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Abstract

The multilevel rationing (MR) policy is the optimal inventory control policy for

single-item M/M/1 make-to-stock queues serving different priority classes when de-

mand rate is constant and backlogging is allowed. Make-to-repair queues serving dif-

ferent fleets differ from make-to-stock queues because in the setting of the former,

each fleet comprises finitely many machines. This renders the characterization of the

optimal control policy of the spare part inventory system difficult. In this paper, we

implement the MR policy for such a repair shop/spare part inventory system. The

state-dependent arrival rates of broken components at the repair shop necessitate a

different queueing-based solution for applying the MR policy from that used for make-

to-stock queues. We find the optimal control parameters and the cost of the MR

policy; we, then compare its performance to those of the hybrid FCFS and hybrid

priority policies described in the literature. We find that the MR policy performs close

to the optimal policy and outperforms the hybrid policies.

Keywords and Phrases: Spare parts, multiple finite-population queueing systems,

multilevel rationing policy, hybrid policies



1 Introduction

In this paper, we analyze a continuous-review control policy for an inventory system of

repairable spare parts for a company with m plants/fleets of machines. The proposed model

targets utility companies, airlines, manufacturing, and mining industries for whom spare part

provisioning is a fundamental concern. Such companies run expensive equipment/machines

in different fleets that, albeit infrequently, fail from time to time. We restrict our attention

to a single type of critical component, which upon failure, is immediately sent out for repair.

To sustain high production or service levels, a spare component, if available, is installed

on the machine/equipment that “owns/hosts” the broken component. If there are no spare

components, the machine stops production and stays down until a repaired component can

be installed. Although the same type of component is used by machines in different fleets,

the number of machines and the component failure rate can vary from one fleet to another.

Moreover, certain fleets can be more important for the company. For instance, if each

fleet is serving a different customer, the nature of the individual contracts can induce the

company to assign different down time costs for different fleets, which, in return, can lead the

company to prioritize its fleets. In this setting, the important questions for the company are

whether there should be inventory pooling for the various fleets, and if so, what type of an

allocation policy should be followed, and finally, how the destination of a repaired component

should be determined. We propose employing the multilevel rationing (MR) policy originally

considered for controlling the inventory of finished goods demanded by different priority

classes of customers (e.g., Ha, 1997a, de Véricourt, Karaesmen, and Dallery, 2001).

Under the MR policy, fleets 1 to m are prioritized from highest to lowest, and there are

non-decreasing threshold inventory levels Lk, k = 1, . . . ,m+ 1, with L1 = 0 for a centralized

inventory. If the inventory level I is at Lm+1, there are no broken components. If I is between

Lk+1 and Lk (i.e., Lk < I ≤ Lk+1), spare components are used only when machines in fleets

1 to k fail. In other words, when Lk < I < Lk+1, even if there are down machines in fleets

k+1 to m, the repaired component is placed in the inventory as a spare component. If there
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are down machines in fleet k + 1 when I = Lk+1 and this fleet is the only one associated

with Lk+1, a component coming out of the repairshop is used for a down machine in this

fleet. If multiple fleets have the same inventory threshold and the inventory is at this level,

upon completion of its repair, a component is used for the highest priority fleet associated

with that threshold level that has a down machine. Thus, when there is no positive-stock,

the repaired component is allocated to the highest-priority fleet with down machines. To

clarify how the policy works, consider Example No 1 in Table 4. The optimal MR threshold

levels are L4=9, L3 = 4, and L2 = L1 = 0 for three fleets. If I = 9, there are no broken

components that require fixing in the repair shop. If I ∈ {9, 8, 7, 6, 5} and a machine fails in

any fleet, a spare component from the inventory can be used. For 0 < I ≤ 4, if a machine

breaks down in the lowest priority fleet (fleet 3), a spare from the inventory is not dispensed

and that machine becomes down. If the repair of a component finishes when I = 4 and

there is a down machine in fleet 3, the repaired component is installed on that machine.

Otherwise, the repaired component is placed in the inventory, raising its level to 5. In this

example, threshold inventory levels for fleets 1 and 2 are both 0. Forcing L3 > L2 > L1 = 0,

i.e., having a distinct threshold level for each fleet would make it costlier for the system.

When I = 0, when a component is repaired, it is installed on a down machine in fleet 1 if

there are any. Otherwise, it is installed on a down machine (if any) in fleet 2. If there are

no down machines, the repaired component is placed in the inventory, raising its level to 1.

Instead of keeping a centralized inventory, the MR policy can be used as a transhipment

policy between inventories of different fleets. In this case, when a spare is depleted by fleet k

from its inventory, a component from the inventory of the lowest-priority fleet with positive

stock is immediately transhipped to replenish the inventory of fleet k. If the inventories

of fleets k + 1 to m are all depleted, the inventory of fleet k decreases by 1. No spares

are transhipped from inventories of higher priority fleets to lower priority fleets (or their

inventories) even if the latter have down machines. When a component is repaired, it is sent

to the highest priority fleet with down machines or missing spares in its inventory.

In the production/inventory systems literature on the MR policy, a system is usually
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modeled as a make-to-stock queue in which a single server queue represents the production

facility. Different customer classes are assumed to place orders according to homogeneous

Poisson processes. Each order generates a production order for this single server queue if

backlogging is permitted; hence, in a lost sales case, only demand arriving when there is stock

generates a production order. In other words, in earlier research on make-to-stock queues

with an inventory controlled by the MR policy, demand rates (arrival rates at the make-

to-stock queue) are not state-dependent but constants. In contrast, we consider that each

fleet is comprised of a finite number of machines. Although the lifetime of each component

is assumed to be exponentially distributed with a constant rate, the number of functional

machines in each fleet renders the rate of failing components (rate of “demand” for/broken

component arrival rate at the repairshop) state-dependent. Simply stated, not having con-

stant demand rates from each fleet prevents us from exploiting the results of earlier models.

Bearing in mind this major difference in our problem, we note Ha (1997a, 1997b) as the first

to study rationing policies in make-to-stock queues. More specifically, Ha (1997a) analyzes a

Markovian multi-class single server system with a centralized inventory in which unsatisfied

demands are lost. Ha (1997b) studies the same problem with two classes of customers when

backlogging is allowed. In both cases, Ha proves that in systems with centralized inventories,

the MR policy is the optimal control policy. Allowing backlogging, de Véricourt, Karaesmen,

and Dallery (2001) provide an efficient algorithm to compute the optimal rationing levels

and the cost of the MR policy when m classes of customers are served. In a later study, de

Véricourt, Karaesmen, and Dallery (2002) prove that the MR policy is the optimal policy in

M/M/1 systems serving m classes of customers. Without constant Poisson arrival rates and

exponential service times, it is difficult to characterize the optimal policy, however. For the

lost sales case, assuming Erlangian service times, Ha (2000) shows that an MR policy based

on the number of exponential service stages to be completed in the make-to-stock queue is

optimal. But if backlogging is permitted, Gayon et al. (2009) observe the difficulty involved

in finding the optimal control policy when m is large. Abouee-Mehrizi, Balcıog̃lu, and Baron

(2012) obtain the optimal cost and the rationing levels of the MR policy in M/G/1 systems.
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Since the optimal policy is unknown, they are only able to compare the performance of the

MR policy with other well-known policies, such as the first-come, first-served (FCFS) policy,

to demonstrate the superiority of the former. Gabor et al., (2016) employ the MR policy

for two priority classes and model the production stage of the spare parts as an M/D/∞

queue. After obtaining the response time distributions for both classes, they demonstrate

that optimizing inventory control parameters based on response time guarantees instead of

fillrate constraints decreases the stock levels.

In our problem, we model the repair facility as a single server queueing system. This

follows Sahba and Balcıog̃lu (2011) who demonstrate that having a centralized high capacity

repair shop serving all fleets is more cost effective than having dedicated smaller capacity

repair shops for each fleet. We also assume that repair times are exponentially distributed.

Therefore, our model differs from that of de Véricourt, Karaesmen, and Dallery (2001) in

the use of state-dependent arrival rates at the single server queue. However, this not only

necessitates a completely different analysis for the underlying queueing system, but also

leaves us with the fact that the optimal policy is unknown. We are only able to obtain the

cost of the optimal policy numerically and this turns out to be the MR policy in most of the

examples discussed in Section 5.

When we review the literature on transhipment of spares among different plants, we

see that almost all authors assume demand from each plant to be homogeneous Poisson

processes. Lee (1987) considers a model in which a transshipment from the inventory of

a neighboring plant is requested when a plant has no stock on hand. Otherwise, if the

inventory is not zero but below its base-stock level, a plant (or the plant that tranships a

spare) requests a spare from a depot. Lee models the repair shop at the depot as an infinite

server queue. Axsäter (1990), noting that characterizing the optimal policy is difficult,

revisits Lee’s model but develops another approximation which proves to be more accurate

than that of Lee’s. Kukreja, Schmidt, and Miller (2001) assume that spares are consumable,

thus, if a transhipment is not possible from another plant when all inventories are zero, a

spare is ordered from a manufacturer. They use a queueing based approach to develop an
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approximation to determine optimal inventory levels at each plant. Jung et al. (2003) model

the repair facility by a multi-server queueing system. Like us, Wong, Cattrysse, and Van

Oudheusden (2005) assume that each plant hosts finitely many machines, but they model the

repair facility as an infinite server queue. Ignoring transportation time between the repair

facility and the plants, they assume exponential transhipment times. These are assumed to be

short enough that the possibility of another failure or repair completion can be safely ignored.

