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We propose and analyze a Multilevel Richardson–Romberg (ML2R) estimator which combines the higher
order bias cancellation of the Multistep Richardson–Romberg method introduced in [Monte Carlo Methods
Appl. 13 (2007) 37–70] and the variance control resulting from Multilevel Monte Carlo (MLMC) paradigm
(see [Ann. Appl. Probab. 24 (2014) 1585–1620, In Large-Scale Scientific Computing (2001) 58–67 Berlin]).
Thus, in standard frameworks like discretization schemes of diffusion processes, the root mean squared error
(RMSE) ε > 0 can be achieved with our ML2R estimator with a global complexity of ε−2 log(1/ε) instead
of ε−2(log(1/ε))2 with the standard MLMC method, at least when the weak error E[Yh] − E[Y0] of the

biased implemented estimator Yh can be expanded at any order in h and ‖Yh − Y0‖2 = O(h
1
2 ). The ML2R

estimator is then halfway between a regular MLMC and a virtual unbiased Monte Carlo. When the strong

error ‖Yh − Y0‖2 = O(h
β
2 ), β < 1, the gain of ML2R over MLMC becomes even more striking. We carry

out numerical simulations to compare these estimators in two settings: vanilla and path-dependent option
pricing by Monte Carlo simulation and the less classical Nested Monte Carlo simulation.

Keywords: Euler scheme; multilevel Monte Carlo estimator; multistep; nested Monte Carlo method; option
pricing; Richardson–Romberg extrapolation

1. Introduction

The aim of this paper is to combine the multilevel Monte Carlo estimator introduced by S. Hein-
rich in [19] and developed by M. Giles in [12] (see also [23] for the statistical Romberg approach)
and the (consistent) Multistep Richardson–Romberg extrapolation (see [27]) in order to minimize
the simulation cost of a quantity of interest I0 = E[Y0] when the random variable Y0 cannot be
simulated at a reasonable cost (typically a functional of a generic multidimensional diffusion
process or a conditional expectation). Both methods rely on the existence of a family of random
variables Yh, h > 0, which strongly approximate Y0 as h goes to 0 whose bias E[Yh]− E[Y0] can
be expanded as a polynomial function of h (or hα , α > 0).

However, the two methods suffer from opposite but significant drawbacks: the multilevel
Monte Carlo estimator does not fully take advantage of the existence of such an expansion be-
yond the first order whereas the Multistep Richardson–Romberg extrapolation induces an in-
crease of the variance of the resulting estimator. Let us be more precise.

Consider a probability space (�,A,P) and suppose that we have a family (Yh)h≥0 of real
valued random variables in L2(P), associated to Y0 supposed to be non-degenerate, and satisfying
limh→0 ‖Yh − Y0‖2 = 0 where h takes values in H = {h/n,n ≥ 1} for a fixed h ∈ (0,+∞).
Usually, the random variable Yh appears as a functional of a time discretization scheme of step h
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or from an inner approximation in a nested Monte Carlo simulation. The parameter h is called
the bias parameter in what follows. Furthermore, we assume that, for every admissible h ∈ H,
the random variable Yh can be simulated at a reasonable computational cost whereas Y0 can not.

We aim at computing an as good as possible approximation of I0 = E[Y0] by a Monte Carlo
type simulation. The starting point is of course to fix a parameter h ∈ H to consider a standard
Monte Carlo estimator based on Yh to compute I0. So, let (Y

(k)
h )k≥1 be a sequence of independent

copies of Yh and the estimator I
(h)
N = 1

N

∑N
k=1 Y

(k)
h . By the strong law of numbers and the central

limit theorem, we have a control of the renormalized statistical error
√

N(I
(h)
N − E[Yh]) which

behaves as a centered Gaussian with variance var(Yh). On the other hand, there is a bias error
due to the approximation of I0 by Ih = E[Yh]. This bias error is also known as the weak error
when Yh is a functional of the time discretization scheme of a stochastic differential equation
with step h. In many applications, the bias error can be expanded as

E[Yh] − E[Y0] = c1h
α + · · · + cRhαR + o

(
hαR
)
, (1)

where α is a positive real parameter (usually α = 1
2 ,1 or 2). In this paper, we fully take into

account this error expansion and provide a very efficient estimator which can be viewed as a cou-
pling between an MLMC estimator and a Multistep Richardson–Romberg extrapolation. Multi-
level methods require the additional strong convergence rate assumption ‖Yh − Y0‖2

2 = O(hβ)

involving a parameter β ∈ (0,1). About the need of this assumption, we refer to [21] for some
counterexamples. However, the recent paper [4] shows how this strong error assumption can be
relaxed in some situations.

We first present a brief description of the original MLMC estimator as described in [12]. The
main idea is to use the following telescopic summation with depth L ≥ 2,

E[YhL
] = E[Yh] +

L∑
j=2

E[Yhj
− Yhj−1],

where (hj )j=1,...,L is a geometrically decreasing sequence of different bias parameters hj =
M−(j−1)h, M ≥ 2. For each level j ∈ {1, . . . ,L}, the computation of E[Yhj

−Yhj−1] is performed
by a standard Monte Carlo procedure. The key point is that, at each level j , we consider a
random sample of (Yhj−1 , Yhj

) of size Nj = �Nqj 	, where q = (q1, . . . , qL) ∈ S+(L) = {q ∈
(0,1)L,

∑L
j=1 qj = 1} (L-dimensional simplex), with in mind that the marginals Yhj−1 and Yhj

are highly correlated since limh→0 ‖Yh − Y0‖2 = 0 (see Section 5.2 for details). More precisely,
we consider L copies of the biased family denoted Y (j) = (Y

(j)
h )h∈H, j ∈ {1, . . . ,L} attached to

independent random copies Y
(j)

0 of Y0. The MLMC estimator then writes

IN
h,L,q = 1

N1

N1∑
k=1

Y
(1),k
h +

L∑
j=2

1

Nj

Nj∑
k=1

(
Y

(j),k
hj

− Y
(j),k
hj−1

)
, (2)

where (Y (j),k)k≥1, j = 1, . . . ,L are independent sequences of independent copies of Y (j) and
N1, . . . ,NL are positive integers. The analysis of the computational complexity and the study
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of the bias–variance structure of this estimator will appear as a particular case of a general-
ized multilevel framework that we will introduce and analyze in Section 3. This framework,
following the original MLMC, highly relies on the combination of a strong rate of approxima-
tion of Y0 by Yh and a first order control of weak error E[Yh] − E[Y0]. This MLMC estimator
has been extensively applied to various fields of numerical probability (jump diffusions [8,9],
American options [5]), computational statistics and more general numerical analysis problems
(high dimensional parabolic SPDEs, see [3], etc.). For more references, we refer to the web page
http://people.maths.ox.ac.uk/gilesm/mlmc_community.html and the references therein.

