
Multilevel quasi-interpolation on a sparse grid
with the Gaussian

Fuat Usta1 and Jeremy Levesley2

1 Department of Mathematics, Duzce University ,
Konuralp Campus, 81620, Duzce, Turkey,

fuatusta@duzce.edu.tr,
2 Department of Mathematics, University of Leicester,
University Road, Leicester, LE1 7RH, United Kingdom,

j.levesley@le.ac.uk

Abstract. Motivated by the recent multilevel sparse kernel-based in-
terpolation (MuSIK) algorithm proposed in [Georgoulis et. al. 2013], we
introduce the new quasi-multilevel sparse interpolation with kernels (Q-
MuSIK) via the combination technique. The Q-MuSIK scheme achieves
better convergence and run time when compared with classical quasi-
interpolation. Also, the Q-MuSIK algorithm is generally superior to the
MuSIK methods in terms of run time in particular in high-dimensional
interpolation problems, since there is no need to solve large algebraic sys-
tems. We subsequently propose a fast, low complexity, high-dimensional
positive-weight quadrature formula based on Q-MuSIK approximation
of the integrand. We present the results of numerical experimentation
for both quasi-interpolation and quadrature in high dimensions.

1 Introduction

Over the last half century, numerical methods have obtained much attention,
not only among mathematicians but also in the scientific and engineering com-
munities.

High dimensionality usually causes some problems for mathematical mod-
elling on gridded data. The main problem is known as the curse of dimension-
ality, a term due to Bellmann [4]. There is an exponential relationship between
the computational cost of approximation with a given error bound ε and the
dimension d of the space Rd for any given problem. For this reason, classical
approximation techniques are limited to low dimensions. For example, the com-
plexity of solving an approximation problem on gridded data over a bounded
domain Ω ∈ Rd is O(Nd), where d is the dimension of the input data. Radial
basis function (RBF) approximation is one of the tools which is effective in high-
dimensions when the data is scattered in its domain; see e.g. [17]. The potential

2010 Mathematics Subject Classification: 65F10, 65N55, 65N22, 65D32
Key Words : Quasi-interpolation, multilevel, sparse grids, hyperbolic crosses, quadra-
ture, high dimension.

2

smoothness of the basis functions (such as Gaussians) means that RBF methods
have also been successfully applied for the solution of smooth partial differential
equations; see [12].

Another powerful tool for multidimensional problems is quasi-interpolation,
which is widely used in scientific computation, mechanics and engineering. The-
oretical errors estimates for RBF quasi-interpolation are available, for instance
in [2, 20, 21]. A quasi-interpolation technique based on radial basis functions is
discussed in the sequel.

Given a continuous function u on Rd, the quasi-interpolant Qhu, h > 0, is a
superposition of dilated and shifted versions of a given generator function ν on
Rd using as coefficients the samples of u on the lattice hZd

Qhu(x) :=
∑

z∈hZd

u(hz)ν(h−1x− z). (1)

In this paper ν = µc is the Gaussian function

µc(x) =
exp (−‖x‖2/(2c2))

(c
√

2π)d
. (2)

We will truncate the expansion (1) expansion so that u is evaluated only inside
the unit cube; see Section 2. The kernel µc of the quasi-interpolant must have
integral 1 in order that it be an approximate identity. This is what motivates the
choice of normalisation constant in the above definition. We also wish to have
the flexibility to chose a particular width of Gaussian. We will write µ = µ1.

The main advantage of quasi-interpolation is that we do not need to solve a
linear system as would have to do with interpolation. This means that the ap-
proximation process is much faster. We compare our results with the analagous
interpolation method, MuSIK, described in [9] and see that they give more ac-
curate results in the same amount of time.

