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Abstract: As a traditional computer vision task, monocular depth estimation plays an essential role
in novel view 3D reconstruction and augmented reality. Convolutional neural network (CNN)-
based models have achieved good performance for this task. However, in the depth map recovered
by some existing deep learning-based methods, local details are still lost. To generate convincing
depth maps with rich local details, this study proposes an efficient multilevel pyramid network
for monocular depth estimation based on feature refinement and adaptive fusion. Specifically, a
multilevel spatial feature generation scheme is developed to extract rich features from the spatial
branch. Then, a feature refinement module that combines and enhances these multilevel contextual
and spatial information is designed to derive detailed information. In addition, we design an adaptive
fusion block for improving the capability of fully connected features. The performance evaluation
results on public RGBD datasets indicate that the proposed approach can recover reasonable depth
outputs with better details and outperform several depth recovery algorithms from a qualitative and
quantitative perspective.

Keywords: depth estimation; feature refinement; adaptive fusion; attention mechanism

1. Introduction

Recovering scene depth information from monocular images/videos has always been
an essential issue in the field of 3D vision. The purpose is to measure the distance from each
pixel in the scene to the camera. In recent years, monocular depth estimation (MDE) has
attracted substantial attention because it occupies an essential role in 3D scene understand-
ing and many vision applications, such as robotics [1], augmented reality [2], and stereo
conversion [3]. However, as an ill-posed issue, MDE requires additional information such
as shadows, color changes, layout, and texture information in the image to help us predict
pixel-level depth information. This additional prior knowledge can disambiguate different
3D scales through learning-based methods. However, such methods are not suitable for all
scenarios due to the impracticality of requiring prior knowledge. Currently, compared with
traditional learning-based methods in MDE, several approaches utilizing convolutional
neural networks (CNNs) [4–10] have shown overwhelming advantages. However, due to a
series of downsampling operations performed during feature extraction at the encoding
part, the estimated depth maps lack local details, especially for distant objects. Many
researchers have observed this issue and have explored solutions for enhancing depth
details. Some researchers use dilated convolutions [11,12] to increase the receptive field.
Another way is to connect low-level features at the encoder part with high-level features at
the decoder part through skip connections [13]. In addition, some scholars try to solve this
problem by extracting multiscale context features [14–16]. These end-to-end frameworks
can achieve reasonable results, but there are some limitations. For example, in feature
extraction processes at the encoder part, some methods ignore the spatial features of RGB
images while only considering extraction of contextual features. Some methods directly
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connect features via skip connections. However, low-level features at the encoder part
need further enhancement and refinement, as they cannot reflect details of object edges and
small structures well.

Recently, the attention mechanism has been widely utilized for feature enhancement
and refinement in MDE [17–20]. Inspired by this, we design an efficient multilevel atten-
tion pyramid network for MDE on the basis of feature refinement and adaptive fusion.
Unlike most depth estimation algorithms that only acquire contextual features, this study
also considers the extraction of spatial features. Specifically, we design a spatial feature
extraction scheme that feeds a series of downsampled versions of color images into a
spatial feature extraction block to obtain multi-scale information with better edge details. In
addition, a spatial attention-based feature refinement module that combines and enhances
this multilevel information is designed to derive detailed information. Recent studies have
shown that full connection and fusion of multilevel features can greatly recover local details.
Therefore, fully connected fusion is used to enrich the representation of each level feature.
Since the contributions of different levels of fully connected features are different, we also
design an adaptive fusion block to fuse different levels of features.

The contributions of the present network are:

• In addition to extracting contextual features, we also developed a multilevel spatial
feature generation module to extract rich spatial features containing better details.

• We designed a spatial attention-based feature refinement module that enhances multi-
level information to derive detailed information.

• We utilized fully connected fusion to enrich the representation of each level feature.
Moreover, an adaptive fusion block is designed to fuse fully connected features ac-
cording to the reliability of features.

• An efficient hybrid loss function and loss terms reweighted scheme are explored for
multilevel outputs to provide depth details.

The rest of this study is organized as follows. The related works are described in
Section 2. Section 3 introduces our framework. Section 4 analyses the experimental results.
Finally, conclusions and future research are presented in Section 5.