On the other hand, the Multistep Richardson–Romberg extrapolation takes advantage of the
full expansion (1). Let us first recall the one-step Richardson–Romberg Monte Carlo estimator.
We still consider a biased family denoted Y = (Yh)h∈H attached to the random variable Y0. The
one-step Richardson–Romberg Monte Carlo estimator then writes

IN

h, h
2

= 1

N

N∑
k=1

(
2Y k

h
2

− Y k
h

)
,

where (Y k)k≥1 is a sequence of independent copies of Y . It is clear that this linear combination
of Monte Carlo estimators satisfies the following bias error expansion (of order 2 in h)

E[2Yh
2

− Yh] − E[Y0] = −c2

2
h2 + o

(
h2).

Moreover, the asymptotic variance of this estimator satisfies var(IN

h, h
2
) = var(2Yh

2
− Yh)/N ≈

var(Y0)/N which is the same as the crude Monte Carlo estimator. Then, it is natural to design a
linear estimator with bias error in h3 by linearly combining Yh, Yh

2
and Yh

3
and so on. Such an ex-

tension called Multistep Richardson–Romberg extrapolation for Monte Carlo estimator has been
introduced and extensively investigated in [27] in the framework of discretization of diffusion
processes. More details are given in Section 2.4.

The aim of this paper is to show that an appropriate combination of the MLMC estimator
and the Multistep Richardson–Romberg extrapolation outperforms the standard MLMC. More
precisely, we will see in Section 3 that an implementation of the Multilevel Richardson Romberg
estimator (ML2R) turns out to be a weighted version of the MLMC and writes

IN
h,R,q = 1

N1

N1∑
k=1

Y
(1),k
h +

R∑
j=2

Wj

Nj

Nj∑
k=1

(
Y

(j),k
hj

− Y
(j),k
hj−1

)
, (3)

where R ≥ 2 is the depth level – similar to L in (2) – and (Y (j),k)k≥1 are like in (2). We denote
by nj = Mj−1 the j th refiner coefficient of the initial bias parameter h ∈ H where the integer
M ≥ 2 is called the root of the refiners. A strong feature of our approach comes from the fact
that the weights (Wk)k=2,...,R are explicit and only depend on α (given by (1)), M and R. In
practice these ML2R weights read Wj =∑R

i=j wi where wi are given further on by (14). These
derivative weights (wi )i∈{1,...,R} have been introduced in [27] to kill the successive bias terms
that appear in the expansion (1).

http://people.maths.ox.ac.uk/gilesm/mlmc_community.html
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To compare the two methods MLMC and ML2R, we consider the following optimization
problem: minimizing the global simulation cost (of one estimator) subject to the constraint that
the resulting L2-error or root mean squared error (RMSE) must be lower than a prescribed ε > 0.
We solve the problem step by step for both estimators (in fact, for a more general unifying class of
estimators). In the first stage, we minimize the effort of the estimator (product of its variance by
its complexity) to optimally dispatch the Nj across all levels (it can be viewed as a stratification
procedure). Doing so, we are able to specify the initial bias parameter h and the depth level R

as functions of ε and the structural parameters (α, β , V1, var(Y0)). A light preprocessing makes
possible to optimize the choice of the root M of the refiners. Basically (see Theorem 3.12), the
numerical cost of the ML2R estimator implemented with these optimal parameters (depending
on ε) and denoted Cost(ML2R) satisfies

Cost(ML2R) � K(α,β,M)v(β, ε),

where f � g means that lim supε→0 f (ε)/g(ε) ≤ 1, K(α,β,M) is an explicit bound (see (45) in
Theorem 3.12) and

v(β, ε) =

⎧⎪⎨⎪⎩
ε−2, if β > 1,

ε−2 log(1/ε), if β = 1,

ε−2e
1−β√

α

√
2 log(1/ε) log(M)

, if β < 1.

Note that e
1−β√

α

√
2 log(1/ε) log(M) = o(ε−η) for all η > 0. As first established in [12], we prove

likewise that the optimal numerical cost of the MLMC estimator denoted Cost(MLMC) sat-
isfies a similar result with v(β, ε) = ε−2 if β > 1, v(β, ε) = ε−2 log(1/ε)2 if β = 1 and

v(β, ε) = ε−2− 1−β
α if β < 1. In the case β = 1, the gain of log(1/ε) may look as a minor improve-

ment but, beyond the fact that it is halfway to a virtual unbiased simulation, this improvement is
obtained with respect to an already tremendously efficient method to speed up crude Monte Carlo
simulation. In fact, as emphasized in our numerical experiments (see Section 5), this may lead to
a significant reduction factor for CPU time, e.g. when α < 1: pricing a Black–Scholes Lookback
Call option with a prescribed quadratic error ε = 2−8, yields a reduction factor of 3.5 in favor of
ML2R. When β < 1, the above theoretical reduction factor asymptotically goes to +∞ as ε goes
to 0 in a very steep way. Thus, the reduction in CPU time factor reaches, mutatis mutandis, 22 for
a Black–Scholes Up&Out Barrier call option for which β = 1

2 (still using a regular Euler scheme
without Brownian bridge). When compared on the basis of the resulting empirical RMSE, these
factors become even larger (approximately 48 and 61, respectively). In fact, it confirms that β < 1
is the setting where our ML2R estimator is the most powerful compared to regular MLMC. Ad-
ditional simulations are available on the web page https://simulations.lpma-paris.fr/multilevel/.

The paper is organized as follows: in Section 2, we propose a general parametrized frame-
work to formalize the optimization of a biased Monte Carlo simulation based on the L2-error
minimization. The crude Monte Carlo estimator and the Multistep Richardson–Romberg estima-
tor appear as the first two examples, allowing us to make precise few notations as well as our
main assumptions. In Section 3, we first introduce the extended family of multilevel estimators
attached to design matrices T. Among them, we specify in more details our proposal: the new

https://simulations.lpma-paris.fr/multilevel/
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ML2R estimator, but also the standard MLMC estimator. Two typical fields of application are
presented in Section 4: the time discretization of stochastic processes (Euler scheme) and the
nested Monte Carlo method, for which a weak expansion of the error at any order is established
in the regular case. In Section 5, we present and comment on numerical experiments carried out
in the above two fields.

