
Multilevel Representation and Transmission of
Real Objects with Progressive Octree Particles

Yücel Yemez and Francis Schmitt

Abstract—We present a multilevel representation scheme adapted to storage, progressive transmission, and rendering of dense data

sampled on the surface of real objects. Geometry and object attributes, such as color and normal, are encoded in terms of surface

particles associated to a hierarchical space partitioning based on an octree. Appropriate ordering of surface particles results in a

compact multilevel representation without increasing the size of the uniresolution model corresponding to the highest level of detail.

This compact representation can progressively be decoded by the viewer and transformed by a fast direct triangulation technique into

a sequence of triangle meshes with increasing levels of detail. The representation requires approximately 5 bits per particle (2.5 bits

per triangle) to encode the basic geometrical structure. The vertex positions can then be refined by means of additional precision bits,

resulting in 5 to 9 bits per triangle for representing a 12-bit quantized geometry. The proposed representation scheme is demonstrated

with the surface data of various real objects.

Index Terms—Multiresolution 3D models, progressive representation, surface particles, octree, levels of detail, direct triangulation.

�

1 INTRODUCTION

THREE-DIMENSIONAL object models, computer generated or
reconstructed from scanned real data, are becoming an

essential part of the audio-visual data of thevirtualworld and
the emerging multimedia technologies. These 3D models
may represent objects for various applications in many
domains such as e-commerce, entertainment, education,
architecture, cultural preservation, CAD and medical appli-
cations, construction, and automation. Once constructed,
they can be stored in local databases, transmitted, for
instance, through the Internet and visualized ormanipulated
when needed. The increasing popularity of 3D models that
can sometimes be very large in terms of data size, has
activated a relatively recent research area for developing
efficient ways of representing 3D object data.

Forcomputergraphicsapplications, thesurfaceofa3Dreal
object often has to be densely digitized into a large data set
containing millions of surface points in order to achieve a
satisfactory level of accuracy. The initial dense data may, for
example, be laser scanned range values or voxelized data in
the case of shape from silhouette/stereo techniques, or may
result fromMRI scans inmedical imaging. The surfacemodel
is often obtained first by transforming the acquisition data
into a dense triangle mesh, which is usually huge in size and,
therefore, very expensive to store, transmit, and render. The
challenge for such huge data is two-fold. First, this necessi-
tates developing flexible representations which allow the
user to choose the best compromise between efficient storage,
fast data access, and high quality visualization. Progressive

schemes seem to serve well for this purpose since an exact
representation of the geometry is not always required for
applications such as navigation or browsing with limited
bandwidth transmission.With these schemes the initialmesh
is stored as a coarse model along with the information which
incrementally refines the geometry. In a progressive trans-
mission scheme, a possible scenario is as follows: First, the
coarsemodel with the lowest quality is sent and visualized at
the receiver part. If the receiver demands further improve-
ment in the qualitywith respect to its storage, processing, and
graphics capabilities, a sequence of refinement operations is
additionally transmitted so that finer levels of detail can
progressively be received and displayed.

The second part of the challenge is to handle huge initial
data in order to obtain such progressive representations in a
time and space efficient manner. Building up progressive
representations from initial data, containing, for instance,
hundreds of thousands of vertices, may need up to dozens
of hours of preprocessing time and megabytes of storage
space. The initial model, as stated earlier, is usually a dense
triangle mesh that can be simplified by various mesh
approximation methods [11]. These techniques can provide
several versions of the model at various levels of detail.
Some of these techniques simplify the geometry by means
of incremental refinement operations and can naturally be
used to build up progressive schemes. Usually, the
preprocessing time needed to obtain a progressive mesh
depends on the approximation quality of the produced
levels of detail. Some techniques favor accuracy over speed,
such as in [17], and others are fast but less accurate such as
in [12]. A similar trade off appears also for storage
requirements. Even if the representation load of 3D models
can be reduced by means of compression schemes, the
resulting storage requirement still remains problematic in
the case of very large dense meshes. The critical question
here is, in fact, how much of the initial accuracy existing in
the full data set is required for the highest resolution level of
a progressive model. The answer depends on the under-
lying application. For some applications, details are not so

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003 551

. Y. Yemez is with Koç University, Computer Engineering Department,
Rumeli Feneri Yolu, 80910 Sariyer-Istanbul, Turkey.
E-mail: yyemez@ku.edu.tr.

. F. Schmitt is with ENST-CNRS URA820, Signal and Image Processing
Department, 46 rue Barrault, 75013 Paris, France.
E-mail: francis.schmitt@enst.fr.

Manuscript received 9 June 2000; revised 22 May 2001; accepted 28 Nov.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 112251.

1077-2626/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

important and the highest resolution level can correspond
to a significantly reduced version of the initial model.
However, in other cases, for instance, in creating archival
data sets or in scientific applications, almost no or very little
loss of information is tolerated and storage efficiency
becomes a much more critical issue.

This paper1 presents a novel progressive scheme for
representing dense surface data, which addresses this
two-fold challenge. The proposed technique is particle-
based (or point-based), unlike traditional triangle-based
schemes. Particles as modeling primitives are favored in
our technique since they are easier to process as
compared to triangles and yield very compact representa-
tion schemes. In our progressive modeling framework,
topology is not preserved when producing different levels
of detail and the resulting scheme does not need to store
any connectivity information for encoding geometry. The
initial data that we model is usually very dense, but it
may be downsampled in order to homogenize the spatial
distribution of the digitized points on the object surface.
Such a high resolution scheme may be of interest,
especially when storing the original data at its original
fine resolution is required, or when it is necessary to keep
pointwise surface properties or measurements together
with the object geometry.

The organization of the paper is as follows: Section 2
briefly discusses the related previous work on 3D progres-
sive modeling. Section 3 provides a brief overview of our
general modeling scheme. Sections 4, 5, and 6 then follow,
in which we respectively describe the partitioning, encod-
ing, and rendering phases of the proposed scheme.
Geometry compression issues are discussed in Section 7
and experimental results are shown in Section 8. In Section
9, we briefly discuss the trade offs related to the proposed
scheme and, finally, give some concluding remarks in
Section 10.

2 PRIOR ART

Progressive LOD (level of detail) representations existing in
the literature can be grouped into two main approaches:
triangle-based and point-based schemes.

2.1 Triangle-Based Schemes

The most common surface representation used for model-
ing 3D objects is the triangle mesh. The existing triangle-
based surface construction techniques usually produce very
dense triangulations. The load of the resulting representa-
tions can be reduced by mesh simplification methods [5],
[6], [12], [16], [40] that build several versions of the initial
model at various levels of detail. The most convenient
representation can then be chosen for transmission and
displayed according to the needs of the user and the
application [10]. This direct approach, however, is not space
efficient and necessitates additional transmission time when
switching between different levels of detail is required.
More efficient solutions producing a sequence of meshes
have been proposed in literature [17], [44], [30], [19], [27],
[8], [15]. These solutions can, in general, be divided into two
groups which follow two different trends.

The techniques belonging to the first group are recursive
subdivision schemes [19], [27], [8]. The idea is to refine a
coarse mesh by a sequence of subdivision steps, thereby
modifying the connectivity and incorporating geometric
details incrementally as the mesh resolution gets higher.
These techniques are truly progressive representations and
may yield very high compression ratios as in [19]. However,
they are applicable to only a limited class of meshes
requiring a special type of connectivity that can be obtained
at the cost of an expensive remeshing procedure [23].

The second group of techniques [17], [44], [30] are based
on the PM (Progressive Meshes) scheme of Hoppe [17]. In
the PM scheme, the mesh refinement record contains vertex
splits. Each vertex split operation increases the number of
mesh vertices by one, modifying the connectivity and
geometry accordingly. This flexibility provides a fine
granularity for LOD representation as well as view
dependent refinement. However, two vertices cannot be
split at the same time and the storage size depends heavily
on the size of the initial mesh, making the PM scheme
impractical for very large meshes. In this respect, the
PFS scheme of Taubin et al. [44] and the CPM scheme of
Pajarola and Rossignac [30], can be regarded as better
compressed versions of the PM scheme. In these methods,
the vertex splits are grouped into batches, e.g., into forest
splits in the PFS scheme. In this way, the granularity of the
resulting progressive representation becomes limited, but
the storage cost per triangle for encoding connectivity
changes becomes independent of the initial mesh size. At
the latest state-of-the-art, Pajarola and Rossignac [30] report
a fixed number of 3.6 bits per triangle for encoding
connectivity.

Flexibility of the PM scheme offers several other
possibilities, and many extensions to this scheme have
been proposed in the last half decade. One direction of these
possibilities is view-dependent mesh refinement and an-
other is topology simplification. Hoppe [18] extends his
work by developing a runtime view-dependent simplifica-
tion algorithm, which is guided by view frustrum and
surface orientation. In a relatively early paper, Rossignac
and Borrel [35] address the topology simplification problem
and propose an octree-based vertex clustering technique
that produces simplified boundary representations of
arbitrary polyhedron. Later, Popovic and Hoppe [33]
introduce an extension to the PM scheme that can also
handle progressive changes to the topology. Finally, the
works [28], [9] handle both problems, i.e., view dependent
refinement and topology simplification, in a single scheme.
Luebke and Erikson [28] construct a tight octree hierarchy
to cluster the vertices of a mesh, whereas El-Sana and
Varshney [9] achieve a fine control on simplification by
constructing a hierarchy of vertex collapses to build a view-
dependence tree.

Triangle-based progressive encoding algorithms have, in
recent times, become a common practice in public and
commercial arenas. The PFS scheme [44], for instance, has
been included in the latest MPEG-4 Version 2 standard.
However, the performance of triangle-based schemes,
especially in preprocessing time, degrades as the size of
the initial mesh gets larger, as in the case of scanned real
objects. In order to obtain high quality low resolution
models, these techniques spend too much effort per
primitive to optimize the placement of individual vertices.

552 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003

1. This work has partially been presented in [47].

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

As an example, Hoppe [17] reports 10 hours of preproces-
sing time for a mesh of about 200,000 vertices.