2. Related Work
2.1. Supervised Learning

We categorize current MDE methods into supervised and self-supervised learning
methods according to whether ground truth depths are leveraged during training. For
supervised learning-based depth recovery methods, the purpose is to determine the map-
ping relationship between color images and depth maps by training on an RGB-D dataset.
In recent years, with the promotion of convolutional neural networks (CNNs) in vision
tasks, an increasing number of researchers have devoted themselves to the development
of depth prediction models premised on deep learning. Initiating this line of research,
Eigen et al. [4] presented a coarse-to-fine network architecture based on a CNN to obtain
reasonable depth maps. To improve the performance of predicted depths, some meth-
ods integrate conditional random field (CRF) models into deep structures. For instance,
Liu et al. [21] developed an efficient depth prediction model that combines deep CNNs and
continuous conditional random fields (CRFs) and obtained reasonable results. Moreover,
some methods leverage auxiliary information to refine the details of depth outputs. In
parallel, some researchers have devoted themselves to multiscale information extraction
for enhancing the ability of feature representations and obtaining depths with more details.
Authors in Ref. [22] proposed a deep ordinal regression network (DORN) based on atrous
convolution and designed an efficient depth encoder for attaining depth maps with high
resolution. To address the problem of spatial information loss, Ye et al. [17] presented a
detail-preserving depth recovery network that can preserve spatial and contextual depth
details. They designed a nonlocal attention module and combined it with multiscale atrous
convolution. Pei et al. [18] presented a multiscale feature network (MSFNet) for MDE.
They designed an enhanced diverse attention module and an upsampling stage fusion
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module that can provide more detailed information. Chen et al. [19] presented an effi-
cient context aggregation network (ACAN), which can learn pixel-level attention maps
for long-range contextual information. Song et al. [23] developed an efficient method that
decomposes decoding process by exploiting a Laplacian pyramid. To generate clearer
depth maps and integrate spatial cues robustly, Wu et al. [24] introduced a side-predictive
aggregation method to efficiently embed scene structure information from low-level to
high-level. To improve depth prediction accuracy, they also introduced a continuous spatial
refinement loss at multiple resolutions. Since information exchange between different tasks
has great advantages, many researchers have begun to explore multitask learning. For
instance, Gao et al. [25] designed an efficient framework to jointly learn depth prediction
and semantic labeling tasks. In their study, they developed a feature-sharing module to
integrate discriminative features from different tasks. Zhao et al. [26] presented a multitask
scheme that contains contour recovery, salient detection, and depth reconstruction tasks
to detect salient objects. They developed a multimodal filtered transformer block for en-
hancing features from each modality. Moreover, there are also several other methods. To
solve the problem of algorithm generalization, Wang et al. [27] proposed a CNNapsule
network for monocular depth estimation. They extracted CNN and Matrix Capsule fea-
tures and designed a fusion block to fuse the two. The authors design a loss function that
combines long-tailed distributions, gradients, and structural similarity. For the problem
of sacrificing computational complexity and efficiency for high accuracy, Liu et al. [28]
proposed a fast encoder-decoder network (EdgeNet) for edge devices. They also designed
a low-complexity upsampling module to aggregate global depth information. On the basis
of ensuring accuracy, they also developed a channel pruning method to further reduce
computational complexity.

2.2. Self-Supervised Learning

Since ground truth depth labels are not required in their training processes, self-
supervised learning methods have become a popular topic in the MDE field. In 2019,
Godard et al. [29] designed a versatile model for self-supervised monocular depth recovery.
To solve the occlusion and dynamic object issues in self-supervised learning, they designed
a minimum reprojection loss and an automatic mask loss, respectively. Reasonable outputs
can be generated by this method. However, ambiguous reprojection still exists in this
method. To address this problem, Watson et al. [30] introduced depth hints method, which
improves an existing photometric loss term. Wong et al. [31] presented residual-based
adaptive weight and bilateral loop consistency constraints to enhance the performance
of depth recovery in the edge region to handle the problems of large pixel changes and
discontinuous gradients in the edge region. The authors in Ref. [32] proposed a multi-
scale feature extractor to extract monocular image features and fine-tune the errors of the
prediction results using proxy labels. Ling et al. [33] developed an efficient framework
for unsupervised depth reconstruction on the basis of attention mechanism. They also
designed an efficient multi-distribution reconstruction loss, which enhances the capability
of the network by amplifying the error during view synthesis. Ye et al. [34] designed
a dual-network framework that contains a monocular branch and a stereo branch. The
monocular network predicts the coarse depths of monocular images. Taking coarse depths
and stereo image pairs as input, the stereo network further mines the stereo information.
Sun et al. [35] jointly estimated depth and visual odometry in the framework of unsu-
pervised learning and designed a depth pose consistency loss term to study geometric
constraints between different training samples. In parallel, a new dynamic receptive field
network based on residual networks was designed by Chiu et al. [36], which can assign suit-
able receptive fields for images with different resolutions to estimate high-quality depths.
Recently, transformers have also started to be generally utilized in self-supervised MDE.
Varma et al. [37] developed a self-supervised depth prediction approach from monocular
images on the basis of transformers and compared the performance of transformer and
CNN-based methods on KITTI dataset. Yang et al. [38] proposed a simplified transformer



Electronics 2022, 11, 2615 4 of 21

for self-supervised depth estimation. The designed simplification strategy, joint attention
mechanism, and connection mechanism can reduce model complexity. This model can be
directly generalized to other dense image prediction tasks such as semantic segmentation.
Some methods utilize information about the target model itself to improve its performance.
For instance, Mendoza et al. [39] used a self-distillation method to build a self-supervised
monocular depth estimation model. To strengthen the consistency between predictions,
they studied consistency enforcement strategy and employ auxiliary strategies to filter out
unreliable predictions.

3. Proposed Method
3.1. Network Architecture

To predict precise depth outputs with better details, we present an efficient multilevel
pyramid network for MDE on the basis of feature refinement and adaptive fusion. Figure 1
presents the overall architecture of the framework. The network includes five parts: a
backbone network, a multilevel spatial feature generation module (MSFGM), a feature
refinement module (FRM), a feature fusion module (FFM), and a decoder. In the first part,
a multilevel feature extraction module is designed for receiving multilevel depth feature
maps. It contains a contextual branch and a spatial branch. In the contextual branch,
ResNet-101 is utilized as our backbone network. We then send the feature map output
from the backbone network into a convolution block to generate the contextual features
of the encoder part. In the spatial branch, the downsampled color images are sent into a
spatial feature extraction module to generate a set of features with different resolutions.
The features of each level from two branches are fed into a feature refinement module.
In addition, a feature refinement module is developed on the basis of spatial attention to
combine and enhance multilevel information to derive detailed information. Recent studies
have shown that full connection and fusion of multilevel features can greatly combine
local details. Therefore, we apply fully connected fusion to enrich the representation of
each level feature. Since the contributions of different levels of fully connected features
are different, we also develop an adaptive fusion block to fuse different levels of features.
Then, the adaptively fused multilevel features are fed into the decoder part, which can
increase the resolution of low-resolution depth maps. We fed these outputs into consecutive
upsampling blocks to generate multilevel outputs and integrate these multilevel outputs
via the loss reweighting method to generate the final depths.

