a high-level programming
model that offers a shared memory style communication in
context of distributed data structures. NWChem and several other
computational chemistry packages rely on GA as the underlying
programming model. Processes can communicate with each other
by creating and accessing GA distributed matrices as well as
conventional message-passing (MPI). GA is compatible with MPI
and allows full interoperability with software such as numerical
linear algebra libraries developed on top of MPI. Each process
can independently and asynchronously access any two-
dimensional patch of a GA distributed matrix, without requiring
cooperation by the application code in any other process. Each
process is assumed to have fast access to some portion of each
distributed matrix, and slower access to the remainder. These
speed differences define the data as being ‘local’ or ‘remote’,
respectively. If the data is ‘local’, a process can directly access the
memory block to retrieve data instead of using ‘get’ access. The
GA toolkit offers support for both task and data parallelism. Task
parallelism is supported through the one-sided (noncollective)
copy operations that transfer data between global memory
(distributed/shared array) and local memory. In addition, each
process is able to access directly data held in a section of a global
array that is logically assigned to that process. The one-sided
communications used by Global Arrays eliminate the need for the
programmer to account for responses by remote processors. The
data parallel computing model is supported through the set of
collectively called functions that operate on either entire arrays or
sections of global arrays. The set includes BLAS-like operations
(copy, additions, transpose, dot products, matrix multiplication,
etc,). These are collective data-parallel operations that are called
by all processes in the parallel job.

The development of multi-level parallel algorithms in NWChem
has been enabled by introduction of the processor group support
in GA [4]. Due to the required compatibility of GA with MPI, the
MPI approach to the processor group management was followed
as closely as possible. However, in shared memory programming,
management of memory and shared data rather than management
of processor groups itself is the primary focus. More specifically
we need to determine how to create, efficiently access, update,
and destroy shared data in the context of the processor
management capabilities that MPI already provides. For example,
Figure 1 illustrates the concept of using shared arrays. The three
processor groups (Group1, Group2, and Group3 in Figure 1)
execute tasks that operate on three arrays: A, B, and C. Array A is
in the scope of all three processor groups. Array B is distributed
on processor Group 1. Array C is distributed on processor group
3. All arrays can be accessed using collective (individual and
multiple arrays) and one-sided (non-collective) operations.

One of the fundamental group-aware GA operations involves the
ability to create shared arrays on subsets of processors. Every
global array has only one associated processor group specifying
the group that created the array. Another useful operation is the
data-parallel copy operation that works on arrays (or subsections)
defined on different processor groups as long as the intersection
of these groups is a non-empty set. In the GA programming
model, data distributed in a processor group (containing M
processors) can be redistributed to another processor group
(containing N processors) regardless of the number of processors
in each group and the data layout. This can be done as a collective
call across processors in both the groups or as a non-collective
one-sided operation. This feature enabled development of
applications with nontrivial relationships between processor
groups.

The concept of the default processor group is a powerful
capability added to enable rapid development of new group-based
codes and simplify conversion of the existing non-group aware
codes. Under normal circumstances, the default group for a
parallel calculation is the MPI “world group” (contains the
complete set of processors user allocated). However, in GA, a call
is available that can be used to change the default group to a
processor subgroup. This call must be executed by all processors
in the subgroup. Once the default group has been set, all
operations are implicitly assumed to occur on the default
processor group unless explicitly stated otherwise. By default, GA
shared arrays are created on the default processor group and
global operations by default are restricted to the default group.
Inquiry functions, such as the number of nodes and the node ID,
return values relative to the default processor group.

4. NWCHEM CCA COMPONENT
Our implementation of the model class contains a molecule class,
which maintains molecular structure information, and method
implementations for molecular energy and energy derivative
evaluations. All methods use Cartesian coordinates in the
arguments and return values for chemistry models. Provided the
chemistry models return quantities in the same reference frame as
the given coordinates, the details of symmetry implementation and
molecule reorientation will not cause conflicts between model
implementations. Although the specific implementation of a
model varies based on the design of the particular quantum

Figure 1. An example of multilevel parallelism in Global
Arrays.