2.2 Point-Based Schemes

An alternative to triangles, as a simpler display primitive, is
the use of surface points [24], [14], particles [34], [43], or
surfels [31]. The terms “particle” or “surfel” are used in the
literature to denote a dimensionless space point attributed
with context-dependent surface properties. Point-based
representation systems have recently gained attention for
progressive modeling of large data sets [47], [36], [37]. These
techniques, compared to triangle-based schemes, do not
treat acquisition data as exact and spend much less effort
per primitive. They do not store any connectivity or
topology information. Their advantage comes in terms of
efficiency in preprocessing time, storage, and rendering of
large acquisition data. However, low resolution approxima-
tions produced by these techniques are not as good as those
resulting from triangle-based techniques.

A progressive particle-based surface modeling technique
was first proposed by the authors in [47]. This paper
extends the shape from silhouette technique presented in
[47], to a more general framework. This technique is based
upon a hierarchical octree representation and can thus be
regarded as a volumetric method to model the surface data.
In the literature, the octree representation is more com-
monly used for volume data representation and for
extraction of its isosurfaces [1], [2], [41], [46], [32]. In [1],
[2], [41], for example, the octree hierarchy is exploited to
control the simplification error and thereby to produce
isosurfaces at different levels of detail. However, these
techniques are not intended to be progressive.

Two recent, very closely related works by Rusinkiewicz
and Levoy [36], [37] follow the framework presented in [47],
and propose a point-based technique to render their large
data sets resulting from the Digital Michelangelo project
[25]. Rather than an octree representation, they construct a
sphere hierarchy and render the resulting representation
via splatting. Splatting techniques avail them with the
possibility of implementing a progressive interactive
representation that can locally be refined with respect to
the viewpoint. The major drawback of this representation is
in rendering quality, since splatting techniques result in
visual artifacts, especially in rendering low resolution
models and in zooming on a detail.

3 OVERVIEW

In this work, we consider the following three steps for the
whole object representation scheme: partitioning, encoding,
and rendering. For each one, we employ a different type of
representation. At the first step, the octree space partitioning
provides uswith a simple and robustway of representing the
object surface hierarchy. This partitioning produces a
sequence of octree surfaces, S0; S1; . . . ; SR, which voxelize
the surface geometry atR different levels of detail. In order to
represent the object surfacewith amoreprecise shape, aswell
as other surface attributes such as color, at the second step,we
associate to each octree surface cube aparticle. The associated
surface particles yield compact and space efficient encoding
of overall object appearance. Triangle meshes are considered
at the third step, only as a means to render the object so that
the triangulation process becomes the task of the renderer.
Thus, the stored representationwhichhas to be transmitted is

not a triangle mesh, but just a properly ordered sequence of
surface particles P 0; P 1; . . . ; PR. The encoded particles are
arranged in such an order that they can progressively be
decoded to reconstruct the octree surfaces S0; S1; . . . ; SR and
the related surface attributes. These LODsurfaces can then be
rapidly triangulatedby theviewer for renderingwith thehelp
of a look-up table, yielding a sequence of triangle meshes
M0;M1; . . . ;MR (see Fig. 1). With the proposed scheme, not
only the object geometry, but also other object attributes such
as color, normal, transparency, or any other scientific
measurement, can be encoded anddisplayed in aprogressive
manner.

4 OCTREE PARTITIONING

The octree representation is a well-known hierarchical data
structure that can be used to partition the 3D space into
cubic voxels of varying sizes [38], [3], [4]. In this section, we
first recall the general octree definition and highlight some
of its characteristics that we will make use of throughout the
paper. The hierarchical partitioning that we use is not new
to the object modeling literature [42], [46], [20]. The
originality of our approach that we describe in this section
comes rather from the way we interpret the octree hierarchy
to construct a progressive framework for our overall
scheme.

4.1 Definition

In volume modeling applications, each node of the octree
typically corresponds to a cube, which is either totally
inside the object volume, totally outside the volume, or on
the object boundary surface. The object volume to be
represented can be assumed to be bounded by an implicit
surface fðx; y; zÞ ¼ 0, which provides the necessary infor-
mation to mark a given node with a label F equal to IN,
OUT, or ON, respectively. If the octree space is considered
as a 3D grid of 2R � 2R � 2R unit cubes, where R denotes
the highest resolution level of the octree, the octree
representation is obtained by recursively subdividing each
parent cube into eight child cubes, starting from the root
node, i.e., the bounding cube. The OUT and IN cubes need
not be further subdivided. The recursive subdivision
process continues only for the ON cubes until the unit
cubes which correspond to the leaf nodes of the highest
octree level are reached [46].

The coordinate system is defined so that one corner of
the octree space is located at the origin and its correspond-
ing edges are aligned with the positive coordinate axes.

YEMEZ AND SCHMITT: MULTILEVEL REPRESENTATION AND TRANSMISSION OF REAL OBJECTS WITH PROGRESSIVE OCTREE... 553

Fig. 1. Block diagram of the progressive multilevel object representation

scheme.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

Definition 1. Each cube (or node) of the octree space is denoted
by sri , i 2 ½0; 23r � 1�, where r is its level (depth) in the octree
hierarchy and i is the index of its corner closest to the origin in
the 3D grid. The indices r and i are used in the paper to
identify a node, but they are both implicit by the position of the
node in the octree structure.

Every node sri is then uniquely specified by its level r and
the discrete coordinates ðxi; yi; ziÞ. Alternatively, an octree
node sri can be represented by a path (a sequence of nodes)
originating from the root node s00 and ending up with that
node. This path can easily be encoded with a binary address
by tracing the nodes belonging to the path and keeping, for
each parent node, the code (0 to 7) of the child node
traversed by the path. The code C of a child node defines a
lexicographic order and is simply deduced from the
geometrical position ðcx; cy; czÞ of the corresponding child
cube within its parent:

C ¼ cx þ 2cy þ 22cz; ð1Þ

where cx, cy, and cz take values 0 or 1.

4.2 Octree Surfaces

The hierarchical structure of the octree can be exploited to
display the object surface at R different levels of detail. Due
to the octree construction described in Section 4.1, there
exist no two neighboring cubes with one labeled OUT and
the other labeled IN. Thus, there exists between the interior

and exterior of the object, a layer of ON cubes along the
object boundary assumed to be defined by fðx; y; zÞ ¼ 0.
Such a layer exists at any hierarchy level r since an ON cube
should necessarily be further subdivided due to the octree
definition.

Definition 2. The octree surface Sr, i.e., the ON cube layer at
level r, is defined by Sr ¼ fsri j F ðsri Þ ¼ ONg. The surface Sr

is made up of cubes all with the same size 2R�r � 2R�r � 2R�r.

To illustrate an octree surface, we use the analogy between
octrees in 3D and quadtrees in 2D. In Fig. 2, a quadtree
construction is visualized for a 2D region represented at
two different resolutions ðr ¼ 3; 4Þ, the resulting structure
also being sketched at the bottom of the same figure with
R ¼ 4. This example can be thought of as a cross section
from the octree representation of a surface in 3D space.

4.3 Octree Surface Thinning

Octree surfaces, as defined by Definition 2, contain some
cubes which are not necessary for the surface visualization.
These ON cubes have edges which intersect the surface, but
do not have visible faces when viewed from the exterior of
the object. Such occluded cubes can be regarded as
topologically redundant. They unnecessarily increase the
load of the surface representation and complicate the direct
surface triangulation process that will be addressed later in
Section 6.1. Therefore, they can be eliminated from the
corresponding octree surface Sr, just by changing their

554 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003

Fig. 2. (a) 2D cross section of a 3D surface represented in terms of quadtree regions at two different resolutions with (left) r ¼ 3 and (right) r ¼ 4.
Gray regions correspond to ON cubes in the 3D octree space, whereas black and white regions represent OUT and IN cubes, respectively. (b)
Octree representation of the 3D surface cross section (limited to one quadrant). The nodes with the same letter and color are those specified with the
same leaf node. The sequence of ON leaf nodes ordered as ft; l; i; k; r; o; h; e; b; u; s; p; n;m; g; f; j; d; a; cg suffices to progressively construct the
octree structure. The ordering strategy will be addressed in Section 4.4.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

labels to IN. This elimination corresponds to a thinning
operation on the octree surfaces as defined in morphologi-
cal mathematics. It can also be viewed as a downsampling
process, which slightly simplifies the octree so that it can
more easily be visualized at the rendering step.

The octree surface thinning process can be realized by
postprocessing the whole octree starting from level R up to
level 0. The occluded cubes at each level r of the iteration
are identified by verifying the labels of its six face-adjacent
cubes: If a cube sri has no OUT face-adjacent neighboring
cube it is eliminated from the set Sr as illustrated in Fig. 3
(see the nodes crossed with solid lines).

Since transforming an ON cube into an IN cube changes
the visibility of its neighboring cubes, the elimination
process must be sequential. Besides, for each ON node sri
eliminated, the label of its parent should also be recon-
sidered. If the parent node of sri becomes a hanging node so
that it no longer has an ON child as a result of the
elimination, it is also eliminated from the surface Sr�1 (see
in upper right of Fig. 3, the nodes crossed with dotted lines
at levels r ¼ 2 and r ¼ 3). The whole thinning process can
be described as follows:

for r ¼ R : 1

for all sri 2 Sr

if (sri is occluded)

F ðsri Þ ! IN;

for all the ancestors spj of sri , p ¼ r� 1 : 1

if (child nodes of spj are all IN) F ðspj Þ ! IN;

repeat until no sri is occluded;

This process eliminates the redundant cubes on the inner
boundary of the surface. The same elimination process can
also be applied to ON cubes on the outer boundary, i.e., to
those that do not have any IN face-neighbors, transforming
them into OUT cubes (e.g., the node r in Fig. 2). However,
the consequences of such an elimination process need to be
analyzed with particular attention. First, this may yield in
the loss of some visual information. At high resolutions,
considering that the initial data points are not exact due to
acquisition noise, this loss can be regarded as not so
significant. At low resolutions, however, elimination of
ON nodes on the outer boundary may filter out some
visually significant parts of the object surface, e.g., those
which are thin enough to be included inside a single octree
cube of the current resolution. Second, artificial holes may
appear if, for instance, two separate parts of the object
surface get so close to each other that the octree cube size at
the current resolution becomes too large to differentiate the
separation, yielding locally, a layer of one elementary cube
size. As a consequence, the cubes on this layer, having no
interior neighbor, would be eliminated creating an artificial
hole (see Fig. 4).