We should also comment that we are aiming at approximation of smooth
functions, so that we choose a smooth basis function. In high dimensional ap-
plications low dimensional non-smooth artefacts become more difficult to see, so
that functions, from the point of view of an observer, smooth out. We should also
observe that to test the uniform approximation of a method in ten dimensions
on the unit cube would require 1010 points for very low resolution in each direc-
tion. Hence we can have no confidence that the results we give are appropriate.
We explore this issue in the numerical examples. Thus, in high dimensions we
observe the approximation of functionals of the solution, in this case, integrals.

Convergence for quasi-interpolation using the Gaussian has been discussed
[14, 15], where they coin the phrase approximate approximation. This refers to
the fact that low degree polynomials are not reproduced by standard quasi-
interpolation with Gaussians. In [3] the authors generate a new kernel in (1)
using a linear combination of Gaussians, and then balance the choice of width of
the Gaussian and the parameter h in (1) in order to gain almost optimal error es-
timates. In Müller and Varnhorn [16], and Chen and Cao [5, 6] researchers study

3

convergence on a compact interval. Here we present our algorithm and numeri-
cal results, the analysis of the algorithm will be done in a series of subsequent
papers, starting with [13].

Our algorithm is based on the sparse grid method introduced by Zenger
[22] in 1991 as a solution for PDEs. These techniques have also been used for
approximation and interpolation. It can be seen that these methods are similar
to the hyperbolic cross notion of Babenko [1]. In 2012, Georgoulis, Levesley and
Subhan [9] introduced a new sparse grid kernel-based interpolation technique
which circumvents both computational complication and conditioning problems
using. The same basic algorithm was implemented by Schreiber [18], but was
not effective because Gaussians with a fixed width were used. Schemes which
retain the same shape of basis function while the points get more dense are
termed non-stationary, and non-stationary Gaussian interpolation is known to
be ill-conditioned. The innovation in [9] was to use stationary interpolation with
Gaussians (see the scheme in Section 2), mimicking the sparse-grid scheme with
b-splines (this scheme is called SIK). However, SIK with Gaussians does not
converge, in contract to the b-spline case. In order to gain convergence they
used an iterative correction scheme, interpolating the residual from the previous
level at the next level. This scheme is called MuSIK, and is observed in [9] to
work very well. In this paper we use the same scheme with quasi-interpolation Q-
SIK and Q-MuSIK respectively instead of SIK and MuSIK, and observe similar
good results in high dimensions.

Multilevel techniques have been suggested by a number of researchers. The
first to consider the multilevel approximation were Floater and Iske [8]. They
combined a thinning algorithm and compactly supported radial basis function
interpolation. Furthermore, multilevel interpolation techniques enable us to com-
bine the benefits of stationary and non-stationary standard RBFs interpolation,
such that this leads to an accelerated convergence. Other researchers have since
contributed the multilevel interpolation literature [10, 11, 19].

MuSIK has been extended in [7] both theoretically and numerically. More
detailed this study showed that SIK and accordingly MuSIK scheme are inter-
polatory for the special case of scaled Gaussian kernels. In addition to this a
numerical integration algorithm is also proposed in [7], based on interpolating
the (high-dimensional) integrand. A series of numerical examples are presented,
highlighting the practical applicability of the proposed algorithm for both inter-
polation and quadrature for up to 10-dimensions. We compare our results with
these.

2 Sparse quasi-interpolation with kernels

Let Ω := [0, 1]d, d ≥ 2, and let u : Ω → R. In order to describe the sparse grid
construction, we need to introduce some multi-index notation. Throughout this
and the next sections we will use l := (l1, . . . , ld) ∈ Nd and i := (i1, . . . , id) ∈ Nd
as a spatial position. For the above multi-indices, the family of directionally uni-
form grids Υl on Ω can be described with mesh size hl; = 2−l = (2−l1 , . . . , 2−ld).