3.2. Multi-Level Spatial Feature Generation Module (MSFGM)

To address the problem of local depth detail loss, a multilevel framework is designed
to generate more meaningful spatial and contextual information. Our present scheme
generates multiscale features FCi =

{
FC1 , FC2 , FC3 , FC4

}
from the contextual branch network

and obtains multiscale features FSi =
{

FS1 , FS2 , FS3 , FS4

}
from the spatial branch network

for an input color image. For the contextual branch, the original ResNet-101 is used as
our backbone network. Different from the original network, we replace downsampling
operators in ResBlock4 with dilated convolution (the dilation rate is set to 2) to maintain
the resolution of the depth at a larger size. Then, we feed the feature outputs obtained from
the backbone network into convolution layer. The final features FCi can be generated from
the backbone network for a single color image I. Features FSi can be obtained from the
spatial branch network for an input color image I. The spatial branch collects features from
the downsampled color images by utilizing the spatial feature extraction scheme. We first
send the downsampled color images into a spatial feature block to generate spatial outputs.
The flow chart of spatial feature extraction is shown in Figure 2. We generate the final FS by
combining downsampling process and spatial feature extraction process as follows:

θi = ds↓i(I), (1)

µi = H f (θi), (2)
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fCBR1i = Relu(BatchNorm(Conv3×3(µi))), (3)

fCBR2i = Relu(BatchNorm(Conv3×3( fCBR1i))), (4)

FSi = Conv3×3( fCBR2i), (5)

where ds↓i, i = 1, 2, 3, 4 represents the downsampling operation. The resolution of the
original image is decreased to 1/2, 1/4, 1/8, and 1/16 through downsampling. Conv3×3
denotes a convolution with a 3× 3 kernel. Here, H f denotes a filtering operation, where
an ideal high-pass filter with a cutoff frequency radius of 80 is used; BatchNorm and Relu
refer to the processes of batch normalization and ReLU, respectively; and Conv3×3 indicates
a convolution operation with 3× 3 kernels. fCBR1i and fCBR2i denote the output features
from two CBR layers.

Figure 1. The overall architecture of our framework. It contains five parts: backbone network,
multilevel spatial feature generation module (MSFGM), feature refinement module (FRM), feature
fusion module (FFM), and decoder. We use ResNet-101 as our backbone. MSFGM is designed for
receiving abundant spatial feature maps. FRM can effectively integrate and enhance contextual and
spatial features, whereas FFM adaptively fuses fully connected multiscale features. Then, multilevel
features obtained from FFM are fed into the decoder to recover precise outputs with high resolution.

Figure 2. Spatial feature extraction block.

3.3. Feature Refinement Module (FRM)

The attention mechanism has been leveraged in many visual tasks and has proven to
enhance the performance of depth prediction tasks. Motivated by these efforts, we design
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an attention-based feature refinement module that uses a spatial attention block to extract
meaningful features. Figure 3 shows a flowchart of feature refinement module. For a color
input image, two types of features can be obtained through a multilevel feature generation
module. We intensify features FC and FS globally to obtain more effective information via
the feature refinement process. Figure 2 shows a flowchart of the feature refinement module.
Input features 1 and 2 represent features FC and FS obtained from the contextual branch
network and spatial branch network, respectively. We concatenate these input features and
then send them into a CBR network layer (3× 3 convolution, batch normalization, and
ReLU) to reduce feature dimensions. Finally, the connected feature and attention feature
obtained from the spatial attention (SA) [40] block are summed to obtain the final global
feature. These procedures are described as follows:

f = Relu(BatchNorm(Conv1×1(Concat(FS, FC)))), (6)

FFE = f ⊕ FSA( f ), (7)

where FFE is the final feature map; f is the feature map operated by concatenation, convo-
lution, batch normalization, and ReLU; Conv1×1 indicates a convolution operation with
1× 1 kernels; ⊕ represents the element-wise summation; concat is concatenation operation,
and FSA represents attention feature map obtained by spatial attention block. To improve
the expressive capability of local features, spatial attention is introduced to encode richer
contextual and spatial information into local features. We obtain three identical feature
maps B by feeding input features A(c× h× w) into a 1× 1 convolution layer. Then, two of
these feature maps are reshaped to C(hw× c), and another feature map is reshaped and
transposed to D(c× hw). Next, we apply matrix multiply C and D and feed the result E
into a softmax layer to generate the features S(c× c). Then, operation of matrix multiplica-
tion between S and C is performed. Finally, the multiplied feature map is reshaped and
summed with the input feature A to generate the enhanced feature. The feature refinement
process is as follows:

FFE = A⊕ F
= A⊕ Reshape(S⊗ C)
= A⊕ Reshape(so f tmax(C⊗ D)⊗ C)

= A⊕ Reshape

(
so f tmax

(
(Reshape (Conv1×1(X)))(Reshape(Conv1×1(X)))T

)
⊗(Reshape(Conv1×1(X)))

)
,

(8)

where Conv 1×1 indicates 1× 1 convolution layer; Reshape and So f tmax are reshape opera-
tion and softmax operations, respectively.