The plant with no inventory receives a spare from the closest plant with positive stock, with

mean transhipment times used to measure the distance between plants. In our model, we do

not assume a transhipment delay between plants (as in Kukreja, Schmidt, and Miller, 2001)

and we ignore transportation costs, simply assuming them to be much smaller than the down

time costs. Unlike the examples given above, a fleet does not wait to place a transhipment

request until its inventory level drops to zero. Lee (1987) suggests the transhipment be made

from a plant with the maximum number of units on hand, but we stipulate that the fleets

are prioritized, and the lowest priority fleet with positive stock should lend a spare to a fleet

that has just used one from its own stock. van Wijk, Adan, and van Houtum (2013) consider

a transhipment problem involving multiple local warehouses and a quick response warehouse

which operates under a threshold policy. When a local warehouse with depleted stock faces

a new demand, this can be satisfied from the quick response warehouse instead of a more

expensive emergency supply. Assuming constant Poisson demand rates for each warehouse

and exponential transfer times, the authors show that the quick response warehouse will

follow a threshold policy; an overflow demand from a local warehouse will be satisfied only

if the stock at the former is above an identified threshold.

Studies on dynamic scheduling decisions for repairs are also worth mentioning. For in-

stance, Hausman and Scudder (1982) employ a simulation based comparative study of a

sequence of work centers where multiple types of components can be fixed. Assuming con-

stant Poisson arrival rates and constant repair times for these components, they demonstrate

that scheduling decisions made dynamically based on spare part inventory level and the job’s

progress in the repair shop minimize the mean delay for repair completions. We refer the
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reader to Sleptchenko, van der Heijden, and van Harten (2005), Tiemessen and van Houtum

(2013), and the references therein for further reading on dynamic scheduling at repair shops.

Although we test the relative performance of the MR policy against the numerically

computed optimal policy, we also compare it to the hybrid FCFS (HF) and the hybrid

priority (HP) policies proposed by Sahba, Balcıog̃lu, and Banjevic (2013a) (see Section 4).

Both policies allocate inventories to each fleet but do not permit transhipment. Instead,

a shared inventory immediately replenishes the inventory of a fleet when a spare part is

used. The difference lies in deciding how a repaired component is to be dispatched when

the shared inventory is zero. The HF policy sends the fixed component to the fleet with the

longest outstanding order, whereas the HP policy, assuming fleets are prioritized, sends it

to the highest-priority fleet with outstanding orders. If the optimal solution of these policies

states that only a shared inventory be kept and no fleets should have its own inventory, the

problem turns out to be a complete pooling policy similar to the one considered by Kukreja,

Schmidt, and Miller (2001).

In Section 2, we propose a recursive method to compute the system cost under the MR

policy. This algorithm makes use of single server queueing systems serving finitely many

customers with an unreliable server. The analysis of such queues requires determining the

distribution of the interruption period for the server to exploit the method given by Sahba,

Balcıog̃lu, and Banjevic (2013b) to obtain the steady-state system size distribution for each

class. This proves to be difficult in our problem because of the recursive method proposed

in Section 2. As a solution, in Section 3, we obtain the moments of the server interruption

time distribution, and propose fitting simpler phase-type distributions to capture the first

three moments of the former. Using these approximating interruption time random variables

(r.v.s) as input in the exact MR algorithm developed (as we do for the numerical examples in

Section 5), gives the MR policy approximation. In Section 4, we summarize two alternative

policies, the HF and HP policies, and discuss how we numerically compute the cost of the

optimal policy. In the numerical study presented in Section 5 where we test the performance

of the MR policy, we also assess the accuracy of the proposed MR approximation. The
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results show that the MR approximation is highly accurate; in fact, the MR policy turns

out to be optimal in many cases, outperforming the HF and HP policies. Having said this,

we note that the HP policy may be considered a reasonable compromise if managers find it

easier to implement. All proofs appear in Appendix A.

2 The Exact Analysis of the Multilevel Rationing Pol-

icy

We consider a system of m classes/fleets of machines parameterized by k = 1, ...,m. Each

fleet k consists of Nk machines (type k machine) that fail from time to time due to a single

type of repairable critical component. When a type k machine fails, its broken component is

immediately sent to a repair shop serving all fleets, modeled as a single server queueing sys-

tem. We assume that repair times follow an exponential distribution with rate µ independent

of the fleet from which the broken component has been sent. In addition, spare components

are kept to decrease the proportion of times these fleets may have down machines because of

the lack of the critical component. If there is available stock for class k, a spare component is

immediately installed to replace the failed component, and the machine can stay operational

without experiencing down time. Otherwise, the number of operational type k machines

decreases by 1, costing the system bk (down time cost) per unit time until a component can

be installed on a failed machine. Times to failure, that is the periods between installation

of a spare or repaired component on a type k machine and the next failure instant of this

installed component, follow an exponential distribution with rate λk. This implies that each

repair makes the component as good as new, and the failure rate depends only on the fleet

using it. Different failure rates can be due to the type of service a fleet renders or specific

operating conditions to which its machines are subject.

The system incurs two types of holding costs. The first is the capital cost tied up in

additional spares (in excess of the minimum
∑m

k=1Nk components for that many machines),

7



and to include it in the analysis, following Louit et al. (2011) and Sahba and Balcıog̃lu (2011),

we assume a holding cost of h per unit spare component per unit time. The second type is the

warehousing cost of hw per unit spare per unit time during the intervals the spare component

is stored in the inventory. Since we are considering slow-moving expensive components,

we assume that transportation times compared to repair times, and transportation costs

compared to capital holding and down time costs are negligible.

In this setting, to reduce the long-run average cost per unit time, we have to decide on

a) the structure of the inventory, and b) the allocation rule for a repaired component. In

broad terms, the structure of the inventory indicates whether there are reserved inventories

for each fleet and/or whether inventory can be shared among fleets. The allocation rule

indicates whether repaired components are dispatched on an FCFS basis or according to a

priority rule among fleets needing a component. In this paper, we propose the multilevel

rationing (MR) policy which prioritizes fleets 1 to m from highest to lowest and is applied in

the following way: There are non-decreasing threshold inventory levels Lk, k = 1, . . . ,m+ 1

with L1 = 0 and Lm+1 = S where S is the base-stock level of the single inventory kept for

spares. If no fleets have down machines and the inventory level I is below Lm+1 = S, the

repaired component is placed in the inventory. When I reaches Lm+1 = S, there are no

more broken components in the repair shop. If Lk < I ≤ Lk+1, spare components are used

only if machine types 1 to k fail. In other words, when Lk < I < Lk+1, even if there are

down machines in classes k + 1 to m, the repaired component is placed in the inventory as

a spare component. When I = Lk+1 and the repair of a component is finished, it is used for

the highest priority fleet associated with this threshold which has a down machine; i.e., fleet

k + 1 if each threshold is associated with a single fleet. When there is no positive-stock, the

repaired component is allocated to the highest-priority fleet with down machines.

In the literature, the MR policy has been modeled when demand from each customer

class follows a homogeneous Poisson process. When this is the case, customers can be

prioritized according to their backlogging cost (corresponding to our fleet down time cost);

that is, between two customer classes, the one with the higher backlogging cost has a higher
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priority (classes with the same backlogging costs are considered to be in the same class).

In our problem setting, the customer arrival rate (expressed as the failed component arrival

rate) is state-dependent; this varies based on the number of down machines and the vector

(L1 = 0, L2, . . . , Lm+1 = S). If the objective is cost minimization, the state-dependent arrival

rates of the failed components prevent us from determining the priority of a fleet by simply

comparing its down time cost with those of other fleets. In this case, all possible alternatives

of prioritizing fleets have to considered. The same is true for the HP policy summarized in

Section 4. We also note that the optimal MR and HP policies may prioritize fleets differently.

Assuming that fleets 1 to m are prioritized from highest to lowest, let CMR := C(L1 =

0, L2, . . . , Lm+1 = S) be the long-run average cost of the MR policy given rationing levels

L1 = 0, L2, . . . , Lm+1 = S, stated as

CMR =
m∑
k=1

bk

Nk∑
i=0

(Nk − i)Pk,i + hS + hw

S∑
i=0

iπ(i), (1)

where π(i) and Pk,i are the steady-state probabilities of having i spare parts in the inventory,

and i machines functional in fleet k, respectively, obtained for the system under the MR

policy.