4

That is, the family of grids Υl consists of the points

xl,i := (xl1,i1 , . . . , xld,id), (3)

where xlp,ip := ip · hlp = ip · 2−lp and ip ∈ {0, 1, . . . , 2lp}. These grids may have
different mesh sizes for each coordinate direction. In addition to this, one can
calculate the number of nodes Pl in Υl by using the formula

Pl :=

d∏
p=1

(2lp + 1). (4)

For instance, should one choose hl,p = 2−n, for all p = 1, . . . , d, the Cartesian
full grid converts to a uniform full grid denoted by Υn,d with P = (2n + 1)d,
where n is the grid level. We also consider the following subset of Υn,d,

Υn,d :=
⋃

|l|1=n+d−1

Υl (5)

with |l|1 := l1 + l2 + · · ·+ ld, which will be referred to as the sparse grid of level n
in d dimensions. We refer to Figure 1 for a visual representation of (5) for n = 4
and d = 2. Notice that there is some redundancy in this definition as some grid
points are included in more than one sub-grid.

= ∪ ∪ ∪

Fig. 1: Sparse grid Υ4,2 via (5).

As can easily be seen, the sparse grid treatment itself already requires the use
of anisotropic basis functions since interpolation of data with anisotropic distri-
bution of data sites in the domain requires special consideration. For this reason,
we will use anisotropic Gaussian functions for Q-SIK. LetAl = diag (2l1 , 2l2 , · · · , 2ld).
Then define

µc,l(x) = µc(Alx).

For each l we construct a quasi-interpolant

Qlu(x) =
∑
z∈Υl

u(z)µc,l (x− z) , x ∈ Rn. (6)

Then we obtain the Q-SIK approximation by the combination technique:

Qn,du(x) =

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|l|1=n+(d−1)−q

Qlu(x). (7)

5

For example, in 2-D the Q-SIK approximation is

Qn,2u(x) =
∑

|l|1=n+1

Qlu(x)−
∑
|l|1=n

Qlu(x). (8)

= ⊕ ⊕ ⊕

	 	 	

Fig. 2: The construction of Υ4,2 as an algebraic sum.

The key idea here is that we view the sparse grid in Figure 1 as an algebraic
sum of grids, as in Figure 2. We can summarize the algorithm of sparse kernel-
based interpolation as follows.

Algorithm 1 Sparse quasi-interpolation with kernels

Require: Sparse grid data {(xi, ui), ui = u(xi), i = 1, · · ·N}
1: Create the sub-grids for each level l ∈ Nd, |l|1 = n, . . . , n + (d − 1) and Υl with

mesh size hl.
2: Solve the anisotropic sub-grid quasi-interpolation problems
Qlu(x) =

∑
z∈Υl

u(z)µl (x− z) .
3: Combine the all sub-grid quasi-interpolation problems obtained above
Qn,du(x) =

∑d−1
q=0(−1)q

(
d−1
q

)∑
|l|1=n+(d−1)−q Qlu(x).

4: return The Q-SIK approximation Qn,du(x)

As can be seen from the above description, the Q-SIK method is very amenable
to parallel computation since each sub-approximation problem can be solved in-
dependently. Therefore this method can be applied in a computational cluster
or distributed across workstations. Thus, the Q-SIK method provides us with
computationally cheap approximation, especially for multidimensional problems.

3 Multilevel sparse quasi-interpolation with kernels

We will see in Section 5 (and the same is observed in SIK), Q-SIK does not
converge, even for the function u ≡ 1. In the case of the infinite grid in one

6

dimension, this can be seen easily. For a 1/n spaced grid the quasi-interpolant
is

Qn(x) =

∞∑
l=−∞

µ(nx− l).

This function is 1/n-periodic and even and so has a Fourier series

Qn(x) =

∞∑
k=0

ak cos(2πknx),

where, for k ≥ 1,

ak = n

∫ 1/n

0

Qn(x) cos(2πknx)dx

= n

∫ 1/n

0

(∞∑
l=−∞

µ(nx− l)

)
cos(2πknx)dx

=

∫ 1

0

(∞∑
l=−∞

µ(y − l)

)
cos(2πky)dy

=

∫ ∞
−∞

µ(y) cos(2πky)

= 2 exp(−2π2k2),

the Fourier coefficient of the normal distribution. Additionally a0 = 1. Hence,
for any n

Qn(0) = 1 + 2

∞∑
k=0

exp(−2π2k2),

so that there is no convergence as n→∞.
Thus we adopt a multilevel refinement strategy, which we call Q-MuSIK.