������� �������

�����	�

�����
�

�����
�

�������

chemistry package used, the initialization of a model generally
requires the collection of input parameters such as the level of
theory, choice of atomic orbital basis set, and molecular structure.
An implementation of the ModelFactory interface is provided to
collect input parameters and provide them to the initialization
member of the model class, returning the initialized model via its
port.

NWChem is a computational chemistry code created for massively
parallel computations. It has many theoretical and algorithmic
methods available for electronic structure calculations with
Gaussian and plane-wave basis sets as well as classical molecular
dynamics capabilities. Although NWChem uses object-oriented
principles, it is implemented in a combination of Fortran, C, and
Python (with Python used mostly for prototyping capabilities).
Therefore, the CCA Model Factory instantiates essentially the
same NWChem object for all initializations because it is not
“true” C++ object. For our purposes it does not restrict our
implementation in any way.

Our first implementation of the NWChem Model Factory and
model functionality used C++ and C++ wrappers because the
CCA Ccaffeine framework [13] initially worked only with C++
components. However, the latest versions of the framework are
Babel aware, and allow the component developer to use languages
supported by Babel. We have now implemented the NWChem
model functionality with native Fortran, which makes our
development much more straightforward. This approach will also
enable other components that rely on lower level routines to be
implemented easily.

Implementation of the Model and ModelFactory interfaces
provides the basic functionality of quantum chemical codes [15].
The paradigm followed here is to build higher level application-

specific component systems on top of these core chemistry
components, using existing general-purpose components when
possible.

5. EXAMPLE APPLICATION USING
MULTI-LEVEL PARALLELISM
In this section, we describe the multi-level parallelism scheme that
may be applied to perform numerical Hessian, simulated
annealing, and other methods. Our previous work [15] on
components technology involved two quantum chemistry
packages, Massively Parallel Quantum Chemistry (MPQC) [16,
17], NWChem [3] and Global Arrays (GA) [6, 18]. All of these
packages are designed for high performance on parallel hardware.

5.1 Numerical Hessian Architecture
Numerical Hessians [19, 20] are perhaps the simplest example of
what can be accomplished with CCA architecture. We
intentionally chose this system to demonstrate the power of
multilevel parallelism. However, the multilevel parallel scheme
used in this example also opens the door to a rich set of
algorithms that require a very dynamic architecture to enable
advancement in large scale chemical simulations. In the overall
algorithm, a CCA MCMD Hessian driver component is used to
instantiate NWChem Quantum Mechanics (QM) components on
subsets of processors to calculate gradients. These components in
turn, may need to calculate numerical gradients and will therefore,
need to create subgroups to calculate multiple energies. This
particular algorithm offers essentially three levels of parallelism as
shown in Figure 2: one at the CCA (Hessian) level, one at the
gradient level and another to calculate the energy (each energy
itself can use a large number of processors).

Figure 2. Example of three level parallelism in numerical Hessian computations. The top layer involves the CCA framework and
the lower layer involves subgroup capability within NWChem and GA.

Gradient

Numerical Hessian

coordinates gradient coordinates gradient coordinates gradient

coordinates energy coordinates energy coordinates energy

Gradient Gradient

Energy Energy

Energy Energy

Energy Energy

Energy Energy

Energy Energy

Energy Energy

CCA

QM

In our case, a driver Hessian component is created which then
uses the CCA BuilderServices to start the framework, to create
multiple processor subgroups and then create different
instantiations of QM ModelFactory component on processor
subgroups via the provided ModelFactory port, to calculate
gradients as shown in Figure 2. ModelFactory instantiates a
Model class which is provided in model options (NWChem in our
case). One of the Model class methods is used to compute
numerical gradient. The Model is configured via CCA’s parameter
port. The input parameters are theory, basis set, and NWChem
input file where the Cartesian coordinates and startup NWChem
options for numerical gradient are set.