NOTATIONS:

• Let N∗ = {1,2, . . .} denote the set of positive integers and N = N∗ ∪ {0}.
• If n = (n1, . . . , nR) ∈ (N∗)R , |n| = n1 + · · · + nR and n! =∏1≤i≤R ni .
• Let (e1, . . . , eR) denote the canonical basis of RR (viewed as a vector space of column

vectors). Thus, ei = (δij )1≤+j≤R where δij stands for the classical Kronecker symbol.
• 〈·, ·〉 denotes the canonical inner product on RR .
• For every x ∈ R+ = [0,+∞), �x	 denotes the unique n ∈ N∗ satisfying n − 1 < x ≤ n and

�x� denotes the unique n ∈ N satisfying n ≤ x < n + 1.
• If (an)n∈N and (bn)n∈N are two sequences of real numbers, an ∼ bn if an = εnbn with

limn εn = 1, an = O(bn) if (εn)n∈N is bounded and an = o(bn) if limn εn = 0.
• var(X) and σ(X) denote the variance and the standard deviation of a random variable X

respectively.

2. Preliminaries

2.1. Mixing variance and complexity (effort)

We first introduce some notations and recall basic facts on (possibly biased) linear estimators.
We consider a family of linear statistical estimator (IN

π )N≥1 of I0 ∈ R where π lies in a parameter
set 	 ⊂ Rd . By linear, we mean, on the one hand, that, for every integer N ≥ 1,

E
[
IN
π

]= E
[
I 1
π

]
and, on the other hand, that the numerical cost Cost(IN

π ) induced by the simulation of IN
π is given

by

Cost
(
IN
π

)= Nκ(π),

where κ(π) = Cost(I 1
π) is the cost of a single simulation or unitary complexity.

We also assume that our estimator is of Monte Carlo type in the sense that its variance is
inverse linear in the size N of the simulation:

var
(
IN
π

)= ν(π)

N
,

where ν(π) = var(I 1
π) denotes the variance of one simulation. For example, in a crude biased

Monte Carlo π = h ∈ H, in a Multilevel Monte Carlo π = (h,R,q) ∈ H × N∗ × S+ and in the
Multistep Monte Carlo π = (h,R) ∈H× N∗.

We are looking for the “best” estimator in this family {(IN
π )N≥1,π ∈ 	} that is, the estimator

minimizing the computational cost for a given error ε > 0. In the sequel, we will often consider
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N as a continuous variable lying in R+. A natural choice for measuring the random error IN
π − I0

is to consider the L2-error or root mean squared error (RMSE)
√

E[(IN
π − I0)2] = ‖IN

π − I0‖2.
Our aim is to minimize the cost of the simulation for a given target error, say ε > 0. This generic
problem reads (

π(ε),N(ε)
)= argmin

‖IN
π −I0‖2≤ε

Cost
(
IN
π

)
. (4)

In order to solve this minimization problem, we introduce the notion of effort φ(π) of a linear
Monte Carlo type estimator IN

π .

Definition 2.1. The effort of the estimator IN
π is defined for every π ∈ 	 by

φ(π) = ν(π)κ(π). (5)

By definition of a linear estimator IN
π , we have that

φ(π) = ν(π)κ(π) = var
(
IN
π

)
Cost
(
IN
π

)= var
(
I 1
π

)
Cost
(
I 1
π

)
for every integer N ≥ 1, so that we obtain the fundamental relation

Cost
(
IN
π

)= N
φ(π)

ν(π)
. (6)

• If the estimators (IN
π )N≥1 are unbiased that is, E[IN

π ] = I0 for every π ∈ 	, then E[(IN
π −

I0)
2] = ‖IN

π − I0‖2
2 = var(IN

π ) = 1
N

ν(π). The solution of the generic problem (4) then reads

π(ε) = π∗ = argmin
π∈	

φ(π), N(ε) = ν(π∗)
ε2

= φ(π∗)
κ(π∗)ε2

. (7)

Consequently, the most performing estimator IN
π is characterized as a minimizer of the

effort φ(π) as defined above (and the parameter π does not depend on ε).
• When the estimators (IN

π )N≥1, π ∈ 	, are biased, the mean squared error writes

E
[(

IN
π − I0

)2]= μ2(π) + ν(π)

N
,

where

μ(π) = E
[
IN
π

]− I0 = E
[
I 1
π

]− I0

denotes the bias (which does not depend on N ). Using that ν(π) = N(‖IN
π − I0‖2

2 −μ(π)2),
the solution of the generic problem (4) reads

π(ε) = argmin
π∈	,|μ(π)|<ε

(
φ(π)

ε2 − μ2(π)

)
,

(8)
N(ε) = ν(π(ε))

ε2 − μ2(π(ε))
= φ(π(ε))

κ(π(ε))(ε2 − μ2(π(ε)))
.
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2.2. Assumptions on weak and strong approximation errors

We come back to the framework described in the Introduction: let (Yh)h∈H be a family of real
valued random variables associated to a random variable Y0 ∈ L2. The index set H is a set of bias
parameters (in fact representative of a bias) defined by H = {h/n,n ≥ 1} for a fixed h ∈ (0,+∞).
All random variables Yh are defined on the same probability space (�,A,P). The family satisfies
two assumptions which formalize the strong and weak rates of approximation of Y0 by Yh when
h → 0 in H. These assumptions are the basement of multilevel simulation methods (see [12,19]):

Bias error expansion (weak error rate):

∃α > 0, R̄ ≥ 1, E[Yh] = E[Y0] +
R̄∑

k=1

ckh
αk + hαR̄ηR̄(h), lim

h→0
ηR̄(h) = 0, (WEα,R̄)

where ck , k = 1, . . . , R̄, are real coefficients and ηR̄ is a real valued function defined on H.
Strong approximation error assumption:

∃β > 0,V1 ∈ R+, ‖Yh − Y0‖2
2 = E

[|Yh − Y0|2
]≤ V1h

β. (SEβ )

Note that the parameters α, β and R̄ are structural parameters which only depend on the family
(Yh)h∈H. When (Yh)h∈H satisfies (WEα,R̄) for every integer R̄, we will say that (WEα,R̄) is
fulfilled. Such a family is said to be admissible (at level R̄ with parameters β and α).