3.4. Feature Fusion Module (FFM)

Here, we design a fully connected scheme and an adaptive fusion scheme to fuse these
enhanced deep features. We obtain meaningful information from deep features at other
levels to enrich the feature representation at the current level via the fully connected scheme.
Since the contributions of different levels of fully connected features are different, we also
develop an adaptive fusion block to fuse different levels of features efficiently. The feature
fusion process is shown in Figure 4. Specifically, four feature representations with the same
resolution are generated by a series of upsampling or downsampling interpolations for
each level feature. These four feature maps can be described as follows:

F̂Input1 =
{

FFE1 , up↑2
(

FFE2

)
, up↑4

(
FFE3

)
, up↑8

(
FFE4

)}
, (9)

F̂Input2 =
{

ds↓2
(

FFE1

)
, FFE2 , up↑2

(
FFE3

)
, up↑4

(
FFE4

)}
, (10)

F̂Input3 =
{

ds↓4
(

FFE1

)
, ds↓2

(
FFE2

)
, FFE3 , up↑2

(
FFE4

)}
, (11)
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F̂Input3 =
{

ds↓8
(

FFE1

)
, ds↓4

(
FFE2

)
, ds↓2

(
FFE3

)
, FFE4

}
, (12)

where F̂inputi denotes the concatenated features at the ith level; up↓ represents upsampling
operation; ds↓ represents downsampling operation; and concat is the concatenation operation.

Figure 3. Feature refinement module.

Figure 4. Feature fusion module.

The multilevel feature representations mentioned above are passed to the adaptive
fusion block for obtaining a more reasonable combination. We take the multilevel features
of the second level as input to illustrate the adaptive fusion process. The adaptive fusion
process at the second level is shown in Figure 5. In AFB, these four feature maps are first
concatenated as follows:
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F̂FE2 = concat
(

ds↓2
(

FEF1

)
, FEF2 , up↑2

(
FEF3

)
, up↑4

(
FEF4

))
= concat

(
FFE21 , FFE22 , FFE23 , FFE24

)
, (13)

Figure 5. Adaptive fusion block.

Then, we perform an average pooling operation for compressing the concatenated
features and compute channel statistics. The compressed features pass through a convo-
lution block (CB), which includes a 3× 3 convolution, a ReLU activation operation and a
3× 3 convolution. Next, we apply sigmoid function to generate the fusion coefficients for
features at different levels. Finally, we aggregate weighted multilevel features to generate
the final output of the second level. The calculation process is as follows:

W2 = S
(
Conv3×3

(
ReLU

(
Conv3×3

(
AP
(

F̂FE2

)))))
, (14)

FAF2 =
4

∑
j=1

W2j·FAF2j , (15)

where FAF2 denotes the combined feature and W2j denotes four fusion coefficients for differ-
ent features at the second level. Since the fusion coefficient depends on the interdependence
between features at the same level, the adaptively fused features are more reasonable than
direct concatenation or elementwise summation.

3.5. Loss Function

Another key to improving the depth prediction method is the design of the loss
function to be used during training. At present, there are some commonly used loss
functions, such as `1, `2, and the BerHu loss, but they are very sensitive to errors that
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occur at the edge of the step. To overcome this problem and predict a more reasonable
depth output with better local details, a hybrid loss function that contains the BerHu loss,
gradient loss, and relative loss is designed. We adopt the BerHu loss as the first loss term,
as it combines advantages of the regularly utilized `1 loss and `2 loss. The BerHu loss is as
shown in Equation (16):

Lberhu(d, d∗) =
1
N

N

∑
p=1

B
(
ep
)
,B
(
ep
)
=

{ ∣∣ep
∣∣ ∣∣ep

∣∣ ≤ c
e2

p+c2

2c

∣∣ep
∣∣ > c

, ep =
∣∣∣d− d∗p

∣∣∣, (16)

where ep indicates absolute error; we set threshold c as 1/5 of the maximum per-batch error
for all pixels. The recovered depths and ground truth depths can be represented by d and
d∗, respectively. The second loss term Lgra is utilized to penalize the edge structure changes
in both x and y directions, which can be determined as follows:

Lgra(d, d∗) =
1
N

N

∑
p=1

(
ln
((

∆x

(∣∣∣dp − d∗p
∣∣∣))+ α1

)
+ ln

((
∆y

(∣∣∣dp − d∗p
∣∣∣))+ α2

))
, (17)

where ∆x and ∆y indicate the gradient of difference with respect to x and y, respectively.
Inspired by the feature similarity defined by Zhang et al. [41], a new FSIM loss term LFSIM
was designed in this study to measure the feature similarity between two depth maps. The
upper bound of FSIM metric is 1; thus, FSIM loss is indicated as below:

LFSIM(d, d∗) =
1
N

N

∑
p=1

1− FSIM
(

dp, d∗p
)

2
, (18)

The relative loss is used to define the ordinal relationship of sampled pairs between
two depth maps. On the basis of the work in Ref. [42], we propose a new relative loss that
assigns weights according to the correctness of ordinal relationship. The loss term can be
described as follows:

Lrel =
N

∑
p=1

Lr,p =


N
∑

p=1
wγ

p log
(

1 + exp
(
−rp

(
dp − d∗p

)))
rp 6= 0

N
∑

p=1

(
dp − d∗p

)2
rp = 0

, (19)

wp = 1− 1/
(

1 + exp
(
−rp

(
dp − d∗p

)))
, (20)

where rp denotes the ground–truth ordinal relationship. For a particular pixel, this value
is set to −1 if the predicted depth value is less than the ground truth depth value, 0 if the
predicted depth value is equal to the ground truth depth value, and 1 otherwise. wp is the
weight assigned to sample pairs. We perform a weighted summation of these three loss
terms to obtain loss function L as follows:

L(d, d∗) = λbLberhu(d, d∗) + λgLgra(d, d∗) + λrLrel(d, d∗), (21)

where λb, λg, λr are weights of the Berhu loss, gradient loss, and relative loss, respectively.
As mentioned in Section 3.1, we can generate multilevel depth outputs d = {d1, d2, . . . , dn}
with different resolutions from the decoder part. These estimated depth maps are then
evaluated according to the loss function. Unlike several previous algorithms that directly
give weights, our model focuses more on depth maps with larger sizes and assigns more
weight to depth maps with larger resolutions. The final loss function can be calculated as
Equation (22):

L̂ =
1
n

n

∑
i=1

1
2i Li(di − d∗i ), (22)
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where n is the number of multistage outputs; Li is the depth loss of the ith level. di and d∗i
indicate the predicted depth and the ground truth depth of the ith level.

4. Experimental Results

Implementation and training details: We carried out the experiments on a PC platform
with an i7-10710, 1.10 GHz CPU, 16 GB RAM, and an RTX2080 GPU. The PyTorch frame-
work was used for model training, and the parameters of ResNet-101 layers trained on the
ImageNet dataset were utilized for model initialization. In our study, the momentum of
the Adam optimizer was set as 0.99. The base learning rate is initially set to 0.0003, and the
learning rate decay is set to 0.1. The weight decay has a value of 0.00004.

Datasets and Metrics: The proposed method was evaluated for outdoor and indoor
scenarios. Specifically, we used two RGBD datasets for evaluation: the NYU Kinect V2
dataset [43] and the KITTI dataset [44]. We calculated errors and accuracies from the
perspective of the following four evaluation metrics:

(1) Root-mean-squared error (RMSE(lin)):

√
1
S

S
∑

p=1

(
dp − d∗p

)2
;

(2) Root-mean-squared error (RMSE(log)):

√
1
S

S
∑

p=1

(
log
(
dp
)
− log

(
d∗p
))2

;

(3) Mean log10 error (log10): 1
S

S
∑

p=1

∥∥∥log10 dp − log10 d∗p
∥∥∥

1
;

(4) Mean relative error (Rel): 1
S

S
∑

p=1

‖dp−d∗p‖1
d∗ ;

(5) Threshold (th): percentage of dp, i.e., max
( d∗p

dp
, dp

d∗p P

)
= δ < th.

where dp denotes the recovered depths and d∗p is the ground-truth depths of pixel p; S
indicates the number of pixels in measured depth maps.

4.1. Qualitative Comparison

The results of the experiments on the NYUv2 dataset are reported in Table 1, in which
our method is compared with other depth recovery approaches [4,5,17,18,21,22,45–52]. By
analyzing Table 1, Lee et al. [50] explored relative depth and achieved optimal values for
metrics and δ < 1.253. By utilizing attention mechanisms and multi-scale convolutions with
adaptive weight adjustment for predicting depths, Liu et al. [52] obtained the best log10 and
Rel scores. Thanks to our designed spatial feature extraction scheme, feature refinement
module, adaptive fusion module, effective loss function, and loss terms reweighting scheme,
the presented framework obtained the lowest RMSE(lin), Rel, and δ < 1.252 values and
achieved better log10 and δ < 1.253 values of 0.049 and 0.993, respectively. Our method
improved the performance by approximately 0.001 compared to the second-place method
under RMSE(lin) criterion. Here, RMSE(lin) represents the deviation between the estimated
values and the ground truth values and is often utilized to measure the prediction results
of machine learning models. A lower RMSE(lin) value indicates that the presented method
has reasonable validity. Additionally, Pei et al. [18] designed an enhanced diverse attention
module and upsampling stage fusion module which can provide more detailed information
whereas Fu et al. [22] designed an efficient depth encoder for attaining depth maps with
high resolution. Both methods perform well.

The assessment results for the KITTI dataset from a qualitative perspective are displayed
in Table 2. In the table, “Stereo” denotes self-supervised learning by using stereo supervision,
whereas “Depth” indicates the supervised learning-based methods by using depth supervi-
sion. We compared our method with other competing methods [5,17,18,29–34,53–57]. Notably,
Liu et al. [53] employed dense depth data, whereas our network used ground truth sparse
data for training. By directly using the sparse depth information obtained by lidar, the
image preprocessing steps can be omitted. Due to the multilevel spatial feature extraction
scheme, feature refinement strategy, and feature fusion scheme, our method obtained the



Electronics 2022, 11, 2615 11 of 21

lowest values on the Rel metric and achieved 0.895, 0.974, and 0.990 for δ < 1.25, δ < 1.252

and δ < 1.253 metrics, respectively. From data in the table, Chen et al. [56] generated the
best RMSE(lin) score and has the best performance for RMSE(log). Although RMSE(lin)
and RMSE(log) values of our method were not the best, they also reached 3.842 and 0.185,
respectively. Table 3 represents the quantitative evaluation outputs of our approach and
other methods [5,17,21,29,33,47,52,58–60] on the Make3D dataset. Liu et al. [21] developed
an efficient depth prediction model that combines deep CNNs and continuous conditional
random fields (CRFs), whereas Laina et al. [5] designed fully convolutional residual net-
works. Kim et al. [59] designed a deep prediction network and a deep gradient recovery
network and effectively fused depth information and gradient information. On the whole,
the methods of Liu et al. [21] and Laina et al. [5] obtained reasonable results but presented
unsatisfactory performance for RMSE(lin), log10, and Rel metrics. Kim et al. [59] obtained
the lowest Rel score, whereas our method achieved the best performance for RMSE(lin)
and log10. In addition, we achieved significantly better performance on the Rel index.