NWChem relies on GA for its underlying parallel programming
model, and subgroups are formed in the Hessian MCMD driver by
relying on the default group capability described in Section 3.
This capability of GA allowed the components to be instantiated
and then operate in a more transparent fashion than in the case of
MPI which requires explicit specification of the corresponding
processor group communicator in all the communication
interfaces. In particular, the development of this component due
to the implicit nature of processor groups required virtually no
changes to the original computational code in NWChem (except
for changes to the infrastructure described below) that was
designed to exploit only one level of parallelism.

Each of the QM components then needs to compute a gradient.
This requires multiple energy computations which can efficiently
run on subgroups. Here again, groups are formed and the
energies are computed in a task parallel fashion as shown in

Figure 3. In addition to the GA capabilities, additional
modifications are required within NWChem parallel infrastructure
to facilitate their use. Cloning of local information (e.g. runtime
database, molecular orbitals) is necessary so that each subgroup
has all of the required information to accomplish the required task
(in this case an energy evaluation). Task parallelism and load
balancing in the gradient level is required to obtain an even
workload distribution. This type of load balancing is also
required in the Hessian driver component.

With the CCA’s MCMD model, our Hessian MCMD driver
manages all of the available parallel processors dynamically by
instantiating and connecting infrastructure components based on
application logic. Multiple QM Components of the NWChem
model are run simultaneously on different subsets of the available
processes. These separate elements are managed by the MCMD
driver component and supported by GA to handle the data
exchange between the various elements. Because of the
complexity of partitioning up the process space and of launching
parallel jobs with different inputs or executables on every process,
numerical Hessians can perhaps be created through the use of the
CCA’s BuilderService framework service from an MCMD driver
component. This component would compute the desired partition
of the available processes and instantiate multiple QM
components based on the number of gradient and energy
calculations.

It should be noted here that there is no restriction that requires
each of the subgroups at a particular level to perform the same
work as in this example. This architecture allows for maximum

Figure 3. MCMD Driver launches multiple instances of NWChem QM components on subsets of processors (also assigns a GA
communicator for every instance). Each NWChem QM component does multiple energy computations on subgroups.

MCMD Hessian Driver

Go
cProps ModelFactory

NWChem_QM_1

ModelFactory
cProps

Parameter

Energy
Energy

Energy

Energy
Energy

Energy

Energy
Energy

Energy

Energy
Energy

Energy

NWChem_QM_0

ModelFactory
cProps

Parameter

NWChem_QM_2

ModelFactory
cProps

Parameter

NWChem_QM_n

ModelFactory
cProps

Parameter

flexibility in the high performance algorithm and some processor
groups could be computing gradients while others could be doing
optimizations or other tasks. Of course load balance would be a
critical component of any such algorithm.

6. EXPERIMENTAL RESULTS
Water clusters form local networks which exhibit large
cooperative effects. Infrared (IR) spectroscopy can provide
structural information of the network and its connectivity. If the
spectroscopic signatures (positions and intensities of IR bands) of
the different hydrogen bonding networks are known, then the
experimental spectra can be directly related to a structure [21].
Quantum chemistry calculations can provide the necessary IR
spectra of the local networks to link “structural-spectral”
correspondence and is accomplished by computing Hessians
(from which IR frequencies can be easily obtained) for different
size water clusters. The Hessians of water clusters up to 20 water
molecules have been computed by Xantheas et al [22]. The
proposed scheme will allow researchers to compute Hessians of
significantly larger clusters by efficiently utilizing large number of
CPUs.

In the case study we will demonstrate the proposed approach on
computing numerical Hessian of (H20)5. The calculations have
been done at the MP2/cc-pVDZ level of theory on already
optimized (H20)5 [23]. First and second derivatives of the energy
with respect to nuclear displacements were computed with the
NWChem component. The calculations were performed on the
massively parallel Linux cluster (dual-node 1.5 GHz Itanium with
Quadrics QsNet-II interconnect) at the Molecular Science
Computing Facility in the William R. Wiley Environmental
Molecular Sciences Laboratory at Pacific Northwest National
Laboratory.