We design a recursive algorithm to obtain π(i) and Pk,i. To do so, we construct a series

of auxiliary systems k, k = 1, . . . ,m, with an inventory with a base-stock level of Lk+1. An

auxiliary system k serves fleets 1 to k following an MR policy with (L1 = 0, . . . , Lk+1) as the

threshold levels. The repair rate µ and failure rate λj for fleet j, j = 1, . . . , k are the same

as in the original system. We denote the steady-state probabilities of having i spare parts

in the inventory and i functional machines in fleet j, j = 1, . . . , k in auxiliary system k by

πk(i) and P k
j,i, respectively. As will be explained below, to analyze auxiliary system k, we

need πk−1(i) and P k−1
j,i of auxiliary system k− 1. Eventually, πm(i) and Pm

k,i are obtained in

the last round of the algorithm for auxiliary system m – which is, in fact, the original system

–, giving us π(i) = πm(i) and Pk,i = Pm
k,i for k = 1, . . . ,m; thus, we can compute the cost in

Eq. (1).

The algorithm starts with the special auxiliary system 0 explained below.
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Auxiliary system 0: This is a system serving a single fleet of N1 machines for which no

spares inventory is kept. Hence, P 0
1,i can be obtained by constructing a simple birth-and-

death process where the states are the number of customers (expressed as failed components)

waiting in the single server queue modeling the repair shop. Obviously, the failed component

arrival rate at the repair queue depends on the number of down type 1 machines.

Auxiliary system 1: When we add an inventory of L2 spares to auxiliary system 0, we

arrive at auxiliary system 1. Consider the sample path of auxiliary system 1 given in Figure

1 where the x-axis shows the time. The positive values on the y-axis show how many spares

are on hand, and the absolute value of the negative values show how many type 1 machines

are down. The Markov chain (MC) superimposed on the left hand side of the figure shows

the failure rate (arrival rate at the repair shop) and the repair rate based on the number of

units in the inventory or the number of down machines marked on the y-axis. Note that for

C1 proportion of the time – to be determined –, there is no inventory in auxiliary system 1,

and during these intervals without spares, auxiliary system 1 reduces to auxiliary system 0.

Thus, P 1
1,i = C1P

0
1,i, i = 0, . . . , N1−1 gives the steady-state probability of having i functional

machines when there is no inventory in auxiliary system 1. Then, P 1
1,N1

= 1−
∑N1−1

i=0 P 1
1,i is

the probability of having N1 machines functional – whether or not there are spare parts in

the inventory.

Time

Units
P

2

...
...

λ1

2λ1

N1λ1

N1λ1

N1λ1

N1λ1

μ

μ

μ

μ

μ

μ

In Stock

Shortage

-N1

L2

0

Figure 1: A Sample Path of the Single-Class Sub-system 1

Making use of the portion of the MC corresponding to the positive y values, for 1 ≤ i ≤
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L2,

π1(i) =

(
µ

N1λ1

)i
C1P

0
1,N1

,

where P 0
1,N1

is the proportion of time the server is idle in auxiliary system 0, and

C1 =

(
1 + P 0

1,N1

L2∑
i=L1+1

(
µ

N1λ1

)i)−1

.

Recall that the superscript 1 in π1(i) and P 1
1,i indicates that these probabilities are found for

auxiliary system 1.

Auxiliary system 2: When we introduce fleet 2 as the low-priority class in auxiliary

system 1, we arrive at auxiliary system 2. If no shared inventory is assumed (L3 = L2), any

broken component from fleet 2 (i.e., class 2 customers) can be repaired only if all machines

in fleet 1 are up/functional, and the inventory (reserved for high-priority fleet 1) level is at

L2. That is, periods during which the server (of the repair shop queue) is busy repairing

components to reduce the number of down machines in fleet 1, or to increase the inventory

level to L2 are perceived as a server interruption by class 2 customers. Given this, each

time the number of failed type 2 machines increases to 1, we will find the server idle if the

inventory level is at L2, or busy serving fleet 1 or raising the inventory level. In the latter

instance, the server is perceived as interrupted by fleet 2. In the sample path given in Figure

2 where the horizontal axis shows the time, the dashed lines show the number of functional

type 2 machines (via the vertical axis on the right hand side of the figure), and the solid lines

show the number of spares in the inventory (via the vertical-axis on the left hand side of the

figure). Here, we see that right before time instances tA and tB when a type 2 machine fails,

leaving N2 − 1 functional type 2 machines, the server is idle (with inventory level at L2).

However, two spares have already been used (for two failed type 1 machines) before time

instance tE, at which point, the number of functional type 2 machines decreases to N2 − 1.

At this moment, the server is trying to raise the inventory level back to L2 but is seen as

interrupted by fleet 2. At time tC , we see that a type 1 machine fails and takes one unit

from the inventory (lowering its level to L2 − 1). As soon as this happens, the component
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being repaired for fleet 2 is preempted until the inventory level reaches L2 again at time tD.

This period is also seen as a server interruption by fleet 2.

Time

L1=0

L2

Idle
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f 
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a
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M
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in
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s

Interruption

t
E

Inventory Level for Class 1 [L2,-N1] No of Functional Class 2 Machines [N2,0]

t
D

Figure 2: A Sample Path in Sub-system 2 when L3 = L2

In other words, from the standpoint of class 2 customers, the server can be interrupted

when it is idle or when it is serving a type 2 customer with a failure rate of Λ1 = N1λ1.

Let D2 denote the interruption times, starting with a class 1 arrival reducing the inventory

level to L2 − 1 and ending when the inventory level reaches L2 again. Observe that D2 is

identically distributed as the first passage time from the second state at the top of the MC

shown on the left side of Figure 1 (corresponding to inventory level L2−1) to the state at the

top (corresponding to inventory level L2). The first passage times in finite state, continuous-

time MC’s (CTMC), and, thus, D2, follow a phase-type distribution (PTD) (e.g., Kulkarni,

1989). Given this, when L3 = L2, auxiliary system 2 is an M/M/1//N2 queueing system

with a single unreliable server in which class 2 constitutes the only customers served, with Λ1

as the server failure rate and D2 modeling the server interruption periods. If the distribution
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of D2 can be characterized or accurately approximated (as in Section 3), the steady-state

distribution of the number of customers out of this M/M/1//N2 queue (i.e., the number of

functional type 2 machines in auxiliary system 2) denoted by P 2∗
2,i (where the superscript 2*

refers to L3 = L2) can be obtained. In specific,

P 2∗
2,N2

= (1 + Λ2E[B2])−1,

where Λ2 = N1λ1 + N2λ2 and E[B2] is the expected length of a busy period in this queue,

as found in Sahba, Balcıog̃lu, and Banjevic (2013b).

If L3 > L2, the inventory is depleted at a rate of Λ2 until it declines to L2. Since for

C2 proportion of the time – to be determined –, the inventory level is at or below L2 (i.e.,

during these periods auxiliary system 2 reduces to auxiliary system 2 with L3 = L2 for fleet

2, and to auxiliary system 1 for fleet 1), for auxiliary system 2 with L3 ≥ L2, we establish

π2(i) =


(
µ

Λ2

)i−L2

C2P
2∗
2,N2

, L2 < i ≤ L3,

C2π
1(i), 0 ≤ i ≤ L2,

(2)

P 2
1,i = C2P

1
1,i, i = 0, . . . , N1 − 1, (3)

P 2
1,N1

= 1−
N1−1∑
i=0

P 2
1,i,

P 2
2,i = C2P

2∗
2,i , i = 0, . . . , N2 − 1,

P 2
2,N2

= 1−
N2−1∑
i=0

P 2
2,i,

where

C2 =

(
1 + P 2∗

2,N2

L3∑
i=L2+1

(
µ

Λ2

)i−L2
)−1

.

Auxiliary system k + (n− 1): Consider auxiliary system k − 1 with Lk as the inventory

base-stock level in which fleets 1 to k − 1 are served. Assume the steady-state probabilities

of having i units in the inventory πk−1(i), i = 0, . . . , Lk, and the probability of having i

functional machines in fleet j, P k−1
j,i , j = 1, . . . , k − 1, i = 0, . . . , Nj. Under the MR policy,

having the same threshold for some fleets instead of strictly increasing threshold levels for all

13



fleets may be more cost effective. To incorporate the possibility of having the same threshold

for n fleets, we consider adding fleets k to k + (n − 1) (1 ≤ n ≤ m − k + 1) at the same

time to auxiliary system k − 1 to arrive at auxiliary system k + (n− 1) (to allocate strictly

increasing threshold level for each fleet, we merely set n = 1 at each iteration). In this case,

Lk = Lk+1 = · · · = Lk+(n−1) ≤ Lk+n, and when the inventory level downcrosses Lk, the

system stops serving fleets k to k + (n− 1) from the spares inventory. When the inventory

level is at Lk, the repair shop sends the repaired component to the highest-priority fleet

among fleets k to k + (n− 1) with down machines.