A partial remedy to the problems stated above is to leave
the thinning process for the outer boundary as optional;
depending on the object complexity and detail, one may
choose to keep ON cubes having no IN face-neighbors. In
this case, we say that the thinning process is relaxed.
However, when the thinning process is applied both for the
inner and outer boundaries, an additional test on local
topology has to be performed to verify that elimination of
an outer ON node does not create a hole. This test is based

YEMEZ AND SCHMITT: MULTILEVEL REPRESENTATION AND TRANSMISSION OF REAL OBJECTS WITH PROGRESSIVE OCTREE... 555

Fig. 3. (a) Octree surface thinning at levels r ¼ R� 1 and r ¼ R, and the resulting octree structure. The nodes crossed with solid lines denote the
eliminated cubes that are occluded in the context of the entire object, as illustrated in the upper right of Fig. 2. Note that the node r in Fig. 2, having no
IN face-neighbor, has also been eliminated and transformed into a black OUT cube. The nodes crossed with dotted lines are the parent nodes which
are eliminated since they have no more ON child nodes. (b) Octree surface thinning after all levels r � R have been processed. Note that the
hanging nodes having no ON node descendant have been removed from the structure (see in the upper right the node crossed with dotted lines).
The ordering of the leaf nodes is now different from that of Fig. 2. The sequence of the difference sets SR;r n SR;r�1, r ¼ 0; 1; . . . ; 4; in this case, is
given by fftg, ;, feg; fp; i; h; ag, fs; o;m; f; k; d; cgg. The ordering strategy will be addressed in Section 4.4.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

on a labeling process, which first identifies the connected
OUT regions in the 3� 3� 3 neighborhood of the under-
lying ON cube, the connectivity being defined along the six
faces of a cube. If the elimination of the ON cube causes any
two formerly separate OUT regions to be connected and,
thus, creates a hole, the cube is not eliminated.

Provided that the current octree resolution is sufficiently
fine to represent the surface, the thinning process eliminates
at most half of the ON nodes to be coded for each level as it
will later be verified with the experimental results. In
Fig. 3b, we observe that the eliminated leaf nodes and the
hanging nodes with no child have all been removed from
the final octree structure. Some of the nodes which have
been eliminated at an intermediate level r, may indeed have
ON child nodes to be coded at higher levels (see the crossed
nodes in gray color in Fig. 3b). Such nodes need to be kept
in the data structure for compression purposes and will be
referred to as phantom nodes later in Section 7.1.

Although the described thinning process brings in
storage efficiency at the cost of some information loss at
low resolutions, the main purpose of this step is closely
related to the rendering phase of our scheme, for which we
employ triangle meshes as we will see later in Section 6.

4.4 Progressive Octree Surfaces

One key observation in defining a progressive octree
representation is that the set of all ON leaf nodes suffices
to construct the whole octree structure. Furthermore, the
ON leaf nodes can be arranged in such an order that the
successive leaf nodes of this sequence incrementally
reconstruct the octree surfaces Sr, r ¼ 0; 1; . . . ; R (see
Definition 2). To simplify the description of our ordering
strategy, we proceed with the following definition:

Definition 3. The suboctree which originates from the node sri
and includes all the nodes under sri , is denoted by T r

i .

For every ON node sri , there exists at least one ON leaf node
sRj such that sRj 2 T r

i , since every ON node sri has at least one
ON child node due to the octree construction. This property
is also preserved during the octree surface thinning process.
This allows us to specify every node sri by a leaf node sRj 2
T r
i and its depth r. Conversely, for any leaf node sRj , the

path originating from the root and terminating at that leaf
node includes, at each level r < R, a node sri .

Definition 4. In a given octree surface Sr�1, each node sr�1
i is

associated with an ON leaf node sRj 2 T r�1
i . We denote the set

of these ON leaf nodes, for a given level r� 1, by SR;r�1.

The set SR;r�1 suffices to specify the octree surface Sr�1.
Since the path passing through sr�1

i and terminating at sRj
necessarily traverses the level r, the ON leaf nodes of the set
SR;r�1 can all be reutilized to specify the traversed nodes of

the octree surface Sr. In this case, we have the inclusion
property: SR;r�1 � SR;r. The set SR;r�1 and the difference set
ðSR;r n SR;r�1Þ are then sufficient to construct the surface Sr:

SR;r ¼ SR;r�1 [ðSR;r n SR;r�1Þ �! Sr: ð2Þ

This hierarchical relation can be exploited for constructing a
progressive representation by ordering the difference sets
ðSR;r n SR;r�1Þ with increasing r. With SR;0 associated to the
root (which contains a single leaf node), the resulting
sequence of difference sets can be decoded successively,
giving the octree surfaces series S0; . . . ; Sr; . . . ; SR. Note that
the total number of nodes in the sequence fSR;r n SR;r�1g is
equal to the number of leaf nodes in SR. The multilevel
representation, in this way, is completely coded by properly
ordering the difference sets in the sequence (see Figs. 2 and
3). The order of the nodes inside a difference set has no
importance and can be arbitrary for progressive reconstruc-
tion. Nor does the decoder require any extra information to
detect the transitions between successive resolution levels
of the incoming data. If the current level is r, the arrival of a
node which belongs to the level rþ 1, can easily be
identified by the decoder during the octree reconstruction
process since such a node necessarily traverses an octree
node of level r, which has already been traversed.

The choice of an ON leaf node to specify a given sri
among a number of candidates sRj 2 T r

i (see Definition 3),
can be arbitrary for the construction of the octree surfaces.
However, the cubes corresponding to the chosen leaf nodes
at a given resolution level r will need to be distributed as
regularly as possible in the octree space later when we
introduce surface particles. Note that the child nodes of a
parent node have a lexicographic order with respect to their
codes (0 to 7) as defined by (1) in Section 4.1. This
lexicographic order propagates to the full octree. For a
given sri , the ON leaf nodes belonging to T r

i inherit this
lexicographic order and, then, the leaf node sRj specifying sri
is chosen through a path searching algorithm privileging
this order. Due to the above progressive octree surface
construction strategy, all the child nodes on the path linking
sri to sRj (see Definition 4) are also associated to sRj directly
without path searching. The lexicographic order, imposed
by (1), also has a geometric meaning: The path searching
algorithm always privileges the child cube which is closest
to the origin. Consequently, the resulting leaf nodes
specifying the ON nodes at a given level tend to be
regularly distributed over the surface.

5 PARTICLE ENCODING

The octree representation of a 3D object describes its shape
in a finite discrete grid of 2R � 2R � 2R unit cubes. The
precision of the representation is thus limited with the
highest resolution level R. A proper object model, however,
should represent a more precise shape as well as surface
color or other attributes. In order to achieve this, in this
section, we introduce octree surface particles.

5.1 Particle Definition

A particle is defined by a set of attributes which includes,
necessarily, a vertex and, if available, other geometrical or
appearance properties of the object such as the surface color
or normal:

556 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003

Fig. 4. Illustration of an artificial hole which might be produced by the
octree surface thinning process. The crossed cube has no face common
with the interior. However, it is preserved since its elimination would
change the local connectivity and create a hole.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

Definition 5. We associate with each surface cube sri of the
octree, a particle fvvri ; cc

r
i ; nn

r
ig, where vvri ¼ fx; y; zg stands for

the surface position of the particle, ccri ¼ fr; g; bg for the color,
and nnr

i ¼ fnx; ny; nzg for the normal to the object surface at
the particle vertex. The vertex vvri is defined as a space point
ðxi; yi; ziÞ, which is inside the cube sri and which lies on the
object surface. We will denote the color of a child node sri;j,
j ¼ 0; 1; . . . ; 7, by ccri;j.

5.2 Attribute Assignment

Assuming that the particle attributes of the leaf nodes at
level R are known a priori, the first step is to deduce from
them the attributes of the nodes at lower octree levels r < R.
The way an attribute is assigned to a parent node depends
on the type of the attribute. Here, we consider only the
vertex, color, and normal attributes. The strategy that we
follow for vertex assignment is different from the strategy
for color and normal attributes.

The color (or normal) assignment of a parent node is
done by averaging the colors (or normals) of its child nodes.
Thus, starting from the level R, each ccri is assigned to the
average of the colors ccrþ1

i;j (see Definition 5) of its ON child
nodes so that

ccri ¼
1

m

X

j

ccrþ1
i;j ; ð3Þ

where m is the number of ON child nodes of sri . The
normals are determined likewise. We should point out that
no particle attribute is assigned to the phantom nodes
defined in Section 4.3. They are therefore disregarded in
color averaging. Consequently, the ON child nodes of a
phantom node have no contribution to the particle
attributes of the ON nodes at coarser levels, for example,
the leaf node k in Fig. 3 does not contribute to the attributes
of the node e at level r ¼ 2.

The averaging strategy used for color and normal
attributes will cost extra encoding bits (see Section 5.5),
but in turn, this type of smoothing gives much better visual
results. The same strategy, however, cannot be applied to
the vertex attribute assignment since the precision of vertex
positions at intermediate levels is strictly required for
reconstruction of the octree structure during the incremen-
tal decoding process. Therefore, the vertex attributes at
intermediate levels are assigned as follows: A node sri ,
which is specified with a leaf node sRj (see Definition 4), has
the same vertex vRi as its leaf node.

5.3 Particle Ordering

We represent the whole object surface as an ordered
sequence of particle sets that we will denote by fP rg. The
ordering in this sequence has similarities with that of the
octree surface representation described in Section 4.4, but
the structure of the representation is quite different since
now, the other attributes such as color and normal are also
to be encoded together with the surface geometry. The
sequence fP rg can be formed by establishing a one-to-one
correspondence with the difference set sequence fSR;r n
SR;r�1g (see Definition 4 and (2)):

Definition 6. The set P r is defined as the set of particles
fvvri ; cc

r
i ; nn

r
ig associated with the nodes sri , which are specified by

the leaf nodes sRj in the difference set ðSR;r n SR;r�1Þ.