The scalability of single energy calculation is shown on Figure 4.
The most efficient calculation of course is on one or two CPUs
but due to large memory requirements the optimal number of
CPUs is 4. If more than 4 CPUs are allocated to compute the
Hessian then it is inefficient. One way to address this problem is
the introduction of subgroups. The computation of a single

gradient calculation is performed via round robin over multiple
energy calculations. In the case of (H20)5 there are 39 steps
(positive and negative offsets to the coordinate per step) with a
total of 78 energy calculations per gradient. Total number of steps
corresponds to the total number of symmetrically unique modes. It
is obvious that the number of subgroups allocated for one gradient
calculation should be less than 39 and divisible by the number of
subgroups. If not, there is workload imbalance which is
accumulated over the total number of gradient calculations.
Moreover, load balancing in the gradient level is required to
obtain an even workload distribution. Thus, this application
presents opportunities to decompose the workload at variable
levels of granularity. It is also difficult to manage all of the
available processors dynamically in the most efficient manner
possible.

To demonstrate the benefits of multi-level parallelism in
NWChem using CCA and GA, we conducted experiments to
compute the numerical Hessian in three different ways:

• without groups. i.e. the native parallel code (native method)
• with processor subgroups, each group having 4 processes.

(native-groups method)
• using MCMD multilevel parallelism (mcmd method).

The scalability of numerical Hessian is shown in Figure 5. The
native way of computing numerical Hessian is also not scaling
well because the single energy calculation is not scaling beyond 4
processors (see Figure 4). A better scaling is achieved in the case
of native-groups method, as processor subgroups (4 processes in a
group) are used for multiple energy calculations to compute a
gradient. However, there is a potential chance for load imbalance.
Consider the case of 128 processors where there are 32 processor
subgroups calculating 39 steps per gradient. Scaling is affected
due to coarse load imbalance, as the number of energy
calculations is not divisible by the number of subgroups. Some of
subgroups will compute 1 step and others will compute 2 steps
which give 64% imbalance. The imbalance will increase with
number of processors as shown in Figure 6.

0.1

1

10

100

0 32 64 96 128 160 192 224 256 288

Processors

Ti
m

e
(h

ou
rs

)

native
native-groups
mcmd

Figure 5. Scalability of numerical Hessian calculation.

Figure 4. Parallel efficiency of single energy calculation with
single-level parallelism.

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128

Processors

P
ar

al
le

l E
ff

ic
ie

nc
y

Thanks to the CCA MCMD model, multiple components
(task/program) can be launched on subsets of processors. Thus,
task parallelism and load balancing in the gradient level are
addressed to obtain fine load distribution in this case. The MCMD
driver dynamically instantiates components based on the number
of energy calculations per gradient. As we see from Figure 6, load
balancing is a serious problem beyond 32 processors, and
therefore, the MCMD driver instantiates multiple components for
larger processor runs (> 32 processors). Moreover, collective
operations scale well as we have multiple NWChem instances
running on subsets of processors, rather than a single instance of
the NWChem application running on all the processors. Figure 7
shows the performance improvement of mcmd and native-groups
approach with respect to the native method.

Based on the presented results, we recommend the following
methodology to achieve optimal performance for a particular
problem. First step is computing scalability of single energy
calculation. The optimal number of processors will define number
of processors in a subgroup for each energy calculation. The
second step is to assign optimal number of subgroups per gradient

calculation. This number can be estimated based on total number
of steps needed to compute single gradient. The acceptable
imbalance should be less than 10%. The future generation of
numerical Hessian will be capable of deriving these parameters
automatically at all levels.

7. CONCLUSIONS
This work has shown a novel usage of CCA technology and
subgroups within GA programming model to implement flexible,
multi-level software architecture for computational chemistry
applications on high performance computers. This approach aims
to better exploit variable level of parallelism in large complex
applications. The experimental results demonstrated very
impressive improvements in scalability by taking advantage of
multiple levels of parallelism. In particular, the numerical Hessian
calculation using three levels of parallelism outperformed the
original version available in the NWChem package based on
single level parallelism by a factor of 90% when running on 256
processors. The MCMD Hessian driver used the processor
resources effectively for this problem and obtained results in less
than hour, compared to native code which took ten hours on 256
processors.