Note that consistency of weak error (WEα,R̄) (when c1 �= 0) and strong error (SEβ ) implies
that β ≤ 2α.

In the sequel, we will consider that the depth parameter R ∈ {2, . . . , R̄} so that it always satis-
fies (WEα,R̄). This parameter R corresponds to the depth level L used in the multilevel literature.

In what follows, we will use the following ratio

θ =
√

V1

var(Y0)
(9)

which relates the quadratic rate of convergence of Yh to Y0 and the variance of Y0.

Remark 2.2 (Alternative strong approximation error assumptions). Throughout the paper,
whenever (WEα,1) holds (with c1 �= 0), (SEβ ) can be replaced by one of the following assump-
tions

∃β > 0,V1 ∈ R+, var(Yh − Y0) ≤ V1h
β, h ∈ H (Varβ )

and

∃β > 0,V1 ∈ R+, var(Yh − Yh′) ≤ V1
∣∣h − h′∣∣β,h, h′ ∈H. (Var′β )

The aim being is to reduce the numerical value of V1 in view of practical implementation
for (Varβ ) and the estimate of the variance of refined levels for (Var′β ). Note that, still if (WEα,1)
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holds, ((Varβ ) and β ≤ 2α) ⇐⇒ (SEβ ) (the first one with a lower V1 if α = 2β) and (Var′β ) ⇒
(Varβ ) by letting h′ → 0 (the converse being false).

The theoretical results obtained using one of these two assumptions (combined with (WEα,R̄))
may induce slight modifications in the exposition of the results of this paper (in particular The-
orem 3.6). These variants are briefly discussed in Remark 3.7 and practical guidelines for the
estimation of V1 are discussed in Section 5.1 (Practitioner’s corner).

All estimators considered in this work are based on independent copies (Y
(j)
h )h∈H (attached

to random variables Y
(j)

0 ) of (Yh)h∈H, j = 1, . . . ,R. All random variables are supposed to be
defined on the same probability space (�,A,P). Note that, since the above properties (SEβ )
and (WEα,R̄), R̄ ≥ 1, only depend on the distribution of (Yh)h∈H, all these copies will also
satisfy these two properties.

We associate to the family (Yh)h∈H and a given bias parameter h ∈H, the RR-valued random
vector

Yh,n = (Yh,Y h
n2

, . . . , Y h
nR

),

where the R-tuple of integers n := (n1, n2, . . . , nR) ∈ NR , called refiners in the sequel, satisfy

n1 = 1 < n2 < · · · < nR.

One defines likewise Y
(j)
h,n for the (independent) copies of Yh,n.

� Specification of the refiners: In most applications, we will choose refiners ni as ni = Mi−1

where M ≥ 2. Indeed, this is the standard choice in the regular Multilevel Monte Carlo method
as described in [12]. Other choices like ni = i are possible (see below the original Multistep
Richardson–Romberg estimator in Section 2.4).

2.3. Crude Monte Carlo estimator

In our formalism, a crude Monte Carlo simulation and its cost can be described as follows.

Proposition 2.3. Assume (WEα,R̄) with c1 �= 0 and (SEβ ) with R̄ ≥ 1. The Monte Carlo estima-
tor of E[Y0] defined by

∀N ≥ 1, h ∈ H, Ȳ N
h = 1

N

N∑
k=1

Y k
h ,

where (Y k
h )k≥1 is an i.i.d. sequence of copies of Yh, satisfies

μ(h) = c1h
α
(
1 + η1(h)

)
, κ(h) = 1

h
, φ(h) = var(Yh)

h
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and, for a prescribed L2-error ε > 0, the optimal parameters h∗(ε) and N∗(ε) solution to (4)
are given by

h∗(ε) = (1 + 2α)−
1

2α

(
ε

|c1|
) 1

α

, N∗(ε) =
(

1 + 1

2α

)
var(Y0)(1 + θ(h∗(ε))

β
2 )2

ε2
. (10)

Furthermore, we have

lim sup
ε→0

ε2+ 1
α min

h∈H
|μ(h)|<ε

Cost
(
Ȳ N

h

)≤ |c1| 1
α

(
1 + 1

2α

)
(1 + 2α)

1
2α var(Y0).

Proof. The proof is postponed to Appendix B. �

We refer to the seminal paper [11] for more details on practical implementation of this estima-
tor.

Remark 2.4. For crude Monte Carlo simulation, Assumption (SEβ ) can be replaced by Yh
L2→ Y0

(without rate), provided var(Y0)(1 + θ(h∗(ε))
β
2 )2 is replaced by var(Yh∗(ε)) in (10).

2.4. Background on multistep Richardson–Romberg extrapolation

The so-called Multistep Richardson–Romberg estimator has been introduced in [27] in the frame-

work of Brownian diffusions. It relies on R (refined) Euler schemes X̄
( h

ni
)
, 1 ≤ i ≤ R, defined on

a finite interval [0, T ] (T > 0), where the bias parameter h = T
n

, n ≥ 1. In that case, the refiners
are set as ni = i, i = 1, . . . ,R (in order to produce a better control of both the variance and the
complexity for the proposed estimator, see Remark 2.6 below). The main results are obtained
when all the schemes are consistent that is, such that all the Brownian increments are generated
from the same underlying Brownian motion. As a consequence, under standard smoothness as-
sumptions on the coefficients of the diffusion, the family Yh = X̄(h), h ∈H = {T

n
, n ≥ 1}, makes

up an admissible family in the above sense, as will be seen further on in more details.
For a refiner vector (n1, n2, . . . , nR), we define the weight vector w = (w1, . . . ,wR) as the

unique solution to the Vandermonde system V w = e1 where

V = V
(
1, n−α

2 , . . . , n−α
R

)=
⎛⎜⎜⎜⎜⎝

1 1 · · · 1

1 n−α
2 · · · n−α

R

...
... · · · ...

1 n
−α(R−1)
2 · · · n

−α(R−1)
R

⎞⎟⎟⎟⎟⎠ . (11)

The solution w of the system has a closed form given by Cramer’s rule (see Lemma A.1 in
Appendix A):

∀i ∈ {1, . . . ,R}, wi = (−1)R−in
α(R−1)
i∏

1≤j<i(n
α
i − nα

j )
∏

i<j≤R(nα
j − nα

i )
. (12)
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We also derive the following identity of interest

w̃R+1 :=
R∑

i=1

wi

nαR
i

= (−1)R−1

n!α , (13)

which will be used in (15) and (17) to control the residual bias.
Note that all coefficients (wi )1≤i≤R depend on the depth R of the combined extrapolations.