Note that the number and the order of particles in the
sequence fP rg are the same as those of the associated nodes
in the sequence fSR;r n SR;r�1g.

5.4 Particle Decoding

The particle sequence fP rg, as defined in Definition 6, can
be decoded progressively so that the octree surfaces Sr are
incrementally reconstructed together with the associated
particle attributes. At each level r, the particle decoding is a
two-step process. At the first step, the vertices of the
incoming particle set P r together with the previous ones
P 0; P 1; . . . ; P r�1 directly give us the vertex attributes vvri of
all the nodes in Sr. The position value of each vvri can then be
used to deduce the address of the corresponding octree
node sri .

Once the octree structure and the vertex attributes of
level r are decoded, at the second step, color and normal
attributes are retrieved. Since the color decoding process
is the same with normal decoding, here we will consider
only the color attribute. First, the incoming particles in P r

directly provide the colors of the nodes that they specify.
If we recall (see Definition 6) that the number of particles
in P r is in fact lower than the total number of particles of
level r, there still remain some nodes at level r to be
processed. The vertex attributes of these remaining nodes
have already been specified by the previous sets of
particles P 0; P 1; . . . ; P r�1, following the paths linking
them to leaf nodes. The color attributes of these nodes
are indirectly retrieved by using both the color attributes
of their parents at level r� 1, and those of the nodes at
level r that have already been determined by P r. Recall
that the color of a parent is defined as the average of the
colors of its ON child nodes. Among the child nodes sri;j
(see Definition 5) of a parent node sr�1

i , only a single
child sri;k inherits the vertex attribute of its parent and,
thus, its color remains to be determined. Since the colors
of the other children, if they exist, have already been
determined directly by particles in P r, the color ccri;k of
this single child node sri;k can be retrieved by

ccri;k ¼ mccr�1
i �

X

j6¼k

ccri;j; ð4Þ

where mð1 � m � 8Þ is the number of ON child nodes of
sr�1
i , and ccri;j; j 6¼ k; are the colors of the ðm� 1Þ corre-
sponding particles belonging to P r. With this strategy, the
color and normal information is simultaneously refined
with the surface geometry.

5.5 Representation Load

The encoding of the color and normal attributes has to
compensate the loss of numerical precision, which accumu-
latesdue to the averagingprocess as thehigher levels of detail
are reconstructed. The color is represented in the usual RGB
format of 24bits and its value, calculatedby (3), is truncated to
its integer part. Since aparent canhave atmost eightONchild
nodes, the loss of precision due to this truncation can be
avoided by providing 3 bits of correction to each color
component, which has to be computed by (4). The encoder
registers the truncation error each time the color of a parent
node is averaged by (3), and attaches the resulting 3 bits to the
color attribute of that parent node. The number of times
where the RGB color has to be retrieved by the decoder in this
way is equal to the number of particles in P 0 [P 1 [. . . [
PR�1, which is, in practice,with nonfractal objects, fewer than

YEMEZ AND SCHMITT: MULTILEVEL REPRESENTATION AND TRANSMISSION OF REAL OBJECTS WITH PROGRESSIVE OCTREE... 557

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

half of theparticles inPR. Thus, if the total numberofparticles
in PR is n, the whole object color is encoded by �
24nþ 9ðn=2Þ < 29n bits. The strategy to encode the normals
is the same, the bit size needed for each normal component
depending on the required precision.

Encoding of geometry, i.e., vertex locations, will be
addressed in more detail later in Section 7. For the moment,
without using any compression scheme, the representation
load for geometry is a factor of the number n of particles
and of the required number of precision bits for the vertex
locations that we denote by N , N � R. Each vertex having
three coordinate components, the whole object geometry
requires 3Nn bits. In practice, N ¼ 12 usually suffices,
resulting in 36 bits per vertex.

6 RENDERING

Compared to triangles, particles are not well-adapted for
real-time display with 3D graphic boards. Moreover, usual
graphic devices can efficiently antialias triangle representa-
tions, but additional processing would be required for
particles. Another problem is that the representation breaks
up when we zoom on the object: Particles become sparse
resulting in holes which have to be filled by using, for
example, splatting techniques [36]. An object stored or

transmitted in terms of surface particles, should therefore
be transformed to a representation which is convenient for
visualization. At the rendering step of our representation
scheme, we have chosen triangle meshes as a means to
visualize the object surface.

6.1 Mesh Generation

The particle representation inherently contains the hier-
archical octree information. This octree structure deduced
from the ordering and positioning of the particles in the
discrete octree space, can be exploited to transform the
sequence of particles fP rg into a sequence of triangle
meshes fMrg via a direct triangulation technique. The
direct triangulation is applied separately to each level r (see
Fig. 5). It connects the particle vertices vvri so as to form a
mesh Mr of connected triangles, using the local neighbor-
hood information that can easily be determined thanks to
the octree information Sr. It is possible to limit the triangle
construction to three different types of triangles due to
symmetrical and rotational equivalence [13]. These triangles
are all included in a neighborhood of 2� 2� 2 cubes
belonging to the currently processed level r, as shown in
Fig. 5.

The direct triangulation is implemented by scanning all
the 2� 2� 2 neighborhoods, each of which contains at least
one ON cube. For each scanned neighborhood, the states
(ON or not) of its eight cubes are determined and the
resulting configuration is triangulated according to a look-
up table and a set of construction rules. Now, we describe,
step by step, the whole mesh generation process.

6.1.1 Surface Scanning

The access to the information in each neighborhood of 2�
2� 2 cubes intersected by the object surface has to be fast,
since the direct triangulation is applied at the rendering
step for visualization. This information can be retrieved

558 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003

Fig. 5. (a) Direct triangulation of two octree surfaces at level r ¼ 5 and

r ¼ 6. (b) The three different types of generated triangles.

Fig. 6. An instant of the surface scanning procedure illustrated in 2D.
The 6� 6� 6 window is positioned on the surface with respect to a
parent node (the central light gray region) at level r� 1, having
necessarily at least one ON child node. The light gray child nodes at
level r are each considered as an origin reference for a 2� 2� 2

neighborhood to be triangulated, whereas a back-neighbor (dark gray
nodes at level r) is considered as reference, provided that its parent
does not have any ON child node. This is to avoid processing duplication
since a parent with an ON child node becomes central at another instant
of the surface scanning procedure. In the figure, two such neighbor-
hoods are sketched, one for a light gray and one for a dark gray (back-
neighbor) reference node.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

through the octree representation via relatively time
consuming path traversals, each starting from the root.
Therefore, the number of these traversals should be kept as
small as possible.

Our surface scanning strategy exploits the octree hier-
archy. Suppose that the current resolution of triangulation
is r. Around each parent cube at level r� 1, having at least
one child node, a window of 3� 3� 3 cubes is constructed.
Once the addresses of these 27 parent nodes are retrieved
by path traversals, the addresses of their 216 child nodes at
level r can be directly stored in a local array without any
exhaustive path traversal. Then, all the 2� 2� 2 neighbor-
hoods of level r included in this local array can be
triangulated at once (see Fig. 6). This local array also
provides us with the information in the vicinity of each
neighborhood, which is required for resolving some
ambiguous configurations as we will see later in Section 6.2.

6.1.2 Look-Up Table

The number of possible configurations with ON and

nonON nodes in a 2� 2� 2 neighborhood is 28. However,
due to symmetrical and rotational equivalence, the possible
configurations can be reduced to 17 distinct cases,
Ci; i ¼ 1; . . . ; 17, as illustrated in Fig. 7. For each of these

256 possible configurations, the look-up table provides:
1) the corresponding index Ci, 2) a connected mesh graph

Gi ¼ fSi; Eig, and 3) an associated triangle face list Ti. The

graph nodes in Si are the ON cubes of the corresponding

configuration Ci, whereas the graph edges in Ei correspond
to the edges of the triangles listed in Ti. A triangle in Ti

corresponds necessarily to one of the three different types of

triangulation displayed in Fig. 5.

6.1.3 Construction Rules

The configurations Ci; i ¼ 1; 2; 3, consisting of exactly three
nodes, are those already shown in Fig. 5. These three
configurations can be triangulated regardless of the
neighboring information, each resulting in a single triangle
as shown in Fig. 7. Among the different configurations that
consist of exactly four nodes, those which occur most
frequently are C4 and C5 (see Fig. 7). Triangulation of these
two configurations necessitates a choice between two
different local triangulations. The best one can be chosen
so as to have a mesh surface which is locally as smooth as
possible, for example, by minimizing the dihedral angles
between adjacent triangles or by using the surface normal
directions at the four vertices if the normal information is
available.

All the other configurations with four or more nodes,
Ci; i � 6, are ambiguous cases and need particular care in
order to avoid topological problems such as holes or
nonmanifold faces. Holes must definitely be avoided since

YEMEZ AND SCHMITT: MULTILEVEL REPRESENTATION AND TRANSMISSION OF REAL OBJECTS WITH PROGRESSIVE OCTREE... 559

Fig. 7. The 17 distinct configurations Ci; i ¼ 1; . . . ; 17, in a 2� 2� 2 neighborhood.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

they are visually very disturbing, whereas nonmanifold
internal triangles can be tolerated up to a certain level since
they do not cause visualization artifacts.

6.2 Disambiguation

Disambiguation of surface data is, in fact, a problem
commonly encountered in surface triangulation techniques.
A typical example is in the classical marching cubes
algorithm [26]. In this case, the disambiguation methods
proposed in the literature [29], [45] are based basically on
the inside-outside information available in the vicinity of
the surface. However, in our case, this information is not
always available at the decoder; although it is required by
the coder during the octree surface thinning process, the
related normal information may be discarded during
particle encoding for compression purposes. Therefore,
the decoder can rely only on the neighborhood relations of
the surface cubes in order to resolve possible ambiguous
configurations.