While only a limited number of processors were used in this work,
the proposed approach is directly applicable to systems with much
larger processor counts. Based on proposed methodology it
should be also straightforward to adopt other CCA components
that are processor-group aware to implement other types of
scientific computations, for example involving optimization and
linear algebra.

8. ACKNOWLEDGMENTS
We thank our colleagues within the DoE SciDAC Center for
Component Technology for Terascale Simulation Software
(CCTTSS) for stimulating discussions of issues in component and
interface design. We would also like to specially thank the
CCTTSS members Wael Elwasif, Ben Allan, Rob Armstrong and
Joseph Kenny for their advice and discussions in this project.

The research described in this paper was supported by the
Department of Energy, Office of Advanced Scientific Computing
Research at the Pacific Northwest National Laboratory, a
multiprogram national laboratory operated by Battelle for the U.S.
Department of Energy under Contract DE-AC06-76RL01830.
This research was performed in part using the Molecular Science
Computing Facility (MSCF) in the William R. Wiley
Environmental Molecular Sciences Laboratory, a national
scientific user facility sponsored by the U.S. Department of
Energy's Office of Biological and Environmental Research and
located at the Pacific Northwest National Laboratory. Pacific
Northwest is operated for the Department of Energy by Battelle.

9. REFERENCES
[1] CCA-Forum. Common Component Architecture Forum.

http://www.cca-forum.org.

[2] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K.
Chiu, T. L. Dahlgren, K. Damevski, W. R. Elwasif, T. G.
W. Epperly, M. Govindaraju, D. S. Katz, L. F. Diachin, J.
A. Kohl, M. Krishnan, G. Kumfert, S. Lefantzi, M. J.
Lewis, A. D. Malony, L. C. McInnes, J. Nieplocha, B.

0

10

20

30

40

50

60

70

16 32 64 128 256

Processors

%
 o

ve
rh

ea
d native-groups

mcmd

Figure 6. Load imbalance overhead at the gradient level.

65

70

75

80

85

90

95

64 128 256

Processors

%
 im

pr
ov

em
en

t o
ve

r
na

tiv
e

co
de native-groups

mcmd

Figure 7. NWChem numerical Hessian computations.
Percentage improvement of native-group and mcmd

approach performance with respect to the native approach.

Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus, and
Zhou.S., "A Component Architecture for High-Performance
Scientific Computing," Intl. J. High-Perf. Computing Appl.,
2004.

[3] R. A. Kendall, E. Apra, D. E. Bernholdt, E. J. Bylaska, M.
Dupuis, G. I. Fann, R. J. Harrison, J. L. Ju, J. A. Nichols, J.
Nieplocha, T. P. Straatsma, T. L. Windus, and A. T. Wong,
"High performance computational chemistry: An overview
of NWChem a distributed parallel application," Computer
Physics Communications, vol. 128, pp. 260-283, 2000.

[4] J. Nieplocha, M. Krishnan, B. Palmer, V. Tipparaju, and Y.
Zhang, "Exploiting Processor Groups to Extend Scalability
of the GA Shared Memory Programming Model," in
proceedings of ACM Computing Frontiers, Italy, 2005.

[5] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, "Global
Arrays: A Portable Shared Memory Programming Model
for Distributed Memory Computers," in proceedings of
Supercomputing, 1994.

[6] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H.
Trease, and E. Apra, "Advances, Applications and
Performance of the Global Arrays Shared Memory
Programming Toolkit," International Journal of High
Performance Computing Applications, 2005.

[7] D. G. Fedorov, R. M. Olson, K. Kitaura, M. S. Gordon, and
S. Koseki, "A new hierarchical parallelization scheme:
Generalized distributed data interface (GDDI), and an
application to the fragment molecular orbital method
(FMO)," Journal of Computational Chemistry, vol. 25, pp.
872 - 880, 2004.

[8] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E.
Bernholdt, and J. A. Kohl, "The CCA Core Specification in
a Distributed Memory SPMD Framework," Concurrency
Computataions, vol. 14, pp. 1-23, 2002.