The only difference between MuSIK and Q-MuSIK is that we will use the Q-SIK
method instead of the SIK method for each sub-grid approximation problem.

In contrast to the single level Q-SIK method discussed in the previous section,
we will now use nested sparse grids which are sorted from the lower level to the
higher level. In other words, sparse grids with increasingly greater data densities
provide us with a hierarchical decomposition of the sparse grid data,

Υi,d ⊂ Υi+1,d, i = 1, 2, · · · .

The hierarchical decomposition in two dimensions can be seen in Figure 3.
After obtaining the sparse grid decomposition, the sparse grid interpola-

tion Qn0,d needs to be evaluated for level 1. In other words, the coarsest level
approximation is S0,du = Qn0,du. Then ∆j needs to be calculated for each

7

(a) S1,2 (b) S2,2

(c) S3,2 (d) S4,2

(e) S5,2 (f) S6,2

(g) S7,2 (h) S8,2

Fig. 3: Sparse grid decomposition for levels 1 to 8 in 2 dimensions.

level using Q-SIK on the residual ∆j = Qn0+j,d(u − Sj−1,du) on Υn0+j,d, and
Sj,du = Sj−1,du + ∆j , for 1 ≤ j ≤ n. This multilevel iterative refinement algo-
rithm is called Q-MuSIK.

8

Algorithm 2 Quasi multilevel sparse interpolation with kernels

Require: Sparse grid data decomposition and function u
1: Initialize the first interpolation value at zero with Q-SIK, that is S0,du = 0.
2: Construct the nested sparse grids as Υn0,d ⊂ Υn0+1,d ⊂ · · · ⊂ Υn0+n,d.
3: For every value of j = 1, 2, · · · , n,

– Solve ∆j = Qn0+j,d(u− Sj−1,du) on Υn0+j,d

– Update Sj,du = Sj−1,du+∆j

4: return Sequence of progressive approximations, S1,du, S2,du, . . . , Sn,du to u.

4 Q-MuSIK Quadrature

Now, we introduce a new quadrature formula by integrating the Q-MuSIK ap-
proximation over the unit cube:

Ilu(x) =
∑
z∈Υl

u(z)

∫
[0,1]d

µl (x− z) dx.

In the case when the Gaussians are tensor products, namely, µl (x− z) = µl1(x1−
zl1)× µl2(x2 − zl2)× · · · × µld(xd − zld), we can straightforwardly calculate the
weights as follows:∫

[0,1]d
µl (x− z) dx =

d∏
i=1

∫ 1

0

µli(xi − zli)dxi.

The integral of a univariate Gaussian is of the form

φl(zl) =

∫ 1

0

µl(x− zl)dx =

∫ 1

0

(2π)−1/2 exp(−(Al(x− zl))2)dx,

for some Al, ml ∈ R, which, upon the change of variables ξ = Al(x− zl), gives

φl(zl) =
1√
π

∫ Al(1−zl)

−Alzl

exp(−ξ2)dξ =
1

2
√

2
[erf(Al(1− zl))− erf(−Alzl)],

with the error function erf defined by

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (9)

Here the error function can be calculated to arbitrary precision.
In a similar way, all the sub-grids for each level can be constructed in a

similar manner to the method discussed in previous sections. In other words,
we will use the grid set Υl with mesh size hl constructed via sparse grids. In
order to then solve the each sub-grid quadrature problem, we need to use the

9

anisotropic quasi-quadrature technique, which uses sparse grids. In detail, by
using the quadrature construction from the previous section, the anisotropic
quasi-quadrature formula of u at the grids Υl can be defined by

Ilu(x) =
∑
z∈Υl

u(z)

d∏
i=1

φli(zli).

where

φli(zli) =
1

2
√

2
[erf(Ali(1− zli))− erf(−Alizli)]

We then obtain the Q-SIK quadrature formula by combining all sub quadra-
ture problems with the combination technique, that is, the Q-SIK quadrature is
defined by

In,du(x) =

d−1∑
q=0

(−1)q
(
d− 1

q

) ∑
|l|1=n+(d−1)−q

Ilu(x).