This implies that a type j customer (a broken component from fleet j), j = k, . . . , k +

(n− 1), can be repaired only when the inventory level is at Lk (i.e., all machines in classes

1 to k − 1 are functional) and there are no type k to j − 1 (j > k) customers in the

repair shop. In other words, fleets k to k + (n − 1), prioritized from highest to lowest,

are served under the preemptive-resume policy by an unreliable server (of the repair shop

queue) becoming unavailable/interrupted at a rate of Λk−1 =
∑k−1

i=1 Niλi. If the server

interruption time Dk can be characterized or well-approximated (see Section 3), following

Sahba, Balcıog̃lu, and Banjevic (2013b), P
k+(n−1)∗
j,i (where the superscript k+ (n− 1)∗ refers

to Lk = Lk+1 = · · · = Lk+n) can be obtained for each fleet j = k, . . . , k + (n − 1). These

are the steady-state probabilities that i type j customers are out of the multi-class priority

M/M/1//N queue (N =
∑k+(n−1)

i=k Ni) with an unreliable server and give the number of

functional type j machines in auxiliary system k+ (n− 1)∗. Letting E[Bk+(n−1)] denote the

mean length of the busy period in this queue, as expressed in Sahba, Balcioglu and Banjevic

(2013b), we have

P
k+(n−1)∗
k+(n−1),Nk+(n−1)

= (1 + Λk+(n−1)E[Bk+(n−1)])
−1,

where Λk+(n−1) =
∑k+(n−1)

i=1 Niλi.

If an additional inventory of Lk+n − Lk units are to be depleted by all the k + (n − 1)

classes, we arrive at auxiliary system k + (n − 1), and the rest of the analysis mirrors that

for auxiliary system 2. Letting πk+(n−1)(i) be the steady-state probability of having i spares

stocked, the inventory is depleted at a rate of Λk+(n−1) until it hits Lk. Note that for Ck+(n−1)

14



– to be determined – proportion of the time, the inventory in auxiliary system k+ (n− 1) is

less than or equal to Lk; that is, during these periods, it reduces to auxiliary system k − 1

for classes 1 to k − 1 and auxiliary system k + (n − 1)∗ for classes k to k + (n − 1). Then,

Eqs. (2)–(3) can be adjusted here as

πk+(n−1)(i) =


(

µ
Λk+(n−1)

)i−Lk−1

Ck+(n−1)P
k+(n−1)∗
k+(n−1),Nk+n−1

, Lk−1 < i ≤ Lk+n,

Ck+(n−1)π
k−1(i), 0 ≤ i ≤ Lk−1,

P
k+(n−1)
j,i =


Ck+(n−1)P

k−1
j,i , j = 1, . . . , k − 1, i = 0, . . . , Nj − 1,

Ck+(n−1)P
k+(n−1)∗
j,i , j = k, . . . , k + (n− 1), i = 0, . . . , Nj − 1,

P
k+(n−1)
j,Nj

= 1−
Nj−1∑
i=0

P
k+(n−1)
j,i , j = 1, . . . , k + (n− 1),

where

Ck+(n−1) =

1 + P
k+(n−1)∗
k+(n−1),Nk+(n−1)

Lk+n∑
i=Lk−1+1

(
µ

Λk+(n−1)

)i−Lk−1

−1

.

We can search different vectors of (L1 = 0, L2, . . . , Lm+1) to find the optimal rationing

levels and the corresponding cost given in Eq. (1).

3 Obtaining the Moments of the Server Interruption

Time for Class k in Auxiliary System k

In this section, we derive the moments of the interruption time experienced by class k

customers in auxiliary system k. In auxiliary system k with an inventory base-stock level

of Lk+1, spares are depleted by all classes as long as the inventory is above Lk(≤ Lk+1). As

explained in Section 2, from the point of view of class k, server interruptions, occurring at a

rate of Λk−1 =
∑k−1

j=1 Njλj, start when the inventory level decreases to Lk−1 and end when it

reaches Lk again. If we define the states as the number of spares in stock, the changes of the

inventory level over time can be modeled as a birth-and-death process. Then, interruption
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times (Dk) are the first-passage times from the state of having Lk − 1 units to the state of

having Lk units and follow a PTD.
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Figure 3: Breakdown of the Interruption Times of Class k

To explain how we obtain the first n moments of Dk, we use the sample path shown in

Figure 3. Once the inventory level drops to Lk − 1 (i.e., time 0 in Figure 3), two events

are possible. With probability QLk−1,Lk
, the inventory can go up to Lk – without first

downcrossing Lk−1 – in TLk−1,Lk
time units; or with probability QLk−1,Lk−1

, it declines to

Lk−1 in TLk−1,Lk−1
time units. Interpreting this as a Gambler’s ruin problem, QLk−1,Lk−1

(QLk−1,Lk
) is the probability of reaching (the absorbing) state Lk−1 (Lk) from state Lk − 1

before reaching (the absorbing) state Lk (Lk−1), and

QLk−1,Lk−1
= 1−QLk−1,Lk

=
1− µ

Λk−1

1−
(

µ
Λk−1

)Lk−Lk−1
. (4)

If the inventory level reaches Lk without first downcrossing Lk−1, the interruption ends.

Otherwise, after hitting Lk−1 in TLk−1,Lk−1
time units, it takes Tu time units before the

inventory level reaches Lk to end the interruption. Before presenting the next theorem, we

introduce the first passage times TLk−1,Lk−1+1 (from Lk−1 to Lk−1 + 1), TLk−1+1,Lk−1
(from
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Lk−1 +1 to Lk−1), and TLk−1+1,Lk
(from Lk−1 +1 to Lk), as shown in Figure 3. After Theorem

1, we obtain their moments alongside those of TLk−1,Lk
and TLk−1,Lk−1

. Assuming that we

have these moments, and noting that transition times TLk−1,Lk−1
, TLk−1,Lk

, TLk−1,Lk−1+1,

TLk−1+1,Lk−1
, and TLk−1+1,Lk

are i.i.d r.v.s independent of each other, we derive the following:

Theorem 1 The nth moment of Dk, i.e., the interruption time experienced by class k is

E[Dn
k ] = QLk−1,Lk

E[T nLk−1,Lk
] +QLk−1,Lk−1

E
[(
TLk−1,Lk−1

+ Tu
)n]

, (5)

where QLk−1,Lk
and QLk−1,Lk−1

are given in Eq. (4) and

E[T nu ] = QLk−1+1,Lk
E
[(
TLk−1,Lk−1+1 + TLk−1+1,Lk

)n]
+ QLk−1+1,Lk−1

E
[(
TLk−1,Lk−1+1 + TLk−1+1,Lk−1

+ Tu
)n]

, (6)

where

QLk−1+1,Lk−1
= 1−QLk−1+1,Lk

=
1−

(
µ

Λk−1

)Lk−Lk−1−1

1−
(

µ
Λk−1

)Lk−Lk−1
. (7)

We now show how the moments of the first passage times that appear on the right hand

side of Eqs. (5) and (6) can be obtained. Assuming that we have the actual or approximate

distribution of Dk−1, k ≥ 3 (since there is no server interruption in auxiliary system 1):

Corollary 1 The first passage time from state Lk−1 to state Lk−1 + 1, TLk−1,Lk−1+1, is the

busy period in the M/M/1//Nk−1 + 1 queue with an unreliable server that fails at a rate of

Λk−2, with Dk−1 as the interruption time r.v. where each customer stays out of the queueing

system for an exponentially distributed time with rate λk−1.

To obtain Dk−1, we need to use Corollary 1 recursively. We start with D2, first discussed

for auxiliary system 2 in Section 2. The M/M/1//N1 + 1 queue with no server failures gives

the first passage time from state L1 to state L1 + 1, i.e., TL1,L1+1. Theorem 1 is then used

to obtain the moments of D2. With Λk−2 and Dk−1, Corollary 1 and Theorem 1 give Dk.

We use the following theorem to obtain the moments of the random variables TLk−1,Lk
,

TLk−1,Lk−1
, TLk−1+1,Lk

, and TLk−1+1,Lk−1
. Before presenting the theorem, we introduce L

(n)

i
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denoting the n-th moment of the absorption time r.v. from transient state i to state 0, given

that state m is avoided in a finite state continuous time Markov chain with 0 and m as the

two absorbing states.

Theorem 2 In a continuous time Markov chain with states i ∈ {0, . . . ,m} and transition

probabilities of pi,j, letting states 0 and m be the absorbing states, L
(n)

i , for i ∈ {1, . . . ,m−1},

is

L
(n)

i = E(Y n
i ) +

n−1∑
l=1

 n

l

(E(Y l
i )

∑
k 6=0,k 6=m

Qk

Qi

pi,kL
(n−l)
k

)
+

∑
k 6=0,k 6=m

Qk

Qi

pi,kL
(n)

k , (8)

where Yi is the r.v. denoting the sojourn time in state i, and Qi is the probability of reaching

state 0 starting from i.

We employ Theorem 2 to obtain the moments of TLk−1,Lk
and TLk−1+1,Lk

as given in

Corollary 2, and those of TLk−1+1,Lk−1
and TLk−1,Lk−1

in Corollary 3.