[9] L. C. McInnes, B. A. Allan, R. Armstrong, S. J. Benson, D.
E. Bernholdt, T. L. Dahlgren, L. F. Diachin, M. Krishnan, J.
A. Kohl, J. W. Larson, S. Lefantzi, J. Nieplocha, B. Norris,
S. G. Parker, J. Ray, and Zhou.S., "Parallel PDE-Based
Simulations Using the Common Component Architecture,"
Argonne National Laboratory ANL/MCS-P1179-0704. To
appear as an invited chapter in the book Numerical Solution
of Partial Differential Equations on Parallel Computers, A.
M. Bruaset, P. Bjorstad, and A. Tveito, editors, Springer-
Verlag, 2004.

[10] CCA-Spec. http://www.cca-
forum.org/docs/specification.html.

[11] T. Dahlgren, T. Epperly, and G. Kumfert, "Babel User's
Guide," Lawrence Livermore National Laboratory 2004.

[12] T. Dahlgren, T. Epperly, and G. Kumfert, "Babel/SIDL
Design-by-Contract: Status," Lawrence Livermore National
Laboratory UCRLPRES-152674, 2003.

[13] B. Allan, R. Armstrong, S. Lefantzi, J. Ray, E. Walsh, and
P. Wolfe. Ccaffeine - a CCA Component Framework for
Parallel Computing. http://www.cca-forum.org/ccafe/.

[14] D. E. Bernholdt, R. C. Armstrong, and B. A. Allan,
"Managing complexity in modern high end scientic
computing through component-based software
engineering," in proceedings of HPCA Workshop on
Productivity and Performance in High-End Computing (P-
PHEC 2004), Madrid, Spain., 2004.

[15] J. P. Kenny, S. J. Benson, Y. Alexeev, J. Sarich, C. L.
Janssen, L. C. McInnes, M. Krishnan, J. Nieplocha, E.
Jurrus, C. Fahlstrom, and T. L. Windus, "Component-based
integration of chemistry and optimization software," Journal
of Computational Chemistry, vol. 25, pp. 1717-1725, 2004.

[16] C. Jansen. The Massively Parallel Quantum Chemistry
Program.
http://aros.ca.sandia.gov/~cljanss/mpqc/index.html.

[17] C. L. Janssen, E. T. Seidl, and M. E. Colvin, "Object-
oriented implementation of a Parallel Ab-initio Program,"
Parallel Computing in Computational Chemistry ACS
Symposium Series, American Chemical Society,
Washington,DC, 1995, vol. 592, pp. 47, 1995.

[18] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, "Global
arrays: A nonuniform memory access programming model
for high-performance computers," Journal of
Supercomputing, vol. 10, pp. 169-189, 1996.

[19] T. L. Windus, M. W. Schmidt, and M. S. Gordon, "Parallel
algorithm for SCF analytic Hessians. I. Small scale
algorithm," Chemical Physics Letters, vol. vol 216, pp. 375-
379, 1993.

[20] A. M. Marquez, J. Oviedo, J. F. Sanz, and M. Dupuis,
"Parallel Computation of second derivatives of RHF rnergy
on distributed memory computers," Journal of
Computational Chemistry, vol. 18, pp. 159-168, 1997.

[21] T. S. Zwier, "The Structure of Protonated Water Clusters,"
Science 304, pp. 119-120, 2004.

[22] G. S. Fanourgakis, A. Aprà, W. E. de Jong, and S. S.
Xantheas, "High-level ab initio calculations for the four
low-lying families of minima of (H2O)20. II. Spectroscopic
signatures of the dodecahedron, fused cubes, face-sharing
pentagonal prisms, and edge-sharing pentagonal prisms
hydrogen bonding networks," Journal of Chemical Physics,
vol. 122, pp. 134304-13, 2005.

[23] S. S. Xantheas, "Ab initio studies of cyclic water clusters
(H2O)n, n=1-6. III. Comparison of density functional with
MP2 results," The Journal of Chemical Physics, vol. 102,
pp. 4505-4517, 1995.