The multilevel quadrature scheme is achieved by iterative refinement exactly as
described in the previous section.

5 Numerical Experiments

In this section, we present a collection of numerical experiments for approxi-
mation for d = 2, 3, 4, where the implementation of Q-SIK and Q-MuSIK algo-
rithms is assessed and compared against both the standard quasi interpolation
(QI) on uniform full grids and its standard multilevel version (MLQI). It is worth
remarking that in higher dimensions it becomes harder to calculate approxima-
tion errors. In all examples we use the level basis function µ0.4. Thus, for higher
dimensions we move to assessing the errors in quadrature, which is the subject of
the final examples, where we consider d = 4, 5, 10. We compare Q-MuSIK with
MuSIK for these examples.

5.1 2-D Example

The Q-SIK and Q-MuSIK algorithm with Gaussian basis functions is applied to
the test function P 2d(x) : [0, 1]2 → R, with

P 2D(x) :=
1.25 + cos(5.4x2)

6 + 6(3x1 − 1)2
(10)

Here SGs stands for the number of sparse grid centers used, NoVs repre-
sents the total number of nodes visited in the Q-SIK and Q-MuSIK, Maxerror
and RMS-error are the maximum norm and root-mean-square (L2-norm) errors,

10

SGs NoVs
Q-SIK Q-MuSIK

Max Error Rms Error Max Error Rms Error

9 9 1.48e-1 4.63e-2 1.48e-1 4.63e-2
21 39 8.60e-2 2.08e-2 4.37e-2 1.43e-2
49 109 4.92e-2 9.56e-3 1.61e-2 4.28e-3
113 271 3.32e-2 6.26e-3 7.66e-3 1.31e-3
257 641 2.75e-2 5.60e-3 3.26e-3 4.09e-4
577 1475 2.63e-2 5.48e-3 1.33e-3 1.27e-4
1281 3333 2.59e-2 5.45e-3 5.57e-4 3.73e-5
2817 7431 2.66e-2 5.43e-3 1.77e-4 1.01e-5
6145 16393 2.61e-2 5.42e-3 4.77e-5 2.88e-6

Table 1: P 2D:Q-SIK and Q-MuSIK error on an equally spaced 160× 160 evalu-
ation grid in 2 dimensions.

10
1

10
2

10
3

10
4

10
−6

10
−4

10
−2

N or SG nodes

R
M

S
 E

rr
or

Quasi Interpolation
ML−Quasi Interpolation
Q−SIK
Q−MuSIK

Fig. 4: P 2D:RMS error versus N (QI, MLQI) or SG (Q-SIK, Q-MuSIK) with QI
(black), Q-SIK (green), MLQI (blue) and Q-MuSIK (red) on a 160×160 uniform
grid in 2 dimensions.

respectively, evaluated on a 160 × 160 uniform grid. We see in Table 1 that,
as expected, Q-SIK does not converge. In other words, the error in the Q-SIK
method remains stable after a few levels. However we see in the same table that
Q-MuSIK converges.

In Figure 4 we graph the results of quasi interpolation, multilevel quasi in-
terpolation, Q-SIK and Q-MuSIK. Obviously, quasi interpolation and Q-SIK do

11

10
−1

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

CPU Time

R
M

S
 E

rr
or

MuSIK
Q−MuSIK

Fig. 5: P 2D:RMS error versus computational time for MuSIK (blue) and Q-
MuSIK (red) on a 160× 160 uniform grid in 2 dimensions.

not converge to the target functions. However their multilevel versions shows
good convergence behaviour.