The graph Gi, encoded for each i � 6 in the look-up
table, gives as a whole two-manifold closed convex surface
mesh, each edge in Ei being incident exactly with two
triangles of Ti (see Fig. 7). Thus, if a given configuration Ci

cannot be disambiguated, the construction of all triangles in
Ti guarantees a hole-free triangulation, but in turn, creates
nonmanifold internal faces when combined with adjacent
configurations. Thanks to the octree surface thinning

described in Section 4.3, the ambiguous cases arise very
rarely in our modeling framework, as we will see later in
the experimental results of Section 8.2, and those encoun-
tered can mostly be disambiguated.

Since the triangulation has to be rapidly performed by
the decoder, the disambiguation process will not be
exhaustive. What we need for disambiguation of a given
configuration is a sufficient condition which can be quickly
tested and which guarantees a topologically correct
triangulation. This disambiguation process relies on the
neighborhood information stored in the 3� 3� 3 local
array described in Section 6.1.1: For a given configuration Ci

with i � 6, first, every edge in Ei that is shared with any of
the neighboring (overlapping) 2� 2� 2 configurations is
identified. If all these shared edges form a unique
Hamiltonian cycle traversing exactly once each node in
the configuration (see Fig. 8), then they define an edge
boundary which cuts the mesh graph Gi into two sub-
graphs. These subgraphs correspond to two different
choices for a topologically correct triangulation since the
edges resulting from any of these triangulations are locally
guaranteed to be incident either with two triangles or for
those at the edge boundary with one triangle. We then
select the one which minimizes the average of all resulting
diedral angles. If such a unique cycle does not exist,
meaning that the configuration cannot be disambiguated,
all the triangles in Ti are constructed resulting in a
nonmanifold but hole-free triangulation. The search algo-
rithm for a unique Hamiltonian cycle in a given configura-
tion is very simple and straightforward. Moreover, it is
employed only for the cases, Ci; i � 6, which are relatively
rare. Therefore, the computational load of the cycle
searching process is not significant on the overall triangula-
tion time.

6.3 Decimation

A decimation task can also be embedded within the
triangulation process: If a triangle with an edge smaller
than a threshold is encountered, this triangle is not
constructed and the corresponding two octree nodes are
implicitly merged by averaging the attributes of their
particles, preserving the octree structure. The decimation
threshold is chosen proportionally to the octree cube size at
the current level of visualization. In Fig. 9, we show the
triangle mesh representation of a 3D object constructed with
decimation.

560 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003

Fig. 8. Illustration of the unique edge cycle search for the configuration
C7. The cycle drawn with thick lines consists of the edges shared by
other neighborhoods and traverses all the nodes of the configuration.
Therefore, it cuts the graphG7 into two meshes, each giving a consistent
triangulation with the local surface. In the figure, only one of these two
choices has been drawn.

Fig. 9. Anyi statuette: Triangular meshes after decimation at increasing level of details r ¼ 5; 6; 7; 8. These wireframe models contain 582, 2,410,

9,622, and 38,600 triangles, respectively.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

6.4 Discussion

We recall that the classical marching cubes algorithm [26]
works only with one cube at a time and needs the isosurface
function values at the vertices of the cube in order to deduce
the intersections of cube edges with the object surface.
Compared to this, the proposed direct triangulation method
treats mainly eight cubes at a time with surface particles
inside and uses neighboring information to disambiguate
the configurations Ci; i � 6, where possible. The direct
triangulation process performed by the decoder works only
on surface particles without requiring the inside and
outside knowledge, and the resulting triangles are less than
half of those resulting from the marching cubes. This is also
how the direct triangulation technique that we have
developed differs from the one proposed in [13], where
rather a triangle-based shape-from-silhouette reconstruc-
tion method is presented. The direct triangulation technique
that they use, therefore, can rely on the available inside-
outside information without need for a look-up table that
treat all distinct cases in real time as we do.

The octree surface thinning process and the direct
triangulation phase are very closely related. As long as
the octree cubes are properly eliminated, we obtain
triangulations which are almost free of nonmanifold
triangles. The rare configurations Ci; i � 6; occur mostly
when the thinning process is relaxed at low resolutions.
This tends to increase the number of ambiguous cases and,
thus, the number of internal triangulations which are,
however, not visually disturbing. Due to the topological test
described in Section 4.3 (see Fig. 4), some nonmanifold
triangles which are not internal may also be produced
depending on the object complexity and the current
resolution level. Such triangles, which are usually very
small in number, do not cause visual artifacts when
rendered only with color information, but may yield
discontinuities in the estimated surface normals.

Once the triangle mesh Mr is constructed from Sr by
direct triangulation, the object can be rendered with the
color and normal information assigned to mesh vertices via
particle attributes. The color within each triangular surface
can then be interpolated from the corresponding three
vertex colors using Gouraud or Phong shading techniques.
The generated meshes, when rendered, produce visually
pleasant surfaces with reduced aliasing effects, since the
mesh vertices are particle vertices belonging to the object
surface.

6.5 Error Analysis

A common metric to measure the error between an original
surface S and its approximationM is the Hausdorff distance
[12], [30]HðS;MÞ=maxðhðS;MÞ; hðM;SÞÞ, where hðA;BÞ=
maxa2A minb2B ka� bk. The function hðA;BÞ is referred to as
thedirectedHausdorffmetricwhichmeasures thedistance of
the point a 2 A, which is the farthest from B. The directed
Hausdorff metric is not a true distance function, but it
provides a good evaluation of the approximated surfacewith
respect to the original.

Recalling that, in our case, the mesh vertices correspond
to the particle vertices lying on the object surface and that
the triangulation is reduced to three types of triangles as
shown in Fig. 5, the directed Hausdorff distance from the
mesh Mr to S is bounded by hðMr;SÞ � �r, where �r
denotes the interior diagonal length of an octree cube at

level r. This upper bound can occur only in the worst case
where the particles happen to be at the extreme corners of
the configuration corresponding to a triangle of type 2 (see
Fig. 5) and is given by the radius of the circumcircle of those
particle vertices. The validity of this bound for the distance
hðS;MrÞ from S to Mr, however, depends on the complex-
ity and the resolution at the current level of detail. In
general, the same error bound applies to hðS;MrÞ as well,
provided that the relatively thin parts of the surface can be
differentiated by the current octree resolution r. If not, some
long thin linear details may be lost even at the finest
resolution level; but, this loss may become really significant,
especially at very coarse levels yielding local approximation
errors larger than �r. This can happen either during the
octree surface thinning process or at the rendering step
when, for instance, an ON node has only one neighboring
ON node and, therefore, is not included in any constructed
triangle according to the look-up table.

7 GEOMETRY COMPRESSION

The object representation described above encodes an object
in terms of n octree particles (or vertices), which can then
easily be transformed into a mesh of approximately
2n triangles. The proposed scheme, therefore, can be
regarded as an efficient way of encoding dense uniform
meshes in a progressive multilevel form without need of
connectivity information. The bitload of this scheme in
expressing the whole geometry with 36n bits (see Section
5.5), i.e., 18 bits per triangle, can further be reduced since
the described representation still contains structural re-
dundancies that can be exploited by improving the particle
encoding strategy.

7.1 Hierarchical Particle Ordering

The order of the particles in P r at each hierarchy level has
not been specified in Section 5.3, and can be arbitrary for
progressive decoding. This flexibility allows us to further
order the particles at each level so that their vertex locations
can be encoded relatively to the particle vertices of the
previous hierarchy level by using a less number of bits
overall. The hierarchical encoding problem can be sepa-
rated into two parts: encoding of the octree structure, i.e.,
the node locations, and encoding of the precision, i.e., the
particle vertex locations.

Octree encoding consists of arranging all the nodes of the
octree hierarchy in the lexicographic order as specified by
the octree addressing strategy in Section 4.1. A single byte
(8 bits) associated to each parent node at level r� 1 would
then be sufficient to identify its eight child nodes at level r,
each bit indicating if the corresponding child is ON or not.
We recall from Definition 6, that each octree node is
encoded by a particle whose vertex position requires a
minimum precision of N ¼ R bits. This particle implicitly
identifies at the same time one of the ON child nodes of the
underlying parent node, making one of the 8 bits
redundant. Therefore, a sequence of 7 bits, instead of a
byte, suffices, in fact, to identify the remaining child nodes.
When the incoming particles belonging to set P r are
arranged in the same order as the octree nodes, the octree
cubes at level r to which they belong can directly be
localized with this sequence of 7 bits. The vertex attributes
of these particles require only N � r additional bits of

YEMEZ AND SCHMITT: MULTILEVEL REPRESENTATION AND TRANSMISSION OF REAL OBJECTS WITH PROGRESSIVE OCTREE... 561

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

precision per coordinate to achieve a global geometrical
precision of N bits, since each vertex is already positioned
inside an octree cube of size 2N�r � 2N�r � 2N�r.

The phantom nodes at an intermediate level r < R,
resulting from the octree surface thinning process, have to
be handled specifically (see Fig. 3). Since a phantom node is
not associated to a particle, none of its child nodes is
implicitly specified. A sequence of 8 bits, instead of 7 bits, is
then required to fully identify the location of its ON child
nodes. Furthermore, when a parent node has a phantom
child node, the presence of this phantom child has to be
signaled just as its nonphantom ON child nodes. This
phantom child node must further be identified in the
associated sequence of 7 or 8 bits since, otherwise, at this
stage, the decoder would not know that the encoded child
node is a phantom and would then be waiting for a particle,
which is not defined for a phantom node. Therefore, a flag
of 1 bit must be added to each encoded node to specify
whether it corresponds to a phantom or not. The nodes at
level R need not be flagged since phantoms at this level
have all been discarded from the data structure.