For the standard choices ni = i or ni = Mi−1, i = 1, . . . ,R, we obtain the following expressions:

wi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)R−i iα(R−1)∏i−1

j=1(i
α − jα)

∏R
i+1(j

α − iα)
, if nj = j, j ∈ {1, . . . ,R},

(−1)R−iM− α
2 (R−i)(R−i+1)∏i−1

j=1(1 − M−jα)
∏R−i

j=1(1 − M−jα)
, if nj = Mj−1, j ∈ {1, . . . ,R}.

(14)

Note that when α = 1 and ni = i, then wi = (−1)R−i iR

i!(R−i)! , i = 1, . . . ,R.

Assume now (WEα,R̄) and R ∈ {1, . . . , R̄}. In order to design an estimator which kills the bias
up to order R, we focus on the random variable resulting from the linear combination 〈w, Yh,n〉 =∑R

i=1 wiY h
ni

.

The first equation of the Vandermonde system V w = e1, namely (V w)1 =∑R
r=1 wr = 1, im-

plies

lim
h→0

E
[〈w, Yh,n〉

]= E[Y0].
Furthermore, when expanding the (weak) error, one checks that the other R − 1 equations satis-
fied by the weight vector w make all terms in front of the cr−1, r = 2, . . . ,R vanish. Finally, we
obtain

E
[〈w, Yh,n〉

] = E[Y0] +
R∑

r=2

cr−1h
α(r−1)(V w)r + cRw̃R+1h

αR
(
1 + ηR,n(h)

)
(15)

= E[Y0] + cRw̃R+1h
αR
(
1 + ηR,n(h)

)
, (16)

where

ηR,n(h) = 1

cRw̃R+1

R∑
r=1

wr

nαR
r

ηR

(
h

nr

)
→ 0 as h → 0. (17)

Proposition 2.5. Assume (WEα,R̄) and (SEβ ). Let R ∈ {2, . . . , R̄} be such that cR �= 0. The
Multistep Richardson–Romberg estimator of E[Y0] defined by

∀N ≥ 1, h ∈ H, Ȳ N
h,n = 1

N

N∑
k=1

〈
w, Y k

h,n

〉= 〈w,
1

N

N∑
k=1

Y k
h,n

〉
, (18)
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where (Y k
h,n)k≥1 is an i.i.d. sequence of copies of Yh,n, satisfies

μ(h) = (−1)R−1cR

(
hR

n!
)α(

1 + ηR,n(h)
)
, κ(h) = |n|

h
, φ(h) = |n|var(〈w, Yh,n〉)

h

and, for a prescribed L2-error ε > 0, the optimal parameters h∗(ε) and N∗(ε) solution of (4)
are

h∗(ε) = (1 + 2αR)−
1

2αR

(
ε

|cR|
) 1

αR

n! 1
R ,

N∗(ε) =
(

1 + 1

2αR

)
var(Y0)(1 + θ(h∗(ε))

β
2 )2

ε2
.

Furthermore,

inf
h∈H

|μ(h)|<ε

Cost
(
Ȳ N

h

)∼ ( (1 + 2αR)1+ 1
2αR

2αR

) |cR| 1
αR |n|var(Y0)

n! 1
R ε2+ 1

αR

as ε → 0. (19)

Proof. The proof is postponed to Appendix B (but takes advantage of the formalism developed
in the next section). �

Remark 2.6.

• As for (SEβ ), Remark 2.4 still applies.
• In this approach, the bias reduction suffers from an increase of the simulation cost by the

|n| factor which appears in the numerator of (19). The choice of the refiners made in [27],
namely ni = i, i = 1, . . . ,R, is justified by the control of the ratio |n|

n! 1
R

: for such a choice,

it behaves linearly, like e
2 (R + 1), for large values of R whereas with ni = Mi−1 it goes to

infinity geometrically in O(M
R−1

2 ).

3. A paradigm for multilevel simulation methods

3.1. General framework

Multilevel decomposition

In spite of Proposition 2.5 which shows that the numerical cost of the Multistep method behaves

like ε2+ 1
αR , one observes in practice that the increase of the ratio |n|

n! (when R grows) in front of
var(Y0) in (19) reduces the impact of the bias reduction.

An idea is then to introduce independent linear combination of copies of Ȳh,n to reduce the
variance taking advantage of the basic fact that if X and X′ are independent with the same
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distribution then E[X+X′
2 ] = E[X] and var(X+X′

2 ) = 1
2 var(X), combined with an appropriate

allocation policy to control the complexity of the resulting estimator. So, let us consider now R

independent copies (Y
(j)
h,n), j = 1, . . . ,R, of the random vector Yh,n and the linear combination

R∑
j=1

〈
Tj , Y

(j)
h,n

〉= R∑
i,j=1

Tj
i Y

(j)
h
ni

,

where T = [T1 . . .TR] is an R ×R matrix with column vectors Tj ∈ RR satisfying the constraint∑
1≤i,j≤R

Tj
i = 1.

As emphasized further on, we will also need that each column vector Tj , j ∈ 2, . . . ,R, has
zero sum. In turn, this suggests to introduce the notion of Multilevel estimator as a family of
“stratified” estimators of E[Y0] attached to the random vectors 〈Tj , Y

(j)
h,n〉, j = 1, . . . ,R. This

leads to the following definitions.

Definition 3.1 (Design matrix). Let R ≥ 2. An R × R-matrix T = [T1 . . .TR] is an R-level
design matrix if

〈
Tj ,1

〉= R∑
i=1

Tj
i = 0, j = 2, . . . ,R. (20)

Note that such a design matrix always satisfies
∑d

i,j=1 Tj
i = 1.

Definition 3.2 (General multilevel estimator). Let R ≥ 2 and let (Y
(j),k
h,n )k≥1 be an i.i.d. se-

quence of copies of Y
(j)
h,n . A Multilevel estimator of depth R attached to an allocation policy

q = (q1, . . . , qR) with qj > 0, j = 1, . . . ,R, and
∑

j qj = 1 and a design matrix T, is defined
for every integer N ≥ 1 and h ∈ H by

Ȳ
N,q
h,n =

R∑
j=1

1

Nj

Nj∑
k=1

〈
Tj , Y

(j),k
h,n

〉
, (21)

where for all j ∈ {1, . . . ,R}, Nj = �qjN	 (allocated budget to compute E[〈Tj , Y
(j)
h,n〉]).