Corollary 2 In auxiliary system k, we have

E[T nLk−1,Lk
] = L

(n)

1 , (9)

E[T nLk−1+1,Lk
] = L

(n)

Lk−Lk−1−1, (10)

where L
(n)

1 and L
(n)

Lk−Lk−1−1 are found from Eq. (8) for a birth-and-death process with states

{0, 1, . . . ,m = Lk − Lk−1} by setting

Qi =
1−

(
Λk−1

µ

)m−i
1−

(
Λk−1

µ

)m ,

pi,i−1 = 1− pi,i+1 =
µ

µ+ Λk−1

,

E[Y n
i ] = n!(µ+ Λk−1)−n, i ∈ {1, . . . , Lk − Lk−1 − 1}, (11)

where m = Lk − Lk−1.
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Corollary 3 In auxiliary system k, we have

E[T nLk−1+1,Lk−1
] = L

(n)

1 ,

E[T nLk−1,Lk−1
] = L

(n)

Lk−Lk−1−1,

where L
(n)

1 and L
(n)

Lk−Lk−1−1 are found from Eq. (8) for a birth-and-death process with states

{0, 1, . . . ,m = Lk − Lk−1} by using Eq. (11) for E[Y n
i ] and setting

Qi =
1−

(
µ

Λk−1

)m−i
1−

(
µ

Λk−1

)m ,

pi,i−1 = 1− pi,i+1 =
Λk−1

µ+ Λk−1

, i ∈ {1, . . . , Lk − Lk−1 − 1}

where m = Lk − Lk−1.

Remark (1): If Lk = Lk−1 + 2, then TLk−1,Lk
= TLk−1,Lk−1

=TLk−1+1,Lk
= TLk−1+1,Lk−1

.

Remark (2): If Lk = Lk−1 + 1, then TLk−1,Lk
= TLk−1,Lk−1

=TLk−1+1,Lk
= TLk−1+1,Lk−1

= 0.

Remark (3): If Lk = Lk−1, we have the auxiliary system k − 1.

Note that the moments of the sojourn times in each state and the state transition prob-

abilities are not state-dependent in the birth-and-death process showing the inventory level.

Therefore, labeling states Lk−1, Lk−1 + 1, Lk−1 + 2, . . . , Lk, as states from 0 to m, Corol-

lary 4 below presents a recursive computation method for L
(n)

i for i ∈ {1, . . . ,m− 1} (with

m = Lk − Lk−1), from which we have E[T nLk−1+1,Lk−1
] = L

(n)

1 and E[T nLk−1,Lk−1
] = L

(n)

m−1 in

Corollary 3. Labeling states Lk, Lk − 1, . . . Lk−1, as states from 0 to m, Corollary 4 also

provides E[T nLk−1,Lk
] = L

(n)

1 and E[T nLk−1+1,Lk
] = L

(n)

m−1 given in Corollary 2.

Corollary 4 The following recursion gives the n-th moment of the absorption time r.v. from

state i, i ∈ {1, . . . , Lk − Lk−1 − 1}, to state 0 given that state m is avoided as

L
(n)

i = b
(n)
i + L

(n)

i−1, (12)
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where

b
(n)
i−1 =

C
(n)
i−1 +

(
µ

µ+Λk−1

)
H−1
i b

(n)
i

1−
(

µ
µ+Λk−1

)
H−1
i

, (13)

and b
(n)
m−1 = C

(n)
m−1 with

C
(1)
i = E[Yi],

C
(2)
i = (E[Y 2

i ]− 2E[Yi]
2) + 2E[Yi]L

(1)

i ,

C
(3)
i = E[Y 3

i ] +
(
3E[Y 2

i ]− 6E[Yi]
2
) (
L

(1)

i − E(Yi]
)

+ 3E[Yi]
(
L

(2)

i − E[Y 2
i ]
)
.

and

Hi =
1−

(
µ

Λk−1

)Lk−Lk−1−i+1

1−
(

µ
Λk−1

)Lk−Lk−1−i
.

Remark (4): If Λk−1 = µ, Qi = (m−i)/m in Corollaries 2 and 3 andHi = (m−i+1)/(m−i)

in Corollary 4. In a similar vein, the right hand sides of Eqs. (4) and (7) become 1/m

and (m− 1)/m, respectively.

Recall that the exact MR model developed in Section 2 makes use of the M/M/1//N

queue with an unreliable server serving finitely many customers (see Sahba, Balcıog̃lu, and

Banjevic, 2013b) for which the server interruption distribution is required. These interrup-

tion times, namely Dk’s, for the MR model we study are PTD r.v.s. The number of transient

states and transition probabilities of Dk increase with the inventory levels, and the number

of fleets served and their representations/structures become complex. Instead of using the

original Dk’s with their complex structures, we can approximate them and use the approx-

imations as the interruption time r.v. in the M/M/1//N queue analysis employed by the

developed exact MR model. This will give us an MR policy, but its inventory rationing

levels and cost will be an approximation of the original system. This is an approximation,

not because we are exploiting a different/approximate method but because we are feeding

approximate interruption time distributions into the exact model presented in Section 2.

The next question is how to approximate the original Dk’s. One option is choosing a

PTD r.v. with a simpler structure and the same first three moments of Dk. For instance, a
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2-stage Mixture of Generalized Erlang (MGE) r.v. is an exponential r.v. with rate µ1 (the

sum of two exponential r.v.s with rates µ1 and µ2) with probability 1 − a (a); it will have

the same first three moments of Dk if we set (e.g., Altıok, 1997, page 52)

µ1 =
X +

√
X2 − 4Y

2
, and µ2 = X − µ1, and a =

µ2

µ1

(E[Dk]µ1 − 1),

where

Y =
6E[Dk]− 3E[D2

k]/E[Dk]

(6E[D2
k]/4E[Dk])− E[D3

k]
,

X =
1

E[Dk]
+
E[D2

k]Y

2E[Dk]
,

and E[Dk], E[D2
k], E[D3

k] are the first three moments of Dk found in Theorem 1. In Section

5, we test the accuracy of using the exact MR model with approximate interruption time

distributions; we call this the MR policy approximation for ease of reference.

4 Benchmarking Policies

Alongside the MR policy proposed in Section 2, we consider two alternatives designed by

Sahba, Balcıog̃lu, and Banjevic (2013a): the hybrid FCFS (HF) and the hybrid priority (HP)

policies. After summarizing these two policies, we close this section with a discussion of how

the cost of the optimal policy can be computed numerically.

HF and HP policies have, a reserved inventory Sk ≥ 0 for each class k and, a shared

inventory S ≥ 0 for all customers. Components from the shared inventory are expended,

and only when they are depleted, are the reserved inventories used. This means that if

the shared inventory is at its base-stock level S, the repair shop is idle. The dispatching

decision for the repaired component comes into play when the shared inventory is empty,

and some reserved inventories are below their base-stock levels, or there are some down

machines. When this is the case, the repair shop has pending repair orders from fleets with

down machines or fleets with missing spares in their reserved inventories. The repaired

component is dispatched in an FCFS manner under the HF policy (to serve the highest
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priority fleet under the HP policy with fleets 1 to m prioritized from highest to lowest)

among the fleets with pending repair orders. If all machines are functional all fleets and the

reserved inventories are full, the repaired component is placed in the shared inventory. HF

and HP policies yield different π(i), πk(i) and Pk,i, the steady-state probabilities of having i

spares in the shared inventory, i spares in the reserved inventory of class k, and i machines

to be functional in fleet k, respectively, defined by Sahba, Balcıog̃lu, and Banjevic (2013a).

These probabilities are also functions of S = (S, S1, . . . , Sm). Then, the long-run average

cost, given S for the HF or HP policy, is

CHF/HP = {
m∑
k=1

bk

Nk∑
i=0

(Nk − i)Pk,i + hS + hw

(
S∑
i=0

iπ(i) +
m∑
k=1

Sk∑
i=0

iπk(i)

)
}. (14)

We can search different vectors of S = (S, S1, . . . , Sm) to find the optimal shared and reserved

inventory levels and the corresponding cost given in Eq. (14).

While the optimal policy for this problem remains unknown, the optimal cost can be

numerically computed. To do so, we model the system as a semi-Markov decision process

using the average cost criterion. Here, an action can be determined either when a component

fails or a repair is over. The possible actions after a failure instant are either to dispatch an

available spare part from the inventory or to take no action. Assuming a repaired component

immediately joins the inventory, the possible actions are dispatching the component to one

of the fleets with at least one down machine, or taking no action and letting the component

stay in the spare parts inventory. With the assumption that a repaired component first enters

the inventory, the possible actions at both decision epochs become the same. We define the

state of the system as the number of down machines in each fleet and the inventory level as

i = (n1, n2, . . . , nm, l), 0 ≤ nk ≤ Nk, k = 1, . . . ,m, 0 ≤ l ≤ S.

The possible actions are

a ∈ A (i) = {0, 1, . . . ,m} ,

such that if a = 0, no action is taken, and if a = k, a component is dispatched to class k.

Therefore, at each decision epoch, the system may move into m+1 possible states as a result
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of a failure or a repair completion. We assume a limited capacity of S for the inventory, i.e.,

when the inventory level increases to S+ 1 after the completion of a repair, taking no action

is not allowed, and the component must be dispatched. Let ci(a) and τi(a) be the expected

costs and the expected time until the next decision epoch if action a is chosen in state i.

Then,

τi(a) =


∑m

k=1 nkbk−ba+(l−a)h

µ−λa+
∑m

k=1(Nk−nk)λk
,
∑m

k=1 nk(S − l) > 0,

∑m
k=1 nkbk−ba+(l−a)h

−λa+
∑m

k=1(Nk−nk)λk
, otherwise,

or

τi(a) =


(µ− λa +

∑m
k=1(Nk − nk)λk)−1

,
∑m

k=1 nk(S − l) > 0,

(−λa +
∑m

k=1(Nk − nkλk)−1
, otherwise,

where b0 = 0 and λ0 = 0.