It is possible to obtain a good estimate of the bitload
resulting from the hierarchical particle encoding described
above. This is achieved throughout some assumptions on
the number of eliminated ON nodes and that of phantom
nodes. As explained in detail in the appendix, the estimated
bitload per particle that we come out with is 5:1þ 3ðN �RÞ
bits, whereN is the required number of precision bits and R
is the octree resolution. This means that the whole geometry
is encoded per particle by a fixed number of 5.1 bits for the
basic octree structure and 3 bits for each additional bit that
increases the vertex geometric precision beyond the octree
resolution R. This is to be compared with the initial 36 bits
per particle without geometry compression. Assuming that
the resulting surface triangulation is manifold and that the
number of triangles is twice the number of particles, the
bitload per triangle for the geometry becomes approxi-
mately 2:5þ 1:5ðN �RÞ.

7.2 Scalability

Scalable coding offers a compromise between visual quality
and bit-rate by adjusting the precision of the encoded data,
the most significant bits of the model geometry being first
selected for transmission. The space partitioning provided
by the octree representation facilitates the implementation
of such a scalable encoding scheme. With our representa-
tion scheme, a precision of R bits is necessary for the
decoder to reconstruct the octree and the corresponding
mesh structure. The remaining N �R precision bits can be
incorporated in different ways, for example, at the end of
the bitstream corresponding to each different hierarchy
level, or at the end of the whole bitstream after the
transmission of the level R. One disadvantage of the second
strategy is that at higher levels of detail, staircase effects
may appear on the surface. Another possibility is to adjust
the precision adaptively by increasing it with one bit each
time a new resolution level is transmitted. With most object
model geometry and for most visual applications, a
precision of 12 bits is sufficient, thus the encoded precision
for the intermediate levels can be limited up to 12 bits. The
higher precision bits up to N , N ¼ 16, for example, can be
transmitted at the end if required. A common problem with
scalable coders is that reducing the geometrical precision
without particular care may cause topological anomalies

such as intersecting triangles. In our case, we never have
such anomalies as long as the precision is kept equal or
higher than the octree resolution, since each vertex location
is constrained to lie inside a specified octree cube.

The scalability of our scheme is demonstrated on the Isis
statuette in Fig. 10. In this case, an octree resolution R ¼ 8 is
sufficient and, thus, the minimum number of precision bits
necessary to reconstruct the octree structure is N ¼ 8. In
Fig. 10, by zooming on the right arm of the statuette at level
R ¼ 8, we observe that this minimum precision yields
staircase effects on the model surface. When N ¼ 12, it is
very difficult to visually distinguish the resulting model
from the one with N ¼ 16. However, at the intermediate
level r ¼ 6, a precision of 8 bits seems sufficient. The
scalability of our encoding scheme then allows us to adjust
the precision depending on the resolution level. For
example, the number N of precision bits can be increased
from 8, which is acceptable at r ¼ 6, to 12 before visualizing
the statuette at the maximum resolution level R ¼ 8.

8 EXPERIMENTS

8.1 Construction Techniques

The information needed to construct the octree representa-
tion of a 3D object is theoretically provided by an implicit
surface fðx; y; zÞ ¼ 0. In practice, the source of this informa-
tion varies depending upon the application. The object
modeling scheme that we propose in this paper is indepen-
dent of the technique used to obtain this information.
However, its performance in terms of object representation
and visual quality is highly dependent on the construction
method used. We consider here, only two distinct cases on
whichwe demonstrate the proposed scheme. In the first case,
theobject is constructedbya shape fromsilhouette technique,
whereas in the second one, a uniform dense 3D range data of
the object surface is directly available.

8.1.1 Shape from Silhouette

For shape from silhouette construction, we start with
2D photographs of the object pictured from various view-
points by a calibrated camera [22]. The function fðx; y; zÞ
needed for octree construction is deduced from the object
silhouettes [39]. The basic idea relies on the observation that
the object volume must lie in the intersection of the visual
cones defined by the silhouettes and the optical center of the
associated cameras [21]. Our methodology to find this
intersection corresponds to carving the bounding box in
terms of octree cubes by iteratively excluding the parts
falling outside the silhouettes. Once we thereby obtain the
initial octree representation, we then determine the particle
attributes associated to each leaf node located on the
surface. The vertex of a particle is given by the center of
gravity of the surface points lying inside the associated cube
at the maximum resolution. The normal vector for a given
particle is estimated from the local neighborhood informa-
tion provided by the octree representation, whereas the
particle color is determined by projecting the particle vertex
onto the image planes aligned with its normal direction [39].

8.1.2 Range Data Modeling

For range data modeling, we start with a uniform dense
surface data set of an object. The first step is to construct the
octree representation by recursively subdividing the

562 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

bounding box so as to identify the ON cubes. The surface
points are traversed one by one along the octree paths and
the nodes occupied at least by one point are labeled ON.
The choice of the finest octree resolution depends on the
original resolution of the data or the requirements of the
application. Once the octree construction is accomplished
up to the target resolution, the normal attribute for each
octree cube is determined in a similar way as the shape
from silhouette application, whereas the other particle
attributes can be computed, for example, by averaging the
corresponding attributes of the surface points occupying
that cube. As described in Section 4.3, at the octree surface
thinning step, we need to know whether a cube that is
adjacent to an ON cube is IN or OUT. This information is
directly available with volumetric construction methods
such as shape from silhouette or when the data is already
volumetric such as MRI data. Its availability is more
problematic when the data is acquired by a range scanner
since, in this case, various difficulties arise such as
integration of multiple range images, surface gaps, or range
uncertainty. Fortunately, a volumetric approach can handle
these problems in a very robust manner [7]. In this work, we
consider the representation of sufficiently dense surface
data which is free of such problems and which already
corresponds to a close surface. The outside-inside informa-
tion in the vicinity of the surface can then be extracted by
tracking the outer or inner boundary of each octree surface.
Another possibility to differentiate the outside and the
inside in the vicinity of the surface is to use the normal
attributes of surface particles if available.

8.2 Results

For range data modeling, three surface data sets without
color information have been utilized: the Isis statuette and
the hip bone objects,2 and the Happy Buddha.3 These data
sets are actually surface point clouds that we have obtained
by oversampling the vertices of their triangular models. As
for the shape from silhouette construction technique, two
objects, the Coignard and the Anyi statuettes, have been
captured in rotation by a geometrically calibrated camera.

The progressive object modeling scheme is demonstrated
in Figs. 11, 12, and 13 for the Coignard and the Isis
statuettes, the Anyi statuette and the hip bone, and the
Happy Buddha, respectively. The maximum resolution
level for each object varies depending on the resolution of
the initial data. The choice of the level where the thinning
process is relaxed depends mainly on the object complexity
and has been determined experimentally.

We verify in Table 1, that the number of triangles at each
octree level is about twice the number of ON nodes for the
Anyi statuette and the Happy Buddha. The assumptions
that we make on the number of eliminated nodes and

phantom nodes in the appendix are also verified. These
observations are especially valid at the resolutions where
the thinning process is strictly applied.

In Table 1, we also present, for the direct triangulation
process, the experimental distributions of the different
configurations illustrated in Fig. 7. First, we observe that the

YEMEZ AND SCHMITT: MULTILEVEL REPRESENTATION AND TRANSMISSION OF REAL OBJECTS WITH PROGRESSIVE OCTREE... 563

2. Cyberware Inc., http://www.cyberware.com.
3. The Stanford 3D Scanning Repository, http://www-graphics.stan

ford.edu/data/3Dscanrep.

Fig. 10. Zoom on the right arm of the Isis statuette with different precision and resolution levels. From left to right:N ¼ 8,N ¼ 12, andN ¼ 16 at level

R ¼ 8 (top row), and at the intermediate level r ¼ 6 (bottom row).

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

configurations Ci; i � 5; having no ambiguity for triangula-
tion are those encountered most frequently. On the other
hand, the configuration C6 occurs with a rate of about
10 percent and the remaining configurations Ci; i > 6; very
rarely depending on the complexity of the object and on the
current resolution level. The configuration C6 is disambig-
uated in almost all cases, whereas the configurations Ci; i >
6; can be disambiguated with a rate up to 50 percent
depending on the object complexity. The final number of
resulting nonmanifold local triangulations are also given in

Table 1. The nonmanifold triangulations produced are
mostly internal triangles except for those that might
originate from the topological test that we employ during
the thinning process in order to avoid artificial holes (see
Section 4.3). The surface normal discontinuities for instance,
which can be observed on the reconstructed hip bone at
r ¼ 6 in Fig. 12, are mainly due to these external nonmani-
fold triangles.

The implementation of the proposed scheme has been

realized by using C++/OpenGL programming languages

564 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003

Fig. 11. Progressive representation of (a) the Coignard statuette with color and (b) the Isis statuette surface at increasing levels of detail r ¼
4; 5; 6; 7; 9 and r ¼ 3; 4; 5; 6; 8, respectively. The bitload for the whole 12-bit quantized geometry is 13.8 bits per particle (6.90 bits per triangle) and
16.8 bits per particle(8.40 bits per triangle), respectively. At the finest level of detail, the Coignard (R ¼ 9) contains 95,683 particles and the Isis
(R ¼ 8) 100,214 particles.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

and the experiments have been performed on a SUNUltra-10

(450 MHz) workstation. The resulting computational load of

the decoding process is also presented in Table 1 for the Anyi

statuette and the Happy Buddha. The given CPU times

correspond to the seconds spent at each level of detail during

progressive transmission to transform a particle sequence
into a mesh representation. The processes of octree construc-
tion, surface scanning, and direct triangulation are all
included in these values. Although the decoder has not been
optimized for speed, the achieved CPU times seem quite
reasonable for interactive applications. The extra computa-
tional load of the decimation task is very low, necessitating,
for instance, at the finest level of detail of the Anyi statuette,
0.5 seconds of CPU time in addition to the value (12 seconds)
given in Table 1. All the other results presented in this section
have been obtained without decimation.

In our range data modeling applications, once the
original mesh is oversampled and the corresponding point
clouds are obtained, the processing time needed for the
whole construction process is a question of minutes, for
example, 1.5 minutes for the Isis and 10.5 minutes for
Happy Buddha.