• If furthermore the R-level design matrix T satisfies

T1 = e1 and
R∑

j=1

Tj = eR, (22)

the estimator is called a Multilevel Monte Carlo (MLMC) estimator of order R.
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• If, furthermore, the R-level design matrix T satisfies

T1 = e1 and
R∑

j=1

Tj = w, where w is the unique solution to (12), (23)

the estimator is called a Multilevel Richardson–Romberg (ML2R) estimator of order R.

Remark 3.3.

• Note that the assumption T1 = e1 is not really necessary. It simply allows for more concise
formulas in what follows.

• In this framework, denoting by 0 the null column vector of RR , the crude Monte Carlo is
associated to the design matrix T = (e1,0, . . . ,0) and the Multistep Richardson–Romberg
estimator is associated to T = (w,0, . . . ,0).

• Introducing such general families of matrices will allow us to justify the final choice of
design matrices. To reduce the complexity of the resulting estimators leads us to choose as
sparse as possible design matrices satisfying the constraints (22) or (23).

Within the abstract framework of a parametrized Monte Carlo simulation described in Sec-
tion 2.1, the structure parameter π of the multilevel estimators (Ȳ

N,q
h,n )N≥1 defined by (21) is

π = (π0, q) where

⎧⎨⎩q = (q1, . . . , qR) ∈ (0,1)R,
∑

i

qi = 1,

π0 = (h,n1, . . . , nR,R,T) ∈ 	0.

Cost, complexity and effort of a multilevel estimator

In order to minimize the effort φ(π) of the estimator (21), let us first evaluate its unitary compu-

tational complexity. For a simulation size N , the numerical cost induced by the estimators Y
N,q
h,n ,

N ≥ 1, reads

Cost
(
Ȳ

N,q
h,n

)= R∑
j=1

Nj

R∑
i=1

1

h
ni1{Tj

i �=0} = Nκ(π), (24)

where the unitary complexity κ(π) is given by

κ(π) = 1

h

R∑
j=1

qj

R∑
i=1

ni1{Tj
i �=0}. (25)

At this stage, it is clear that the design matrix T must be as sparse as possible to minimize κ(π).
However, it may happen, like for nested Monte Carlo (see Section 4.2 for details), that the unitary
complexity writes

κ(π) = 1

h

R∑
j=1

qj max
1≤i≤R

(ni1{Tj
i �=0}). (26)
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The variance of the Multilevel estimator is inverse linear in N (hence of Monte Carlo type)
since, using the independence of the levels, we get

var
(
Ȳ

N,q
h,n

) = R∑
j=1

1

N2
j

var

( Nj∑
k=1

〈
Tj , Y

(j),k
h,n

〉)

= 1

N

R∑
j=1

1

qj

var
(〈

Tj , Y
(j)
h,n

〉)
so that the effort of such a Multilevel estimator is given by

φ(π) = ν(π)κ(π) =
(

R∑
j=1

1

qj

var
(〈

Tj , Y
(j)
h,n

〉))
κ(π). (27)

Bias error of a multilevel estimator

We now establish the bias error in this general framework. The proposition below about the bias
error follows straightforwardly from the weak error expansion (WEα,R̄) and the definition of a
design matrix T.

Proposition 3.4. Assume (WEα,R̄).

(a) ML2R estimator: Let R ∈ {2, . . . , R̄} be the depth of an ML2R estimator. For any admis-
sible allocation policy q = (q1, . . . , qR), the bias error reads

μ(π0, q) = (−1)R−1cR

(
hR

n!
)α(

1 + ηR,n(h)
)
, (28)

where ηR,n(h) = (−1)R−1n!α∑R
r=1

wr

nαR
r

ηR( h
nr

) (see (17)) with ηR defined in (WEα,R̄).

(b) MLMC estimator: Let R ≥ 2 be the depth of an MLMC estimator. For any admissible
allocation policy q = (q1, . . . , qR), the bias error reads

μ(π0, q) = c1

(
h

nR

)α(
1 + η1

(
h

nR

))
(29)

with η1 defined in (WEα,R̄).

Toward the optimal parameters

The optimization problem (8) is not attainable directly, so we decompose it into two successive
steps:

Step 1: Minimization of the effort φ over all allocation policies q = (qj )1≤j≤R
(as a function

of a fixed bias parameter h). In practice, we will minimize an upper-bound φ̄ of the effort φ

q∗ = argmin
q∈S+(R)

φ̄(π0, q), where φ(π) ≤ φ̄(π), and φ∗(π0) = φ
(
π0, q

∗). (30)
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This phase is solved in Theorem 3.6 below (an explicit expression for φ̄ is provided in (34)). The
quantity φ∗(π0) is called the optimally allocated effort (with a slight abuse of terminology since
φ̄ is only an upper bound of φ).

Step 2: Minimization of the resulting cost as a function of the remaining parameters π0 for a
prescribed L2-error ε > 0 (and specification of the resulting size of the simulation and its cost):

π0(ε) = argmin
π0∈	0

|μ(π0,q
∗)|<ε

(
φ∗(π0)

ε2 − μ2(π0, q∗)

)
, N

(
π0(ε)

)= φ∗(π0(ε))

κ(π0(ε), q∗)(ε2 − μ2(π0, q∗))
.

It will be solved asymptotically when ε goes to 0 in two sub-steps. First, we consider a fixed
depth R (with general refiners) in Proposition 3.9 which provides a closed form for h∗(ε). Sec-
ondly, we let R vary as a function of ε (only for geometric refiners ni = Mi−1). This leads to the
main result of the paper Theorem 3.12 which yields a closed form for R∗(ε) (and N∗(ε)) and the
various asymptotics for the cost, depending on β and other structural parameters.

3.2. Optimally allocated effort (Step 1)

Throughout our investigations on these estimators, we will make extensive use of the following
lemma which is a straightforward consequence of Schwarz’s Inequality including its equality
case.

Lemma 3.5. For all j ∈ {1, . . . ,R}, let aj > 0, bj > 0 and qj > 0 such that
∑R

j=1 qj = 1. Then(
R∑

j=1

aj

qj

)(
R∑

j=1

bjqj

)
≥
(

R∑
j=1

√
ajbj

)2

and equality holds if and only if qj = μ

√
ajb

−1
j , j = 1, . . . ,R, with μ = (

∑R
k=1

√
akb

−1
k )−1.