There is a stationary deterministic average optimal policy for this finite-state semi-

Markov decision process model, (see Theorem 11.4.6, page 557, Puterman, 2005). We first

convert the model into a discrete-time Markov decision model and employ a version of the

value-iteration algorithm (Tijms, 2003) to find a policy within ε of the optimal policy (ε-

optimal policy) in the numerical examples presented in Section 5.1.

5 Numerical Experiment

In this section, we address three questions: (i) How accurate is the MR policy approximation

introduced at the end of Section 3? (ii) How close is the performance of the MR policy to

that of the optimal policy? Is its cost close to the optimal cost? (iii) What is the relative

performance of the MR policy with respect to the HF and HP policies discussed in Section

4? Does it lead to significantly more cost savings?

To answer these questions, we consider a system in which three classes with NI = 5,

NII = 10, and NIII = 15 are served. Repair times are exponentially distributed with rate
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µ = 3. We set the warehousing cost hw = 1/3 in Eqs. (1) and (14) per unit spare per unit

time in the inventory, as it is generally much smaller than the capital cost (Silver, Pyke, and

Peterson, 1998, p. 45). It is assumed to be h = 1 for each spare part per unit time. We

choose a different down time cost for each class from the set {10, 50, 100}. In addition, we

set a different failure rate for each class by equating Nkλk, k = I, II, III, to a value in the

set {0.7, 0.8, 0.9}, ensuring these are different from the values used for other classes. This

gives a total of 36 examples presented in Table 2 and Table 3 in Appendix B.

In the rest of the discussion on numerical results, CMR is the cost of the MR policy

approximation. We use 2-stage MGE distributions approximating Dk for each auxiliary

system k ≥ 2 in the exact method developed in Section 2. These approximating MGE r.v.s

have the same first three moments of Dk found by Theorem 1 (see Section 3 on the choice

of MGE parameters).

Recall that down time cost is not sufficient to determine how to prioritize fleets under the

MR policy without computing the system cost. Thus, for each problem, we have 6 different

ways of prioritizing fleets (each is called a priority sequencing). For a given L4 = 0, . . . , 12,

from 0 to L4, L2 can assume L4 + 1 values. Given L4 and L2, L3 can assume L4 − L2 + 1

values. This gives a total (L4/2 + 1)(L4 + 1) combinations of L3 and L2, i.e., a total of

445 sets of inventory threshold/rationing levels for each priority sequencing. Thus, for each

case, we employ the MR policy approximation 6 × 445 times, and the optimal cost C∗MR is

the one (with the corresponding priority sequencing, plus the threshold levels) that yields

the minimum cost. These are presented in Table 4 and Table 5 in Appendix B. In each

example, the optimal scenario turns out to have fleets that are prioritized according to their

down time costs. For instance, in example 1, the highest priority class 1 is class III, and

the lowest priority class 3 is class I. In all the examples, the base-stock level (L4) is either

8, 9, or 10, and L2 = 0. In each case, the MR policy allows all fleets to deplete the inventory

until the inventory level hits L3. If the inventory level is positive but less than or equal to

L3, if a machine from class 3 fails, no spare part is sent from the inventory. If there is no

inventory, a repaired component is sent to the highest priority fleet with down machines.
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5.1 The Accuracy of the MR Policy Approximation and its Per-

formance Compared to the Optimal Policy

Based on the discussion of the numerical computation of the cost of the optimal policy in

Section 4, we find a policy within 0.01% of the optimal policy in the numerical examples.

Each resulting policy determines an action for each state, and there are between 9, 504 and

11, 616 states in each example. The algorithm run-time is around 12 hours for each example

on a desk top computer with a 2.33GHz CPU. Given the priority sequencing and inventory

rationing levels, it takes 0.62 seconds to compute the optimal cost of the MR policy. For

each problem, the minimum cost is found for 445× 6 (445 sets of inventory threshold levels

and 6 priority sequencing) configurations; thus, it takes 28 minutes to arrive at optimality.

In each problem, it takes 3.6 minutes to find the optimal cost of the HF policy (out of

13 × 6 × 6 × 6 = 2808 sets of S, S1, S2, S3), and 6.3 minutes of the HP policy (out of

1944=324 (12× 3× 3× 3 sets of S, S1, S2, S3)×6 (priority combinations) configurations).

Table 6 and Table 7 in Appendix B demonstrate a near perfect match between the MR

policy and the ε-optimal policy based on the number of states with equal actions in both

policies. In 22 out of 36 cases, the optimal policy is the MR policy (with 100% match),

and the prioritization of classes and inventory threshold levels match those we find using

the MR policy approximation. The mean/maximum absolute error of the approximate cost

is 0.106%/0.13%. In other words, the MR policy approximation is extremely accurate. In

all 36 cases, the mean/maximum absolute error of the approximate cost compared to the

optimal cost is 0.11%/0.13%. Thus, we conclude that the MR policy performs very close to

the optimal policy even when decisions differ at certain instances.

5.2 Relative Performances of the Policies

To compare the relative performances of the MR, HF and HP policies, we compute

∆MR
HF ≡

C∗HF − C∗MR

C∗HF
, ∆MR

HP ≡
C∗HP − C∗MR

C∗HP
, ∆HP

HF ≡
C∗HF − C∗HP

C∗HF
,
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where C∗HF and C∗HP are the optimal cost of the system under the HF and HP policies,

respectively, as given in Eq. (14) and found following Sahba, Balcıog̃lu, and Banjevic (2013a).

We present C∗HF and C∗HP in Table 8 and Table 9 in Appendix B along with the optimal

inventory control parameters for each policy. The ratios ∆MR
HF and ∆MR

HP measure the cost

decrease incurred by using the optimal MR policy instead of the optimal HF and HP policies,

respectively. The ratio ∆HP
HF captures how much more the HP policy reduces the cost than

does the HF policy.

Table 1: Minimum, mean, median and maximum values of cost reduction of the MR policy

compared to the HF and HP policies.

Min(%) Mean(%) Median(%) Max(%)

∆MR
HF 13.19 16.94 16.78 19.88

∆MR
HP 3.37 5.90 5.76 8.34

∆HF
HP 9.50 11.74 11.99 13.06

In Table 1, we see remarkable cost savings under the MR policy compared to the HF

policy. Observe that all the three policies are flexible in the sense that they can deploy

spares in different inventories or vary the threshold levels when the failure rates and down

time costs are rotated among the fleets. Consequently, the optimal costs for a given policy,

as listed in Tables 4-5 or Tables 8-9, do not fluctuate significantly from one problem to

another one. The HP policy performs better than the HF policy. The HP policy increases

the system cost by an average of 5.90% compared to the MR policy. From Tables 2-3, and

Tables 8-9 in Appendix B, we see that the HF policy stores more spare parts than the other

two policies. The shared inventory S is never 0, and reserved inventories are sometimes kept

for one or two classes. The HP policy prioritizes the fleets based on their down time costs.

The columns S1 to S3 show the reserved inventories for class 1 (with highest down time cost)

to class 3 (lowest down time cost). The shared inventory S is never 0, and the HP policy

keeps reserved inventories for classes 1 and 2. The total number of spares in the optimal HP
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policy is never less than the number of spares in the optimal MR policy. In the optimal MR

policy, as we recall from Table 4 and Table 5, no spare parts are reserved solely for fleet 1.

Instead, fleets 1 and 2 share 3 to 4 units when the inventory level is less than or equal to

L3. As a result of this flexibility, the MR policy outperforms the HP policy in reducing the

system cost. Problems 25, 26, 31, and 32 are the ones in which the savings under the MR

policy are the highest – close to 20% and around 8% , respectively – when compared to the

HF and HP policies. These are the problems in which the smallest fleet with 5 machines has

the least down time cost while its machines have the highest failure rate. However, it is not

easy for us to foresee under which scenarios the benefit of employing the MR policy can be

felt more pronouncedly.

6 Conclusions

In this paper, we analyze a system of fleets, with each fleet consisting of finitely many

machines which fail from time to time because of a repairable critical component. We propose

employing the MR policy to control a shared inventory of spares (or as a transhipment policy

between reserved inventories of fleets). The repair shop is modeled as a single server queueing

system. The MR policy prioritizes classes/fleets and sets inventory threshold levels based on

these priorities so that when the inventory level is below the inventory threshold identified

for a class, that class is not served. We also employ MDP to obtain the cost of the ε-optimal

policy for the same system. Our numerical findings indicate that the MR policy performs

very close to the ε-optimal policy while outperforming the hybrid policies suggested in the

literature. Although our numerical study indicates that the optimal control policy could

very well be the MR policy, more research is required.
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Appendix A Proofs

Proof. Proof of Theorem 1. Eq. (5) is a direct result of the two possible trajectories

the inventory level can follow starting from state Lk − 1 until reaching state Lk for the first

time.