Table 1. Quantitative comparison results on NYU dataset.

Methods RMSE(lin) log10 Rel δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [4] 0.907 NR 0.215 0.611 0.887 0.971
Carvalho et al. [45] 0.600 0.059 0.135 0.819 0.957 0.987
Moukari et al. [46] 0.569 0.057 0.133 0.830 0.966 0.993

Xu et al. [47] 0.586 0.052 0.121 0.811 0.954 0.987
Liu et al. [21] 0.824 0.095 0.230 0.614 0.883 0.971
Laina et al. [5] 0.573 0.055 0.127 0.811 0.953 0.988
Jiang et al. [48] 0.468 0.054 0.127 0.841 0.966 0.993
Wang et al. [49] 0.497 NR 0.128 0.845 0.966 0.990
Lee et al. [50] 0.538 NR NR 0.837 0.971 0.994
Fu et al. [22] 0.509 0.051 0.115 0.828 0.965 0.992
Ye et al. [17] 0.474 0.063 NR 0.784 0.948 0.986
Pei et al. [18] 0.531 0.051 0.118 0.865 0.975 0.993
SharpNet [51] 0.502 NR 0.139 0.836 0.966 0.990
Liu et al. [52] 0.523 0.049 0.113 0.872 0.975 0.993
Our method 0.463 0.049 0.115 0.868 0.977 0.993

Table 2. Quantitative comparison results on KITTI dataset.

Methods Type RMSE(lin) Rel RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

Godard et al. [29] Stereo 4.863 0.115 0.193 0.877 0.959 0.981
Watson et al. [30] Stereo 4.695 0.106 0.193 0.875 0.958 0.980
Wong et al. [31] Stereo 4.172 0.126 0.217 0.840 0.941 0.973
Tosi et al. [32] Stereo 4.714 0.111 0.199 0.864 0.954 0.979
Ling et al. [33] Stereo 5.206 0.121 0.214 0.843 0.944 0.975
Ye et al. [34] Stereo 4.810 0.105 0.196 0.861 0.947 0.978

Eigen et al. [5] Depth 7.156 0.190 0.246 0.692 0.899 0.967
Liu et al. [53] Depth 4.977 0.127 NR 0.838 0.948 0.980

Fang et al. [54] Depth 4.075 0.098 0.174 0.889 0.963 0.985
Ye et al. [17] Depth 4.978 0.112 0.210 0.842 0.947 0.973
Pei et al. [18] Depth 4.054 0.098 NR 0.893 0.968 0.987

Alhashim et al. [55] Depth 4.170 0.093 NR 0.886 0.963 0.986
Chen et al. [56] Depth 3.597 0.095 0.159 0.893 0.970 0.989
Gan et al. [57] Depth 3.933 0.098 0.173 0.890 0.964 0.985
Our method Depth 3.842 0.092 0.185 0.895 0.974 0.990



Electronics 2022, 11, 2615 12 of 21

Table 3. Quantitative comparison results on Make3Ddataset.

Methods RMSE(lin) log10 Rel

Fang et al. [58] 7.39 0.117 0.334
Liu et al. [21] 8.6 0.119 0.314
Laina et al. [5] 4.46 0.072 0.176
Liu et al. [52] 13.8 0.138 0.346
Xu et al. [47] 4.38 0.065 0.184

Kim et al. [59] 4.85 0.058 0.141
Ye et al. [17] 4.17 0.062 0.171

Godard et al. [29] 7.417 0.163 0.322
Ling et al. [33] 7.745 NR 0.352

Kuznietsov et al. [60] NR 0.190 0.421
Our method 4.10 0.056 0.162

4.2. Quantitative Comparison

A qualitative evaluation was also performed to compare our approach and other
depth reconstruction methods. Figure 6 demonstrates the qualitative comparison results
for the NYUv2 dataset, which further verifies the efficiency of our model. The approaches
outlined in Refs. [5,21,22,48,50] can obtain precise depth results but have relatively fuzzy
edge details. Many fine structures and object edge information are lost, and the depth
predictions in some regions have incorrect values. Compared with the results in Ref. [5], the
results from Lee et al. [50] provide a relatively accurate 3D structure. However, observing
the eighth row and last row in Figure 6, we can see that the results are significantly blurrier
than ours and cannot accurately maintain fine details of the scene. As seen from the last
row in Figure 6, our method can recover convincing depth maps with clearer edges.