The experimental bitloads per particle necessary to
encode the octree structure, i.e., for the case N ¼ R, are
4.8, 4.9, 4.8, 5.0, and 4.6 bits for the Coignard, the Anyi, the
Isis, the hip bone, and the Happy Buddha, respectively.
These values are very coherent with the estimated value
given in Section 7.1, the small discrepancies being mainly
due to the varying complexities of the objects, more
specifically to the varying number of resulting phantom
nodes. 3ðN �RÞ bits must be added to these values to
achieve a higher precision N > R. The corresponding
bitloads per triangle are almost half of these values.

9 TRADE OFFS

The comparison of the proposed technique with previous
triangle-based progressive approaches should take into
account several trade offs between preprocessing time, low
resolution approximation quality, storage efficiency, and
decoding/rendering performance.

9.1 Preprocessing Time

The efficiency in preprocessing time is one of the main
benefits of the proposed scheme, which makes large data
sets easy to handle. This is also validated by our experi-
ments. The processing time for large data sets in our case is
at the order of minutes, whereas low-speed triangle-based
techniques that produce very accurate approximations,
require hours of processing time. This is mainly due to
the effort that they spend in order to optimize the
placement of individual mesh vertices. The runtime
performance of our representation scheme is, in fact, at
the same level as the fastest triangle-based schemes that
sacrifice some of the approximation quality.

9.2 Approximation Quality

Due to the octree surface thinning step, no theoretical error
bound is guaranteed for low resolution approximations
produced by our technique. This step seems inevitable since
we render the encoded surface particles by using triangle
meshes. At high resolutions, our technique produces
reliable approximations, whereas depending on the object
complexity the approximation quality degrades as the
resolution gets lower. Triangle-based schemes, on the other
hand, result in good quality low resolution models, in
proportion to the specific effort spent per primitive.

YEMEZ AND SCHMITT: MULTILEVEL REPRESENTATION AND TRANSMISSION OF REAL OBJECTS WITH PROGRESSIVE OCTREE... 565

Fig. 12. Progressive representation of (a) the Anyi statuette with color
and (b) the hip bone surface at increasing levels of detail r ¼ 5; 6; 7; 9
and r ¼ 5; 6; 7; 8, respectively. The bitload for the whole 12-bit quantized
geometry is 13.9 bits per particle (6.95 bits per triangle) and 17.0 bits per
particle (8.50 bits per triangle), respectively. At the finest level of detail,
the Anyi (R ¼ 9) contains 87,322 particles and the hip bone (R ¼ 8)
contains 93,611 particles.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

9.3 Storage Efficiency

The proposed scheme is quite space efficient, resulting in 5 to
9 bits per triangle for representing thewhole 12-bit quantized
geometry. This is first, due to the fact that connectivity or
topology information is not explicitly stored and, second, to
the exploitation of the octree hierarchy. Note that no entropy
coding has yet been employed for geometry compression.
These figures seem to compare favorablywith triangle-based
techniques. For instance, Pajarola and Rossignac [30] report
3.6 bits per triangle for encoding connectivity and 8.8 bits per
triangle for vertex positions with a 12-bit quantized mesh of
approximately 100,000 triangles. However, there is once
again a trade off here to be taken into account. It is indeed
possible that an optimized triangle-based technique may
yield a much less number of triangles to express the same
(probably simplified) geometry than the proposed technique
does. In this case, triangle-based techniques are favorable.

However, if the problem is rather representing a dense high
resolutiongeometrywithas little information loss aspossible,
our particle-based representation may be preferable in terms
of storage efficiency, even though its low resolution approx-
imations,which are in fact obtainedwithmuch less effort, are
not as reliable as those resulting from triangle-based
techniques.

9.4 Decoding/Rendering Performance

Direct triangulation of encoded octree particles introduces
an additional computing overhead to the decoding process.
This overhead seems affordable for interactive applications.
In cases where this overhead is not tolerable, to accelerate
the rendering process, it is also possible to directly visualize
the surface particles via splatting techniques [36] without
any triangulation, sacrifying, however, from rendering
quality. If one wants to avoid the visual artifacts of

566 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003

Fig. 13. Progressive representation of the Happy Buda surface, from left to right at increasing levels of detail: (a) The whole object at r ¼ 7; 8; 9 and

(b) a detail from the zoomed surface at r ¼ 9 and r ¼ 10. The bitload for the whole 12-bit quantized geometry is 10.6 bits per particle (5.3 bits per

triangle).

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

splatting, octree particles should be transformed into a
triangle mesh and so rendered.

10 CONCLUSIONS

The modeling scheme that we have presented encodes the
object geometry and the related information with progres-
sive quality. It is especially useful for representing a dense
surface data set at its original resolution. The full object
information is encoded in such a way that, without
increasing the data size and with little effort, the object
can progressively be transmitted and viewed at different
levels of detail. A user who then has access to the full
information, can select the required level of detail in order
to find the best compromise between the quality and the
time-space efficiency during interactive visualization. Sur-
face particles being rather uniformly distributed over the
surface, the number of triangles at the highest level of detail
can be large, but in turn, the accuracy of the representation
is guaranteed and does not suffer from polygonization
artifacts especially on the boundaries. When compared to
other progressive modeling techniques, the presented
scheme is a robust, simple, and fast technique that can
easily be implemented for any complex real object.

The proposed scheme seems quite space efficient for
geometry encoding when we consider the bitloads achieved
by exploiting only the structural redundancies inherent in
the hierarchical representation. Moreover, the resulting
scheme is scalable in the sense that the higher geometry
precision bits can be encoded independently from the basic

octree structure and incorporated at any phase of the
visualization or transmission process if required.

The proposed encoding strategy is open to further
compression, and we are currently considering the incor-
poration of entropy coding techniques. When compared to,
for example [36], one drawback of our scheme is that it is
not view-dependent in its current form. However, our
future work will involve adaptation of the proposed scheme
to local surface complexity via octree pruning and also to
the viewpoint for developing a progressive variable-resolu-
tion view-dependent representation. In conjunction with
this, we are considering the transmission of triangle
textures instead of particle colors. This would increase
efficiency, especially when the geometry is already accurate
enough at a given level of detail.

APPENDIX

Based on the description of our hierarchical particle
encoder, we now explain how the bitload estimate given
in Section 7.1 is analytically obtained. Recall that a flag of 1
bit must be added to each encoded node to specify whether
it corresponds to a phantom or not. The total number of flag
bits at level r, r < R is the sum of the number of phantom
nodes and the number of particles at that level. Let nr

denote the number of particles in set P r, mr the number of
phantom nodes at level r, and kr the number of nodes in set
Sr. We know that m0 ¼ mR ¼ 0 and k0 ¼ n0 ¼ 1. Then, the
bitload Br required to encode the additional geometry with
N bits of precision for each level r is given by

YEMEZ AND SCHMITT: MULTILEVEL REPRESENTATION AND TRANSMISSION OF REAL OBJECTS WITH PROGRESSIVE OCTREE... 567

TABLE 1
Quantitative Evaluation of the Proposed Scheme for the Anyi Statuette and Happy Buda at Different Resolution Levels r

The first three columns give the number of ON nodes (kr, after thinning), the number of eliminated nodes, and the number of phantom nodes (mr).
The thinning process has been relaxed at level r ¼ 4 for both objects. The total number of triangles resulting from direct triangulation and the number
of nonmanifold triangulations are displayed at the fourth and fifth columns. The following four columns give the distribution (in percentage) of the
various configuration types fCig. CPU times spent at each level of detail to transform a particle set into a mesh are given at the last column.

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

Br ¼
3ðN � rÞnr if r ¼ 0;
7kr�1 þ 8mr�1 þ nr þmr þ 3ðN � rÞnr if 0 < r < R;
7kr�1 þ 8mr�1 þ 3ðN � rÞnr if r ¼ R:

8

<

:

ð5Þ

The first two terms for the case 0 < r < R in (5) correspond

to the number of bits necessary to encode the octree

structure, i.e., the child nodes at level r with respect to their

parents at level r� 1. The next two terms are the number of

flag bits, and the last term gives the number of additional

precision bits. Flag bits are not needed at level R. If we sum

up the bitloads of all octree levels given in (5), we obtain the

total bitload B ¼
PR

r¼0 Br:

B ¼ 7
X

R�1

r¼0

kr þ 9
X

R�1

r¼1

mr þ
X

R�1

r¼1

nr þ 3
X

R

r¼0

ðN � rÞnr: ð6Þ

The bitload expressed by (6) can be approximated through

some assumptions, which are valid in practice. The basic

assumption is on the following relation between the

number of nodes at consecutive octree levels: kr � 4kr�1,

for r sufficiently large and assuming that the object surface

is nonfractal. Since, by construction, nr ¼ kr � kr�1,

n ¼
P

r nr, and n ¼ kR, i.e., the total number of particles is

equal to the number of ON leaf nodes, this assumption

yields, furthermore, the following approximations expres-

sing, in terms of n, the number kr of ON nodes and the

number nr of particles at level r, respectively:

kr �
1

4

� �R�r

n; ð7Þ

nr �
3

4

� �

1

4

� �R�r

n: ð8Þ

Another observation is that the octree surface thinning

process eliminates, at most, half of the ON nodes at each

level. Since the mr phantom nodes are only a part of the

eliminated nodes, we deduce: mr � kr. For the bitload, the

number of phantom nodes is, in the worst case, equal to the

number of nodes in set Sr, i.e., mr ¼ kr. Substituting this

together with (8) and (7) into (6), we obtain a good estimate

of the bitload for encoding the whole geometry:

B �
61

12
þ 3ðN �RÞ

� �

n: ð9Þ

Dividing (9) by the number n of particles, we obtain the

following estimate of the bitload per particle: 5:1þ 3ðN �RÞ,

whereN is the required number of precision bits andR is the

octree resolution.

ACKNOWLEDGMENTS

This work has been supported by the European ESPRIT

project ACOHIR, and by TUBITAK (Technology and

Research Council of Turkey). The authors would like to

thank warmly, the artist R. Coignard and the Louvre (Paris)

for authorizing us to use the images of the statuettes. They

would also like to thank the anonymous reviewers for their

constructive and valuable comments.