In Figure 5 we compare the MuSIK and Q-MuSIK results with regard to
computational time. According to this figure Q-MuSIK reaches the same error
level as MuSIK in a shorter time. This is because quasi interpolation does not
require the solution of any large algebraic system as does an interpolatory scheme
such as MuSIK.

5.2 3-D Example

In this section we approximate two functions, the first smooth and the second
with derivative singularities.

Let

G3D(x) :=
18

π
e−(x

2
1+81x2

2+x
2
3). (11)

We test the Q-MuSIK approximation to this function on an equally spaced
50× 50× 50 evaluation grid. The corresponding results to those in 2 dimensions
can be seen in Figures 6 and 7. Again we see that Q-MuSIK outperforms MuSIK.

Now consider

H3D(x) =

3∏
i=1

(xi − 1/2)+,

where (x)+ = x if x is positive and is zero otherwise. In Figure 8 we see that
the error appears to behave better than for the smoother function G3D. The

12

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

N or SG nodes

R
M

S
 E

rr
or

Quasi Interpolation
ML−Quasi Interpolation
Q−SIK
Q−MuSIK

Fig. 6: G3D:RMS error versus N (QI, MLQI) or SG (Q-SIK, Q-MuSIK), QI
(black), Q-SIK (green), MLQI (blue) and Q-MuSIK (red) on a 50 × 50 × 50
uniform grid in 3 dimensions.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

CPU Time

R
M

S
 E

rr
or

MuSIK
Q−MuSIK

Fig. 7: G3D:RMS error versus computational time for MuSIK (blue) and Q-
MuSIK (red) on a 50× 50× 50 uniform grid in 3 dimensions.

error is tested on a 50 × 50 × 50 uniform grid. If we test on a 100 × 100 × 100
uniform grid we see different behaviour for the maximum error (and similarly

13

Fig. 8: H3D: RMS error versus N (QI, MLQI) or SG (Q-SIK, Q-MuSIK), QI
(black), Q-SIK (green), MLQI (blue) and Q-MuSIK (red) on a 50 × 50 × 50
uniform grid.

for RMS): On the finer grid with 106 test points we see that the error in the less

SGnode G3D H3D

27 1.25e+009.88e-01
81 8.27e-01 5.11e-01
225 2.21e-01 4.54e-01
593 6.39e-02 9.01e-02
1505 3.02e-02 6.46e-02
3713 1.45e-02 4.11e-02

Table 2: Q-MuSIK maximum error on 100× 100× 100 for G3D and H3D.

smooth H2D is greater. This emphasises the point we made in the introduction
that error testing in high dimensions becomes more and more difficult, and that
singularities in high dimensional functions are hard to locate.

5.3 4-D Example

Let us now consider a 4 dimensional non-tensor product test function

H4D(x) = sin(x21x
2
2x

2
3x

2
4). (12)

14

In Figure 9 the root mean-square error for QI, MLQI, Q-SIK and Q-MuSIK,
respectively, for H4D(x), are plotted against the number of data sites. We see
similar performance as in 2 and 3 dimensions.

10
2

10
4

10
−4

10
−3

10
−2

N or SG nodes

R
M

S
 E

rr
or

Quasi Interpolation
ML−Quasi Interpolation
Q−SIK
Q−MuSIK

Fig. 9: H4D:RMS error versus N (QI, MLQI) or SG (Q-SIK, Q-MuSIK): QI
(black), Q-SIK (green), MLQI (blue) and Q-MuSIK (red) on a 21× 21× 21× 21
uniform grid.

5.4 Quadrature Examples

In this section we give a number of examples for quadrature. We use two ten-
sor product examples, respectively in 5 and 10 dimensions, and two non-tensor
product examples. We consider the following non-tensor product example

M3D(x) = sin(x1x2x3). (13)

In Figure 10 we give the QI, MLQI, Q-SIK and Q-MuSIK quadrature re-
sults for M3D(x) with regard to the corresponding exact values of the in-
tegral of M3D(x) on the domain [0, 1]3, which is (with 16 digits accuracy)
0.122434028745371.