Figure 6. Assessment results for NYUv2 dataset from a qualitative perspective. First row: input,
second row: ground truth, third row to last row: depths recovered by Liu et al. [21], Laina et al. [5],
Fu et al. [22], Jiang et al. [48], Lee et al. [50] and our method.
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For the KITTI dataset, the qualitative results generated from the present work were
compared with those of other competitive methods [4,22,55], which are demonstrated
in Figure 7. Among them, Eigen et al. [4] is the earliest coarse-to-fine method using
convolutional neural networks, whereas Fu et al. [22] applied a depth ordinal regression
idea. Alhashim et al. [55] used transfer learning whereas our method designed efficient
feature extraction, feature enhancement, and fusion schemes to predict high-quality depths.
It can be seen from the results that objects in depth maps recovered by our approach have
sharper contours, such as the trees in the second column and the car lights in the first and
third columns. Furthermore, our model can obtain more reasonable depth information for
distant objects, such as the distant street lights in the second row. Overall, our outputs are
closest to the ground-truth depths and achieve attractive performance in both objective and
visual comparisons. We also performed a qualitative evaluation between our approach and
other depth recovery algorithms, as outlined in this section.

Figure 7. Assessment results for the KITTI dataset from a qualitative perspective. First row: input,
second row: sparse ground truth, third row: dense ground truth, fourth row to last row: depths
recovered by Eigen et al. [4], Fu et al. [22], Alhashim et al. [55] and our method.

Figure 8 provides the comparison results on the Make3D dataset for methods proposed
by Fang et al. [46], Liu et al. [21], Laina et al. [5], Godard et al. [29], Watson et al. [30], and
our method. The methods of Godard et al. [29] and Watson et al. [30] belongs to self-
supervised learning, whereas other methods are supervised learning. The overall result for
Fang et al. [46] is relatively fuzzy and cannot be used to recover accurate depth values for
objects at far distances. Here, Liu et al.’s [21] approach and Laina et al’s. [5] approaches
outperform Fang et al.’s [46] approach. However, the depth details at the edges are not
sufficiently clear. Overall, the structures of the depth results estimated by our method are
very similar to those of the real scene since we make full use of spatial features, feature
enhancement, and fusion schemes.
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Figure 8. Assessment results on the Make3D dataset. First row: input, second row: ground-
truth, third row to last row: depths recovered by Fang et al. [58], Liu et al. [21], Laina et al. [5],
Godard et al. [29], Watson et al. [30], and our method.
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4.3. Ablation Study

We used the NYU v2 dataset to perform ablation experiments to demonstrate the
effectiveness of our framework. There are three innovative modules contained in our
framework: the multilevel spatial feature generation module (MSFGM), feature refinement
module (FRM), and feature fusion module (FFM). The MSFGM is designed for receiving
multilevel depth feature maps from the spatial branch. FRM can effectively integrate
and enhance the contextual and spatial features, whereas FFM adaptively fuses the fully
connected multiscale features. The baseline network contains a backbone network and a
decoder (i.e., consecutive upsampling blocks). We gradually added new modules to the
baseline network and checked the effectiveness of the added modules according to the
evaluation criteria. As reported in Table 4 and Figure 9, the performance of the baseline
network is not ideal since it only considers the contextual features of an input color image.
After adding MSFGM, the results were slightly better than the baseline. The performance
of the model is further improved when FRM is added, which indicates that the feature
refinement operation can preserve more depth details. As can be seen from the table, the
presented framework realizes the optimal performance when MSFGM, FRM, and FFM
are introduced. This demonstrates the effectiveness of methods such as spatial feature
extraction, feature refinement, full feature connection, and adaptive fusion. When all
modules are combined, we obtain the best depth recovery outputs.

Table 4. Quantitative comparison of MSFGM, FRM, and FFM.

Methods RMSE(lin) log10 Rel δ < 1.25 δ < 1.252 δ < 1.253

Baseline 0.561 0.073 0.163 0.737 0.928 0.990
Baseline + MSFGM 0.552 0.069 0.138 0.743 0.933 0.991
Baseline + MSFGM

+ FRM 0.498 0.059 0.125 0.806 0.953 0.992

Baseline + MSFGM
+ FRM + FFM 0.463 0.049 0.115 0.868 0.977 0.993

Figure 9. Depth prediction results for different components.

The definition of the loss function plays an essential role in MDE. To measure the
ordinal relationship of the sampled pairs between two depth maps, a new relative loss
term was added to the traditional loss function. We then reweighted all the loss terms
for multilevel outputs from the decoder part to provide depth details. Table 5 reports



Electronics 2022, 11, 2615 16 of 21

the quantitative evaluation results with or without using the relative loss term and the
reweight method. The ‘Lberhu + Lgra’ model means our network does not use the relative
loss term and the reweight method. ‘Lberhu + Lgra + Lrel’ indicates our network using
the Berhu loss, gradient loss, and relative loss terms, whereas ‘Lberhu + Lgra + Lrel + RW’
denotes our network uses the relative loss term and the reweight scheme. When new loss
items are added, the RMSE(lin) reaches 0.463, and δ < 1.25 is improved by approximately
0.015. It can be seen that the reweighing strategy contributes to improving the performance
of our method. We simultaneously compare the proposed backbone network with two
other commonly used backbone networks: VGG19 and ResNet50. To ensure the fairness of
the experiments, other modules used in the experiments are the same. The performance
comparison of different backbone networks is shown in Table 6. The studied backbone
network is designed with ResNet101 on the basis of dilated convolution. The measure
values show the effectiveness of the studied backbone network. Compared with VGG19
and ResNet50, the studied backbone network is deeper, and the overall structure and local
details of the deep results are better preserved. The running time comparison of different
methods on the NYU dataset is shown in Table 7. Since the backbone network of the depth
estimation method proposed by Laina et al. [5] is ResNet50, we also replace the backbone
network in this study with ResNet50 and give the running time. Due to our designed
high-performance encoder and a lightweight decoder with only four up-projection blocks,
our method takes less inference time than other methods.