As seen in Figure 4, each time the inventory moves from Lk−1 to Lk−1+1, with probability

QLk−1+1,Lk−1
(QLk−1+1,Lk

) the inventory level, before reaching Lk, returns to state Lk−1 in

TLk−1+1,Lk−1
units, and another sub-cycle of length Tu starts (the inventory level reaches Lk

ending Tu in TLk−1+1,Lk
time units in a last cycle). This gives us Eq. (6). Since all states
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of the underlying birth-and-death process are recurrent, the system goes through a random

but a finite number of sub-cycles, each one of length Tu.

Figure 4: A Sample path of the interruption time for class k

Finally, in Eq. (7), QLk−1+1,Lk−1
is the probability of reaching (the absorbing) state Lk−1

from state Lk−1 + 1 before reaching (the absorbing) state Lk in a Gambler’s ruin problem.

Proof. Proof of Corollary 1. We make the following analogy between the original system

and the M/M/1//Nk−1 + 1 queue: When the inventory level hits Lk−1 for the first time,

there are Nk−1 operational machines in the original system and the server is busy (one

customer out of Nk−1+1 customers initiates a busy period in the M/M/1//Nk−1 + 1 queue).

An arrival of classes 1 to k − 2 drops the inventory level at a rate of Λk−2 in the original

system (the server fails in the M/M/1//Nk−1 + 1 queue at rate Λk−2), and it takes Dk−1

time units before the inventory reaches Lk−1 again (before the server interruption ends in

the M/M/1//Nk−1 + 1 queue). During this time each type k− 1 machine may fail at a rate

of λk−1 (additional customers, each with a rate of λk−1, may arrive at the M/M/1//Nk−1 +1

queue). When any down machines in the original system (if there are down machines) is

supplied with a fixed component while the inventory level is at Lk−1 and one more component

is fixed (corresponding to having all Nk−1+1 customers out of the M/M/1//Nk−1 +1 queue),

TLk−1,Lk−1+1 (the busy period in the M/M/1//Nk−1 + 1 queue) ends. The moments of the

busy period in the M/M/1//Nk−1 + 1 queue, hence those of TLk−1,Lk−1+1, can be found in

Sahba, Balcıog̃lu, and Banjevic (2013).
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Proof. Proof of Theorem 2. We introduce the following events and r.v.s to present the

proof:

Ai,j: The event of reaching state j from state i in a single step of transition,

Ai,◦,k: The event of eventually reaching state k = 0,m after exiting state i,

Xi: The time to reach state 0 or m from state i (Xk = 0 for k = 0,m).

Let I(E) denote the indicator function which equals 1 if event E is true and 0 otherwise.

Then,

Xi = XiI(Ai,◦,0) +XiI(Ai,◦,m), i 6= 0,m.

Exiting state i, the system can be in any state after the first transition, thus implying

that
∑

k I(Ai,k) = 1. Let the random variables X ′k and Xk be independent and identically

distributed (k 6= 0,m and X ′0 = X ′m = 0). Then

Xi =
∑
k

XiI(Ai,k) =
∑
k

(Yi +X ′k)I(Ai,k) = Yi
∑
k

I(Ai,k) +
∑
k 6=0,m

I(Ai,k)X
′
k.

If the first state entered after leaving state i is either 0 or m, the remaining time to reach

state 0 is zero. Otherwise it is,

XiI(Ai,◦,0) = YiI(Ai,◦,0) +
∑

k 6=0,k 6=m

I(Ai,k)X
′
kI(A′k,◦,0).

By definition, L
(n)

i = E[Xn
i |Ai,◦,0] = E[Xn

i I(Ai,◦,0)]/Qi (recall that Qi is the probability of

Ai,◦,0 being true). Using the fact that for any random variable Xi and disjoint events Bi,

[I(Bi)]
n = I(Bi) and [

∑
iXiI(Bi)]

n =
∑

iX
n
i I(Bi), and that in our case, I(Ai,◦,0)I(Ai,k)I(A′k,◦,0) =

I(Ai,k)I(A′k,◦,0) for k 6= 0,m, we have

E[(Xn
i I(Ai,◦,0))] = E[(XiI(Ai,◦,0))n]

= E

[(
YiI(Ai,◦,0) +

∑
k 6=0,k 6=m

X ′kI(Ai,k)I(A′k,◦,0)

)n]
= E[Y n

i ]E[I(Ai,◦,0)] +
∑

k 6=0,k 6=m

E[I(Ai,k)]E[
(
(X ′k)

nI(A′k,◦,0)
)
]

+
n−1∑
l=1

 n

l

(E[Y l
i ]

∑
k 6=0,k 6=m

E[X ′k
n−l
I(Ai,k)I(A′k,◦,0)]

)
.
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Note that E[I(Ai,◦,0)] = Qi and E[I(Ai,k)] = pi,k. Also,

E[X ′k
n−l
I(Ai,k)I(A′k,◦,0)] = E[X ′k

n−l
I(A′k,◦,0)|Ai,k]P (Ai,k)

= E[Xk
n−lI(Ak,◦,0)]pi,k.

Then,

E[(Xn
i I(Ai,◦,0))] = E[Y n

i ]Qi +
∑

k 6=0,k 6=m

pi,kE[Xn
k |Ak,◦,0]Qk

+
n−1∑
l=1

 n

l

(E[Y l
i ]

∑
k 6=0,k 6=m

pi,kE[Xn−l
k |Ak,◦,0]Qk

)
.

Dividing both sides by Qi yields Eq. (8).

Proof. Proof of Corollary 2. Consider the birth-and-death process capturing the changes

of the inventory level between levels Lk and Lk−1. This process has m(= Lk − Lk−1) + 1

states. If we consider the time it takes until the inventory level reaches Lk (to be interpreted

as state 0) before hitting Lk−1 (to be interpreted as state m) starting from the inventory

level Lk − 1, Lk − 2, . . . , Lk−1 + 1 (to be interpreted as states 1, . . . ,m − 1, respectively),

from Eq. (8), we get Eqs. (9) and (10). The probabilities Qi and pi,i−1 follow similarly. The

duration in each state follows an exponential distribution with rate µ+ Λk−1, hence we have

Eq. (11).

Proof. Proof of Corollary 3. The proof is similar to that for Corollary 2. We consider

the time it takes until the inventory level hits Lk−1 (to be interpreted as state 0) before

reaching Lk (to be interpreted as state m), starting from the inventory level Lk−1 +1, Lk−1 +

2, . . . , Lk − 1 to be interpreted as states 1, . . . ,m− 1, respectively.

Proof. Proof of Corollary 4. From Eq. (8), the system of equations for the first moment

of the absorption time r.v. from state i is

L
(1)

i = E(Yi) +
∑

k 6=0,k 6=m

Qk

Qi

pi,kL
(1)

k , 1 ≤ i ≤ m− 1,

which is used alongside Eq. (8) to obtain the system of equations for the second moment as

L
(2)

i = E(Y 2
i ) + 2E(Yi)

(
L

(1)

i − E(Yi)
)

+
∑

k 6=0,k 6=m

Qk

Qi

pi,kL
(2)

k , 1 ≤ i ≤ m− 1.
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Using the previous two equations together with Eq. (8), the system of equations for the

third moment is

L
(3)

i = E(Y 3
i )+

(
3E(Y 2

i )− 6E2(Yi)
) (
L

(1)

i − E(Yi)
)

+3E(Yi)
(
L

(2)

i − E(Y 2
i )
)

+
∑

k 6=0,k 6=m

Qk

Qi

pi,kL
(3)

k ,

1 ≤ i ≤ m− 1.

Let m be Lk−Lk−1 and Pu = 1−Pd = µ/(µ+ Λk−1). Then, any of the above equations can

be rewritten for n = 1, 2, 3 as

L
(n)

1 = C
(n)
1 + PuH

−1
2 L

(n)

2 ,

L
(n)

i = C
(n)
i + PdHiL

(n)

i−1 + PuH
−1
i+1L

(n)

i+1, 1 < i < m− 1,

L
(n)

m−1 = C
(n)
m−1 + PdHm−1L

(n)

m−2.

Defining b
(n)
m−1 = C

(n)
m−1 and dm−1 = PdHm−1, the equations given above become

L
(n)

m−1 = b
(n)
m−1 + dm−1L

(n)

m−2.

Hence, for i = m− 1 down to 2,

L
(n)

i = C
(n)
i + PdHiL

(n)

i−1 + PuH
−1
i+1

(
b

(n)
i+1 + di+1L

(n)

i

)
,

or

L
(n)

i =
C

(n)
i + PuH

−1
i+1b

(n)
i+1

1− PuH−1
i+1di+1

+
PdHi

1− PuH−1
i+1di+1

L
(n)

i−1, (A.15)

Defining

b
(n)
i =

C
(n)
i + PuH

−1
i+1b

(n)
i+1

1− PuH−1
i+1di+1

, di =
PdHi

1− PuH−1
i+1di+1

,

we next show that di = 1 for 1 ≤ i ≤ m− 1

dm−1 = PdHm−1 =
Λk−1

Λk−1 + µ

1−
(

µ
Λk−1

)2

1−
(

µ
Λk−1

) = 1,

and similarly, for i = m− 1 to 2, we can show that

di−1 =
PdHi−1

1− PuH−1
i di

= 1.
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With these, we have Eq. (13). Using it in Eq. (A.15) and noting b
(n)
m−1 = C

(n)
m−1, we obtain

Eq. (12). Moreover,

L
(n)

i =
i∑

j=1

b
(n)
j , i = 1, . . . ,m.