Theorem 3.6. Assume (SEβ ) holds and let θ be defined by (9). Then, the optimally allocated
effort φ∗ defined by (30) satisfies

φ∗(π0) ≤ φ̄
(
π0, q

∗)= var(Y0)

h

(
1 + θh

β
2

R∑
j=1

(
R∑

i=1

∣∣Tj
i

∣∣n− β
2

i

)(
R∑

i=1

ni1{Tj
i �=0}

) 1
2
)2

,

where q∗ = q∗(π0) is an optimal policy (with respect to the upper bound φ̄) given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
q∗

1 (π0) = μ∗
R

(
1 + θh

β
2
)
,

q∗
j (π0) = μ∗

Rθh
β
2

(
R∑

i=1

∣∣Tj
i

∣∣n− β
2

i

)(
R∑

i=1

ni1{Tj
i �=0}

)− 1
2

, j = 2, . . . ,R,
(31)

and μ∗
R is the normalizing constant such that

∑R
j=1 q∗

j = 1.
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Proof. Under assumption (20), we have 〈T1, Y
(1)
h,n〉 = Y

(1)
h and, for every j ∈ {2, . . . ,R},

〈Tj , Y
(j)
h,n〉 = 〈Tj , Y

(j)
h,n − Y

(j)

0 1〉 since 〈Tj ,1〉 = 0. Hence, using the sub-additivity of standard
deviation derived from (Minkowski’s inequality) and the strong error assumption, we obtain

∀j ≥ 2, var
(〈

Tj , Y
(j)
h,n

〉) = σ

(
R∑

i=1

Tj
i

(
Y

(j)
h
ni

− Y
(j)

0

))2

≤
(

R∑
i=1

∣∣Tj
i

∣∣σ (Y (j)
h
ni

− Y
(j)

0

))2

(32)

≤ V1h
β

(
R∑

i=1

∣∣Tj
i

∣∣n− β
2

i

)2

.

The variance of the Multilevel estimator is then given by

var
(
Ȳ

N,q
h,n

)≤ 1

N

(
var(Y (1)

h )

q1
+ V1h

β
R∑

j=2

1

qj

(
R∑

i=1

∣∣Tj
i

∣∣n− β
2

i

)2)
. (33)

On the other hand, we have

var
(
Y

(1)
h

) = var(Yh) ≤ E
[
Yh − E[Y0]

]2
≤ ‖Yh − Y0‖2

2 + 2E
[
(Yh − Y0)

(
Y0 − E[Y0]

)]+ var(Y0)

≤ var(Y0) + V1h
β + 2

√
V1h

β/2
√

varY0 = var(Y0)
(
1 + θh

β
2
)2

.

Combining (25), the above inequality (33) and the above upper-bound for var(Y (1)
h ), we derive

the following upper bound φ̄(π) for the effort φ(π) defined by

φ̄(π) = var(Y0)

h

(
(1 + θh

β
2 )2

q1
+ θ2hβ

R∑
j=2

1

qj

(
R∑

i=1

∣∣Tj
i

∣∣n− β
2

i

)2)( R∑
i,j=1

qjni1{Tj
i �=0}

)
. (34)

Applying Lemma 3.5 with a1 = (1 + θh
β
2 )2, b1 = 1 and aj = θ2hβ(

∑R
i=1 |Tj

i |n
− β

2
i )2, bj =∑R

i=1 ni1{Tj
i �=0}, j ∈ {2, . . . ,R} completes the proof. �

Remark 3.7 (Accuracy of the bound). As announced in Remark 2.2, we can replace the strong
error assumption (SEβ ) by a slight modified version e.g. var(Yh − Yh′) ≤ V1|h − h′|β . Using this
assumption, the upper bound of the previous theorem can be improved. For instance, if we make
the natural choice Tj = Wj (ej −ej−1) corresponding to the ML2R estimator (see Section 3.3.2),
we can replace (32) by

σ
(〈

Tj , Y
(j)
h,n

〉)= |Wj |σ(Y h
nj

− Y h
nj−1

) ≤ |Wj |
√

V1

∣∣∣∣ h

nj

− h

nj−1

∣∣∣∣β/2

. (35)

Note that if the constant V1 is sharp, the resulting upper bound derived in Theorem 3.6 is tight.
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Remark 3.8 (About variance minimization). We established in the above proof that for every
allocation policy q = (q1, . . . , qR),

var
(
Ȳ

N,q
h,n

)≤ var(Y0)

N

(
(1 + θh

β
2 )2

q1
+ θ2hβ

R∑
j=2

1

qj

(
R∑

i=1

∣∣Tj
i

∣∣n− β
2

i

)2)
.

Then, applying Lemma 3.5 with a1 = (1 + θh
β
2 )2, b1 = 1 and aj = θ2hβ(

∑R
i=1 |Tj

i |n
− β

2
i )2,

bj = 1, j ∈ {2, . . . ,R}, we obtain (since
∑R

j=1 qjbj = 1)

inf
q∈S+(R)

var
(
Ȳ

N,q
h,n

)≤ var(Y0)

(
1 + θh

β
2

R∑
j=1

R∑
i=1

∣∣Tj
i

∣∣n− β
2

i

)2

with an optimal choice (to minimize the variance):

q
†
1 = μ†(1 + θh

β
2
)
, q

†
j = μ†θh

β
2

(
R∑

i=1

∣∣Tj
i

∣∣n− β
2

i

)

(μ† normalizing constant such that
∑n

j=1 q
†
j = 1). Note that this choice q† differs from the

optimal one q∗ obtained in Theorem 3.6.

3.3. Resulting cost optimization (Step 2)

3.3.1. Bias parameter optimization (R fixed)

In this first sub-step, we fix the depth R ≥ 2, the design matrix T and the refiners n1, . . . , nR and
we only optimize the bias parameter h ∈ H with respect to ε > 0, so that

π0(ε) = h(ε,n1, . . . , nR,R,T).

We recall that φ∗(h) ≤ φ̄(h, q∗) =: φ̄∗(h) where

φ̄∗(h) = var(Y0)

h

(
1 + θh

β
2

R∑
j=1

(
R∑

i=1

∣∣Tj
i

∣∣n− β
2

i

)(
R∑

i=1

ni1{Tj
i �=0}

) 1
2
)2

. (36)

Proposition 3.9 (Bias parameter optimization). Assume (WEα,R̄) and (SEβ ). Let R ≥ 2 and
let ni , i = 1, . . . ,R, be fixed refiners.