Table 5. Quantitative evaluation results of different loss terms.

Loss Terms RMSE(lin) log10 Rel δ < 1.25 δ < 1.252 δ < 1.253

Lberhu + Lgra 0.483 0.060 0.115 0.853 0.969 0.992
Lberhu + Lgra + Lrel 0.480 0.060 0.116 0.856 0.970 0.993

Lberhu + Lgra + Lrel + RW 0.463 0.049 0.115 0.868 0.977 0.993

Table 6. Quantitative comparison results of different backbone networks.

Backbone RMSE(lin) log10 Rel δ < 1.25 δ < 1.252 δ < 1.253

VGG19 0.615 0.073 0.756 0.936 0.980 VGG19
ResNet50 0.556 0.064 0.809 0.954 0.983 ResNet50

Ours 0.463 0.049 0.868 0.977 0.993 Ours

Table 7. Runtime comparison for different methods on NYU dataset.

Methods Time (ms)

Eigen [4] 201.3
Liu et al. [21] 175.2
Laina et al. [5] 72.4

Chakrabarti et al. [61] 150.3
Ours (Resnet50) 70.5

Ours 81.3

4.4. Generalization

We used the scene dataset V1 [62] to verify the generalization ability of the method.
The images and depths in scene dataset V1 were captured using a Kinect camera. We
randomly selected 569 images from the scene V1 database for testing and used the NYU
Depth V2 model without fine-tuning as the training model. Figure 10 illustrates the
comparison results of depth prediction on scene dataset V1. The first and second columns of
Figure 10 present RGB images and the corresponding depths, respectively. The third to last
columns of Figure 10 illustrate the depth results estimated by Liu et al. [21], Laina et al. [5],
Hu et al. [6], and our method, respectively. Our network obtained a more reasonable depth
map with a clearer edge structure. For example, the edges of the table in the second and
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third rows are clearer than the results obtained using the Liu et al. [21] and Laina et al. [5]
methods. The depth details of the bowls in the first row, fourth row, and fifth row are also
more convincing. Table 8 outlines the evaluation outputs of depth prediction on scene
dataset V1. We tested the pretrained NYU model on scene dataset V1, and the results were
significantly different from those directly tested on the NYU test set. Compared to some
earlier methods, Hu et al. [6] outperformed Liu et al. [21] and Laina et al. [5]. Compared
with methods by Laina et al. [5], Hu et al. [6], and Liu et al. [21], our method performed
better for metrics RMSE(lin), Rel, and δ < 1.253. Thus, the proposed approach delivers
comparable performance from a qualitative and quantitative perspective.

Figure 10. Visual comparison on the scene dataset V1. The first column to last column: input, ground
truth, depths recovered by Liu et al. [21], Laina et al. [5], Hu et al. [6], and our method.

Table 8. Quantitative evaluation for the scene dataset V1 with the NYU Depth V2 model.

Methods RMSE(lin) log10 Rel δ < 1.25 δ < 1.252 δ < 1.253

Hu et al. [6] 1.551 0.196 0.340 0.179 0.547 0.849
Liu et al. [21] 2.254 0.205 0.356 0.162 0.497 0.816
Laina et al. [5] 1.896 0.200 0.344 0.168 0.531 0.827
Our method 1.449 0.199 0.337 0.173 0.601 0.855

4.5. Application: 3D Reconstruction

We next provide qualitative evaluation results of a 3D reconstruction application to
verify the usefulness of our method. The results are displayed in Figure 11. The visual
images produced by the presented approach offer a realistic effect compared to those
produced by Jiang et al. [48]. Thanks to our multilevel feature extraction module, feature
refinement module, feature fusion module and hybrid loss function, the 3D reconstructions
obtained by our method are close to the scene structure. Figure 10 denotes reconstruction
results from different views by leveraging our method. The 3D comparison results in
Figure 12 further prove the effectiveness of our algorithm.



Electronics 2022, 11, 2615 18 of 21

Figure 11. 3D visualization results on the NYU v2 dataset. The first column to last column: input,
ground truth, depths recovered by Jiang et al. [48] and our method.

Figure 12. 3D reconstruction results by leveraging our method.

5. Conclusions

For obtaining precise depth maps with rich local details, an efficient multilevel pyra-
mid network for monocular depth prediction on the basis of feature refinement and adap-
tive fusion has been presented in this study. Unlike most depth estimation algorithms
that only acquire contextual features, this study also considers the extraction of spatial
features. Specifically, a spatial feature extraction scheme is designed for generating multi-
scale information with better edge details. In addition, the feature refinement module is
developed to focus on meaningful structural components of the scene, whereas the devised
feature fusion module efficiently integrates these significant features for refining depth
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details. Moreover, we have also designed an efficient hybrid loss function that further
considers related relationships and reweighted loss terms to obtain higher-precision depth
outputs. The evaluation results for four RGBD datasets demonstrate that our method can
obtain precise depths with better details, especially for distant objects and object edges.
Nevertheless, our method has some limitations. For instance, it fails to generate depth
maps with better details when the depth distributions of test images and training data have
little correlation. Thus, in future work, how to combine domain adaptation methods to
overcome domain changes is a direction worth exploring.
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