Appendix B Tables
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Table 2: Parameters of the Examples-Cases 1 to 18

No NIλI/ NIIλII NIIIλIII λI λII λIII bI bII bIII

1 0.7 0.8 0.9 0.14 0.08 0.06 10 50 100

2 0.7 0.8 0.9 0.14 0.08 0.06 10 100 50

3 0.7 0.8 0.9 0.14 0.08 0.06 50 10 100

4 0.7 0.8 0.9 0.14 0.08 0.06 50 100 10

5 0.7 0.8 0.9 0.14 0.08 0.06 100 10 50

6 0.7 0.8 0.9 0.14 0.08 0.06 100 50 10

7 0.7 0.9 0.8 0.14 0.09 0.053 10 50 100

8 0.7 0.9 0.8 0.14 0.09 0.053 10 100 50

9 0.7 0.9 0.8 0.14 0.09 0.053 50 10 100

10 0.7 0.9 0.8 0.14 0.09 0.053 50 100 10

11 0.7 0.9 0.8 0.14 0.09 0.053 100 10 50

12 0.7 0.9 0.8 0.14 0.09 0.053 100 50 10

13 0.8 0.7 0.9 0.16 0.07 0.06 10 50 100

14 0.8 0.7 0.9 0.16 0.07 0.06 10 100 50

15 0.8 0.7 0.9 0.16 0.07 0.06 50 10 100

16 0.8 0.7 0.9 0.16 0.07 0.06 50 100 10

17 0.8 0.7 0.9 0.16 0.07 0.06 100 10 50

18 0.8 0.7 0.9 0.16 0.07 0.06 100 50 10
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Table 3: Parameters of the Examples-Cases 19 to 36

No NIλI NIIλII NIIIλIII λI λII λIII bI bII bIII

19 0.8 0.9 0.7 0.16 0.09 0.047 10 50 100

20 0.8 0.9 0.7 0.16 0.09 0.047 10 100 50

21 0.8 0.9 0.7 0.16 0.09 0.047 50 10 100

22 0.8 0.9 0.7 0.16 0.09 0.047 50 100 10

23 0.8 0.9 0.7 0.16 0.09 0.047 100 10 50

24 0.8 0.9 0.7 0.16 0.09 0.047 100 50 10

25 0.9 0.7 0.8 0.18 0.07 0.053 10 50 100

26 0.9 0.7 0.8 0.18 0.07 0.053 10 100 50

27 0.9 0.7 0.8 0.18 0.07 0.053 50 10 100

28 0.9 0.7 0.8 0.18 0.07 0.053 50 100 10

29 0.9 0.7 0.8 0.18 0.07 0.053 100 10 50

30 0.9 0.7 0.8 0.18 0.07 0.053 100 50 10

31 0.9 0.8 0.7 0.18 0.08 0.047 10 50 100

32 0.9 0.8 0.7 0.18 0.08 0.047 10 100 50

33 0.9 0.8 0.7 0.18 0.08 0.047 50 10 100

34 0.9 0.8 0.7 0.18 0.08 0.047 50 100 10

35 0.9 0.8 0.7 0.18 0.08 0.047 100 10 50

36 0.9 0.8 0.7 0.18 0.08 0.047 100 50 10

37



Table 4: The Optimal Inventory Rationing Levels and C∗MR of the MR Policy-Cases 1 to 18

No L2 L3 L4 C∗MR

1 0 4 9 16.174

2 0 4 9 16.12

3 0 3 9 16.476

4 0 2 9 16.458

5 0 3 9 16.371

6 0 2 9 16.398

7 0 4 9 16.071

8 0 4 9 16.19

9 0 3 9 15.932

10 0 3 9 17.024

11 0 3 9 15.908

12 0 2 9 16.859

13 0 3 8 15.551

14 0 3 8 15.344

15 0 3 9 16.949

16 0 2 9 16.29

17 0 3 9 16.977

18 0 2 9 16.467
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Table 5: The Optimal Inventory Rationing Levels and C∗MR of the MR Policy-Cases 19 to

36

No L2 L3 L4 C∗MR

19 0 3 8 15.274

20 0 3 8 15.541

21 0 2 9 15.808

22 0 3 10 17.378

23 0 3 9 15.939

24 0 3 10 17.366

25 0 3 8 14.778

26 0 3 8 14.704

27 0 3 9 16.754

28 0 2 9 16.644

29 0 3 9 17.016

30 0 3 9 16.998

31 0 3 8 14.673

32 0 3 8 14.781

33 0 3 9 16.175

34 0 3 10 17.236

35 0 3 9 16.441

36 0 3 10 17.416
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Table 6: Comparison of ε-Optimal Policy and the MR Policy-Cases 1 to 18

No No of Iterations No of States % Matches with MR Optimal Cost

1 402 10560 100.00 16.174

2 411 10560 99.99 16.110

3 479 10560 100.00 16.455

4 541 10560 99.95 16.441

5 492 10560 100.00 16.351

6 550 10560 99.91 16.382

7 406 10560 99.98 16.048

8 410 10560 100.00 16.191

9 457 10560 100.00 15.915

10 555 10560 100.00 17.001

11 469 10560 100.00 15.891

12 566 10560 99.89 16.836

13 361 9504 99.99 15.532

14 368 9504 100.00 15.326

15 499 10560 100.00 16.926

16 543 10560 99.93 16.275

17 518 10560 100.00 16.954

18 548 10560 99.91 16.449
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Table 7: Comparison of ε-Optimal Policy and the MR Policy-Cases 19 to 36

No No of Iterations No of States % Matches with MR Optimal Cost

19 359 9504 100.00 15.255

20 368 9504 99.99 15.523

21 461 10560 99.92 15.780

22 612 11616 99.71 17.359

23 469 10560 100.00 15.922

24 624 11616 100.00 17.347

25 344 9504 100.00 14.764

26 348 9504 100.00 14.690

27 496 10560 100.00 16.731

28 559 10560 99.91 16.629

29 516 10560 100.00 16.993

30 563 10560 99.99 16.974

31 341 9504 100.00 14.658

32 350 9504 100.00 14.767

33 474 10560 100.00 16.155

34 609 11616 99.73 17.214

35 488 10560 100.00 16.421

36 625 11616 100.00 17.397
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Table 8: The Optimal HF and HP policies-Cases 1 to 18

HF Policy HP Policy

No S SI SII SIII C∗HF S S1 S2 S3 C∗HP

1 7 0 2 3 19.924 6 2 2 0 17.394

2 7 0 3 2 19.853 7 1 2 0 17.419

3 7 1 0 3 19.825 8 1 1 0 17.450

4 7 1 3 0 19.626 8 1 1 0 17.255

5 7 2 0 2 19.830 7 1 2 0 17.465

6 8 2 1 0 19.678 8 1 1 0 17.293

7 6 0 2 3 19.689 6 2 2 0 17.323

8 7 0 3 2 19.915 6 2 2 0 17.525

9 7 1 0 3 19.217 7 1 1 0 16.772

10 8 1 3 0 20.062 8 1 1 0 17.805

11 7 2 0 2 19.309 7 1 1 0 16.911

12 8 2 2 0 20.011 8 1 1 0 17.721

13 5 0 2 4 19.227 5 2 2 0 16.758

14 5 0 3 3 19.031 6 1 2 0 16.545

15 8 1 0 3 20.074 8 1 1 0 17.806

16 8 1 2 0 19.257 7 1 1 0 17.017

17 8 2 0 2 20.316 7 1 2 0 18.138

18 8 2 1 0 19.687 8 1 1 0 17.382
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Table 9: The Optimal HF and HP policies-Cases 19 to 36

HF Policy HP Policy

No S SI SII SIII C∗HF S S1 S2 S3 C∗HP

19 6 0 2 3 18.875 6 1 2 0 16.449

20 6 0 3 2 19.166 5 2 2 0 16.833

21 8 1 0 2 18.938 7 1 1 0 16.504

22 10 0 2 0 20.149 8 1 1 0 18.118

23 6 3 0 2 19.333 7 1 1 0 16.985

24 9 2 1 0 20.320 8 1 1 0 18.289

25 5 0 2 3 18.384 5 2 2 0 16.066

26 5 0 3 2 18.352 6 1 2 0 15.987

27 9 0 0 2 19.755 8 1 1 0 17.509

28 8 1 2 0 19.396 8 1 1 0 17.325

29 7 3 0 2 20.332 8 1 1 0 18.211

30 9 2 1 0 20.044 8 1 1 0 17.922

31 5 0 2 3 18.224 7 1 1 0 15.911

32 5 0 3 2 18.377 5 2 2 0 16.126

33 8 1 0 2 19.159 7 1 1 0 16.892

34 9 0 2 0 19.855 8 1 1 0 17.837

35 6 3 0 2 19.846 8 1 1 0 17.612

36 9 2 1 0 20.339 8 1 1 0 18.406

43