In Figure 11 we compare the MuSIK quadrature and Q-MuSIK quadrature in
terms of absolute error versus degree of freedom and absolute error versus evalu-
ation time. The results in MuSIK were produced using the initial Gaussian basis
function with standard deviation 0.45. We note that choice of this parameter is
restricted in MuSIK by the conditioning of the interpolation problem. No such
restriction is present for Q-MuSIK as there are no linear systems to invert. As

15

Fig. 10: Absolute error versus N (QI, MLQI) or SG (Q-SIK, Q-MuSIK) nodes
on the domain [0, 1]3.

discussed in the previous examples Q-MuSIK has better performance especially
for small n. In these comparisons we have used four, five and ten dimensional
test functions which are given below:

F 4D(x) =
3

4
e−(9x1−2)2−(9x2−2)2−(9x3−2)2/4−(9x1−2)2/8

+
3

4
e−(9x1+1)2/49−(9x2+1)2/10−(9x3+1)2/29−(9x1+1)2/39

+
1

2
e−(9x1−7)2/4−(9x2−3)2−(9x3−5)2/2−(9x1−5)2/4

− 1

5
e−(9x1−4)2/4−(9x2−7)2−(9x3−5)2−(9x1−5)2 ,

T 5D(x) =

4∏
i=1

max(xi − 1/2),

K10D(x) =

10∏
i=1

e−xi(1−xi),

and the corresponding exact integral values of these functions on the domain
[0, 1]4, [0, 1]5 and [0, 1]10 with 8 digits accuracy are 0.07766696, 0.001953125
and 0.19427907 respectively. These results confirm that the Q-MuSIK method
provide us more rapid results for the same amount of error as the compared
methods.

16

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

N or SG nodes

A
bs

ol
ut

e
E

rr
or

MuSIK Quadrature
Q−MuSIK Quadrature

(a) F 4D

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

CPU Time

A
bs

ol
ut

e
E

rr
or

MuSIK Quadrature
Q−MuSIK Quadrature

(b) F 4D

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

N or SG nodes

A
bs

ol
ut

e
E

rr
or

MuSIK Quadrature
Q−MuSIK Quadrature

(c) T 5D

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

CPU Time

A
bs

ol
ut

e
E

rr
or

MuSIK Quadrature
Q−MuSIK Quadrature

(d) T 5D

10
4

10
5

10
6

10
7

10
−2

10
−1

N or SG nodes

A
bs

ol
ut

e
E

rr
or

MuSIK Quadrature
Q−MuSIK Quadrature

(e) K10D

10
2

10
3

10
4

10
5

10
−2

10
−1

CPU Time

A
bs

ol
ut

e
E

rr
or

MuSIK Quadrature
Q−MuSIK Quadrature

(f) K10D

Fig. 11: Absolute error versus SG and CPU Time(Q-MuSIK quadrature, Q-
MuSIK quadrature) nodes using Gaussian basis functions: MuSIK quadrature
(blue) and Q-MuSIK quadrature (red) on the domain [0, 1]4,5,10.

17

6 Concluding remarks

A new quasi multilevel sparse interpolation with Gaussian kernel, Q-MuSIK,
is proposed and tested. One of the most significant positive aspects of quasi-
interpolation is that it can yield a solution directly with no need to solve large
algebraic systems, and the associated quadrature rule has positive weights. Nu-
merical experiments suggest that Q-MuSIK is faster than the analagous interpo-
lation algorithm, MuSIK, to give the same level of approximation accuracy. The
algorithm is targeted at high dimensional approximation, where functions are
typically observed as smooth. This motivates the choice of the Gaussian kernel
as a basis function.

References

1. K. I. Babenko, Approximation by trigonometric polynomials in a certain class
of periodic functions of several variables, Soviet Mathematics Doklady, 1 (1960),
pp. 672–675.