REFERENCES

[1] C. Andújar, D. Ayala, P. Brunet, R. Joan-Arinyo, and J. Solé,
“Automatic Generation of Multiresolution Boundary Representa-
tions,” Proc. Eurographics, vol. 15, no. 3, pp. 87-96, 1996.

[2] C. Andújar, D. Ayala, and P. Brunet, “Validity-Preserving
Simplification of Very Complex Polyhedral Solids,” Virtual
Environments, pp. 1-10, 1999.

[3] H.H. Chen and T.S. Huang, “A Survey of Construction and
Manipulation of Octrees,” Computer Vision, Graphics, and Image
Processing, vol. 43, no. 3, pp. 409-431, 1988.

[4] C.H. Chien and J.K. Aggarwal, “Volume/Surface Octrees for the
Representation of Three-Dimensional Objects,” Computer Vision
Graphics Image Processing, vol. 36, pp. 256-273, 1986.

[5] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno, “Multi-
resolution Decimation Based on Global Error,” The Visual
Computer, vol. 13, no. 5, pp. 228-246, 1997.

[6] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P.
Agarwal, F. Brooks, and W. Wright, “Simplification Envelopes,”
Proc. ACM SIGGRAPH, pp. 119-128, 1996.

[7] B. Curless and M. Levoy, “A Volumetric Method for Building
Complex Models from Range Images,” Proc. ACM SIGGRAPH,
1996.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W.
Stuetzle, “Multiresolution Analysis of Arbitrary Meshes,” Proc.
ACM SIGGRAPH, pp. 173-182, 1995.

[9] J. El-Sana and A. Varshney, “Generalized View-Dependent
Simplification,” Proc. Eurographics, vol. 18, no. 3, pp. 83-94, 1999.

[10] T.A. Funkhouser and C.H. Sequin, “Adaptive Display Algorithm
for Interactive Frame Rates During Visualization of Complex
Environment,” Proc. ACM SIGGRAPH, pp. 247-254, 1993.

[11] M. Garland, “Multiresolution Modeling: Survey and Future
Opportunities,” Proc. Eurographics, STAR—State of The Art
Reports, 1999.

[12] M. Garland and P.S. Heckbert, “Surface Simplification Using
Quadric Error Metrics,” Proc. ACM SIGGRAPH, pp. 209-224, 1997.

[13] S. Giorgi, F. Pedersini, A. Sarti, and S. Tubaro, “Volume and
Surface Reconstruction from Multiple Views,” technical report,
Dipartimento di Elettronicae Informazione, Politecnico di Milano,
http://www-dsp.elet.polimi.it/ispg, 1997.

[14] J. Grossman and W. Dally, “Point Sample Rendering,” Rendering
Techniques, pp. 181-192, July 1998.

[15] R. Grosso and T. Ertl, “Progressive Iso-Surface Extraction from
Hierarchical 3D Meshes,” Proc. Eurographics, vol. 17, no. 3, pp. 126-
135, 1998.

[16] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Mesh Optimization,” Proc. ACM SIGGRAPH, pp. 19-26, 1993.

[17] H. Hoppe, “Progressive Meshes,” Proc. ACM SIGGRAPH, pp. 99-
108, 1996.

[18] H. Hoppe, “View-Dependent Refinement of Progressive Meshes,”
Proc. ACM SIGGRAPH, pp. 189-198, 1997.

[19] A. Khodakovsky, P. Schröder, and W. Sweldens, “Progressive
Geometry Compression,” Proc. ACM SIGGRAPH. pp. 271-278,
2000.

[20] D. Laur and P. Hanrahan, “Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering,” Proc. ACM
SIGGRAPH, pp. 285-288, 1991.

[21] A. Laurentini, “The Visual Hull Concept for Silhouette Based
Image Understanding,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 16, no. 2, pp. 150-162, Feb. 1994.

[22] J.M. Lavest, M. Viala, and M. Dhome, “Do We Really Need an
Accurate Calibration Pattern to Achieve a Reliable Camera
Calibration?” Proc. Fifth European Conf. Computer Vision, vol. 1,
pp. 158-174, 1998.

[23] A.W.F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D.P.
Dobkin, “MAPS: Multiresolution Adaptive Parameterization of
Surfaces,” Proc. ACM SIGGRAPH, pp. 95-104, 1998.

[24] M. Levoy and T. Whitted, “The Use of Points as a Display
Primitive,” Technical Report TR-85022, Univ. of North Carolina at
Chapel Hill, 1985.

[25] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L.
Periera, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade,
and D. Fulk, “The Digital Michelangelo Project: 3D Scanning of
Large Statues,” Proc. ACM SIGGRAPH, pp. 131-144, 2000.

[26] W.E. Lorensen and H.E. Cline “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Computer Gra-
phics, vol. 21, no. 4, pp. 163-169, 1987.

568 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 4, OCTOBER-DECEMBER 2003

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

[27] M. Lounsbery, T. DeRose, and J. Warren “Multiresolution Surfaces
of Arbitrary Topological Type,”ACM Trans. Graphics, vol. 16, no. 1,
pp. 34-73, 1997.

[28] D. Luebke and C. Erikson, “View-Dependent Simplification of
Arbitrary Polygonal Environments,” Proc. ACM SIGGRAPH,
pp. 199-208, 1997.

[29] C. Montani, R. Scateni, and R. Scopigno, “A Modified Look-Up
Table for Implicit Disambiguation of Marching Cubes,” The Visual
Computer, vol. 10, pp. 353-355, 1994.

[30] R. Pajarola and J. Rossignac, “Compressed Progressive Meshes,”
IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 1,
pp. 79-92, 2000.

[31] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels: Surface
Elements as Rendering Primitives,” Proc. ACM SIGGRAPH,
pp. 359-376, 1983.

[32] N. Pla-Garcia, “Recovering a Smooth Boundary Representation
from an Edge Quadtree and from a Face Octree,” Proc.
Eurographics, vol. 13, no. 4, pp. 189-198, 1994.

[33] J. Popovic and H. Hoppe, “Progressive Simplicial Complexes,”
Proc. ACM SIGGRAPH, pp. 217-224, 1997.

[34] W. Reeves, “Particle Systems—A Technique for Modeling a Class
of Fuzzy Objects,” Proc. ACM SIGGRAPH, pp. 335-342, 2000.

[35] J. Rossignac and P. Borrel, “Multi-Resolution 3D Approximations
for Rendering Complex Scenes,” Geometric Modeling in Computer
Graphics, pp. 455-465, 1993.

[36] S. Rusinkiewicz and M. Levoy, “QSplat: A Multiresolution Point
Rendering System for Large Meshes,” Proc. ACM SIGGRAPH,
pp. 343-352, 2000.

[37] S. Rusinkiewicz and M. Levoy, “Streaming QSplat: A Viewer for
Networked Visualization of Large, Dense Models,” Proc. Symp.
Interactive 3D Graphics, pp. 63-68, 2001.

[38] H. Samet, Applications of Spatial Data Structures. Addison-Wesley,
1990.

[39] F. Schmitt and Y. Yemez, “3D Color Object Reconstruction from
2D Image Sequences,” Proc. IEEE Int’l Conf. Image Processing, vol. 3,
pp. 65-69, 1999.

[40] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, “Decimation of
Triangle Meshes,” Proc. ACM SIGGRAPH, vol. 26, pp. 65-70, 1992.

[41] R. Shekhar, E. Fayad, R. Yagel, and F. Cornhill, “Octree-Based
Decimation of Marching Cubes Surfaces,” Proc. Visualization Conf.,
pp. 335-342, Sept. 1996.

[42] R. Szeliski, “Rapid Octree Construction from Image Sequences,”
Proc. CVGIP: Image Understanding, vol. 58, no. 1, pp. 23-32, 1993.

[43] R. Szeliski and D. Tonnesen, “Surface Modeling with Oriented
Particle Systems,” Proc. ACM SIGGRAPH, vol. 26, pp. 185-194,
1992.

[44] G. Taubin, A. Guezic, W.P. Horn, and F. Lazarus, “Progressive
Forest Split Compression,” Proc. ACM SIGGRAPH, pp. 123-132,
1998.

[45] J. Wilhelms and A. Gelder, “Topological Considerations in
Isosurface Generation,” Computer Graphics, vol. 24, no. 5, pp. 57-
62, 1990.

[46] J. Wilhelms and A. V. Gelder, “Octrees for Faster Isosurface
Generation,” Proc. ACM SIGGRAPH, vol. 11, no. 3, pp. 201-227,
1992.

[47] Y. Yemez and F. Schmitt, “Progressive Multilevel Meshes from
Octree Particles,” Proc. Int’l Conf. 3D Digital Imaging and Modeling,
pp. 290-299, Oct. 1999.

Yücel Yemez received the BS degree from
Middle East Technical University, Ankara, Tur-
key, in 1989, and the MSc and PhD degrees
from Bogaziçi University, Istanbul, Turkey, re-
spectively, in 1992 and 1997, all in electrical
engineering. From 1997 to 2000, he was a
postdoctoral researcher in the Image and Signal
Processing Department at Télécom Paris (Ecole
Nationale Supérieure des Télécommunications).
Currently, he is an assistant professor of the

Computer Engineering Department at Koç University, Istanbul, Turkey.
His research interests include 3D modeling and visualization, video and
image coding, data compression, multiresolution and wavelet analysis,
and automated biometrics.

Francis Schmitt received the engineering de-
gree from Ecole Centrale de Lyon, France, in
1973, and the PhD degree in physics from
Université Paris 6 in 1979. He has been at
Télécom Paris (Ecole Nationale Supérieure des
Télécommunications) since 1973, where he is
currently a full professor in the Image and Signal
Processing Department. His research interests
include computer vision, 3D modeling, computa-
tional geometry, color picture analysis and

synthesis, colorimetry, and multispectral imagery.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

YEMEZ AND SCHMITT: MULTILEVEL REPRESENTATION AND TRANSMISSION OF REAL OBJECTS WITH PROGRESSIVE OCTREE... 569

Authorized licensed use limited to: ULAKBIM UASL - KOC UNIVERSITY. Downloaded on June 07,2010 at 12:24:49 UTC from IEEE Xplore. Restrictions apply.