2. R. Beatson and M. Powell, Univariate multiquadric approximation: quasi-
interpolation to scattered data, Constructive Approximation, 8 (1992), p. 275288.

3. R. K. Beatson and W. A. Light, Quasi-interpolation in the absence of poly-
nomial reproduction, in Numerical Methods of Approximation Theory, Vol. 9,
D. Braess and L. L. Schumaker, eds., Basel, 1992, Birkhauser, pp. 21–39.

4. R. Belmann, Adaptive Control process: a guide tour, Princeton, 1961.
5. Z. Chen and F. Cao, Global errors for approximate approximations with gaussian

kernels on compact intervals, Applied Mathematics and Computation, 217 (2010),
p. 725734.

6. Z. Chen, F. Cao, and J. Hu, Error estimates of quasi-interpolation and its deriva-
tives, Journal of Computational and Applied Mathematics, 236 (2012), pp. 3137–
3146.

7. P. Dong, E. H. Georgoulis, J. Levesley, and F. Usta, On nodal exactness
of sparse grid interpolation in the absence of nested subspaces and application to
high dimensional quadrature. preprint.

8. M. S. Floater and A. Iske, Multistep scattered data interpolation using com-
pactly supported radial basis functions, Journel of Computational Applied Mathe-
matics, 73(1-2) (1996), pp. 65–78.

9. E. H. Georgoulis, J. Levesley, and F. Subhan, Multilevel sparse kernel-based
interpolation, SIAM Journal of Scientific Computing, 35 (2013), pp. 815–832.

10. Q. T. L. Gia, I. H. Sloan, and H. Wendland, Multiscale analysis in sobolev
spaces on the sphere, SIAM Journal on Numerical Analysis, 48 (2010), pp. 2065–
2090.

11. S. J. Hales and J. Levesley, Error estimates for multilevel approximation using
polyharmonic splines, Numerical Algorithms, 30(1) (2002), pp. 1–10.

12. E. J. Kansa, Multiquadrics — a scattered data approximation scheme with appli-
cations to computational fluid-dynamics. ii. solutions to parabolic, hyperbolic and
elliptic partial differential equations, Computers and Mathematics with Applica-
tions, 19(8-9) (1990), pp. 147–161.

13. J. Levesley and S. Hubbert, Multilevel quasi-interpolation on a sparse grid with
the gaussian, http://arxiv.org/abs/1609.02457, 2017.

18

14. V. Mazya and G. Schmidt, On approximate approximations using gaussian ker-
nels, IMA Jornal of Numerical Analaysis, 16 (1996), p. 1329.

15. , On quasi-interpolation with non-uniformly distributed centers on domains
and manifolds, Jornal of Approximation Theory, 110 (2001), p. 125145.

16. F. Muller and W. Varnhorn, Error estimates for approximate approximations
with gaussian kernels on compact intervals, Jornal of Approximation Theory, 145
(2007), p. 171181.

17. M. J. D. Powell, The theory of radial basis function approximation in 1990,
no. II, Oxford University Press, New York, 1992.

18. A. Schreiber, Smolyak’s method for multivariate interpolation, PhD thesis, De-
partment of Mathematics and Informatics, University of G ottingen, 2001.

19. H. Wendland, Multiscale analysis in sobolev spaces on bounded domains, Nu-
merische Mathematik, 116 (2010), pp. 493–517.

20. Z. Wu and J. Liu, Generalized strang-fix condition for scattered data quasi-
interpolation, Advances in Computational Mathematics, 23 (2005), pp. 201–214.

21. Z. Wu and R. Schaback, Shape preserving properties and convergence of uni-
variate multiquadric quasi- interpolation, Acta Mathematicae Applicatae Sinica,
10(1) (1994), pp. 441–446.

22. C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations
(Kiel, 1990), Notes on Numerical Fluid Mechanics, 31 (1991), pp. 241–251.