(a) ML2R estimator: Let R ∈ {2, . . . , R̄} be such that cR �= 0. A ML2R estimator of depth R

obtained with the allocation policy q∗ defined by (31) and a bias parameter

h∗(ε,R) = (1 + 2αR)−
1

2αR

(
ε

|cR|
) 1

αR

n! 1
R (37)
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achieves the asymptotic minimal cost, namely

inf
h∈H

|μ(h,q∗)|<ε

Cost
(
Ȳ

N,q∗
h,n

)∼ ( (1 + 2αR)1+ 1
2αR

2αR

) |cR| 1
αR var(Y0)

n! 1
R ε2+ 1

αR

as ε → 0.

(b) MLMC estimator: Assume c1 �= 0. An MLMC estimator of depth R obtained with the
allocation policy q∗ defined in (31) and a bias parameter

h∗(ε,R) = (1 + 2α)−
1

2α

(
ε

|c1|
) 1

α

nR (38)

achieves the asymptotic minimal cost, namely

inf
h∈H

|μ(h,q∗)|<ε

Cost
(
Ȳ

N,q∗
h,n

)∼ ( (1 + 2α)1+ 1
2α

2α

) |c1| 1
α var(Y0)

nRε2+ 1
α

as ε → 0.

Proof. (a) By definition of the effort φ and the bias μ of the estimator, we have (see Section 2.1)

Cost
(
Ȳ

N,q∗
h,n

)= φ∗(h)

ε2 − μ2(h, q∗)
.

It follows from (36) that the cost minimization problem is upper-bounded by the more tractable
problem

inf
h∈H,|μ(h,q∗)|<ε

hφ̄∗(h)

h(ε2 − μ2(h, q∗))

with a bias μ(h, q∗) satisfying (28). First, note that limh→0 hφ̄(h, q∗) = var(Y0). We will con-
sider now the denominator h(ε2 −μ2(h, q∗)). Elementary computations show that, for fixed real
numbers a,R′ > 0, the function ga,R′ defined by ga,R′(ξ) = ξ(1 − a2ξ2R′

), ξ > 0, satisfies

ξ
(
a,R′) := argmax

ξ>0
ga,R′(ξ) = ((2R′ + 1

) 1
2 a
)− 1

R′

and

max
(0,+∞)

ga,R′ = 2R′

(2R′ + 1)
1+ 1

2R′
a

− 1
R′ .

Then, set R′ = Rα, ã = |w̃R+1cR |
ε

. Inspired by what precedes, we make the sub-optimal choice

h(ε,R) = h(ε,R,α) = ξ(ã, αR) = ( ε

(2αR+1)
1
2 |cR |

)
1

αR n! 1
R corresponding to the case ηR,n ≡ 0. It

is clear that, at least for small enough ε, μ2(h, q∗) < ε2 which makes this choice admissible.
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Hence,

inf
h∈H

|μ(h,q∗)|<ε

φ∗(h)

ε2 − μ2(h, q∗)
(39)

≤
(

1 + 1

2αR

)
(2αR + 1)

1
2αR |cR| 1

αR
h(ε,R)φ̄∗(h(ε,R))

n! 1
R ε2+ 1

αR

1

1 − (ηR,n(h(ε,R))+1)2−1
2αR

.

The “lim sup” side of the result follows since limh→0 ηR,n(h) = 0.
On the other hand, it follows from the definition (27) of the effort φ that

φ∗(h) = 1

h

(
R∑

j=1

1

q∗
j

var
(〈

Tj , Y
(j)
h,n

〉))( R∑
i,j=1

qjni1{Tj
i �=0}

)
.

Then Schwarz’s Inequality implies

φ∗(h) ≥ 1

h

(
R∑

j=1

√
var
(〈

Tj , Y
(j)
h,n

〉)√√√√ R∑
i=1

ni1{Tj
i �=0}

)2

≥ 1

h
max

1≤j≤R

(
var
(〈

Tj , Y
(j)
h,n

〉) R∑
i=1

ni1{Tj
i �=0}

)

≥ 1

h
max

1≤j≤R
var
(〈

Tj , Y
(j)
h,n

〉)
since ni ≥ n1 = 1, i = 1, . . . ,R. Denoting g(h) = max1≤j≤R var(〈Tj , Y

(j)
h,n〉) one clearly has

limh→0 g(h) = var(Y0) under the strong assumption (SEβ ) and, as a consequence,
limh→0 hφ(h) = var(Y0). Hence, the cost minimization problem is lower bounded by the more
explicit problem

inf
h∈H

|μ(h,q∗)|<ε

g(h)

h(ε2 − μ2(h, q∗))
.

Let η ∈ (0,1). There exists εη > 0 such that, for every h ∈ (0, h(εη,R)),∣∣g(h) − var(Y0)
∣∣≤ η var(Y0) and

∣∣ηR,n(h)
∣∣≤ η.

Let ε ∈ (0, εη). We derive from equation (28) that

μ
(
h(εη,R), q∗)2 ≥ ε2

η(1 − η)

2αR + 1
.
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Consequently, if ε <
εη

√
1−η√

2αR+1
, for every h > 0 such that μ2(h, q∗) < ε2, one has

g(h)

h(ε2 − μ(h, q∗)2)
≥ var(Y0)(1 − η)

h(ε2 − (1 − η)(w̃R+1cR)2h2αR)
.

Taking advantage of what was done in the “lim sup” part, we get

inf
h∈H

μ(h,q∗)<ε

g(h)

h(ε2 − μ(h, q∗)2)
≥
(

1 + 1

2αR

)
(2αR + 1)

1
2αR |cR| 1

αR
var(Y0)

n! 1
R ε2+ 1

αR

(1 − η)1+ 1
2αR .

Letting ε and η successively go to zero, yields the “lim inf” side.
(b) Owing to (29), the bias μ(h, q) is now given by

μ(h, q) =
(

h

nR

)α(
c1 + η1

(
h

nR

))
with lim

h→0
η1(h) = 0.

Following the lines of the proof of (a) with R′ = α completes the proof. �

Remark 3.10.

• The fact that the function limh→0 hφ∗(h) = var(Y0) follows from the L2-strong convergence
of Yh toward Y0. Its rate of convergence plays no explicit role in this asymptotic rate of the
cost as ε → 0. However, this strong rate is important to design a practical allocation across
the R levels, which is the key to avoid an explosion of this term.

• When cR = 0, the same reasoning can be carried out by considering any small parameter
εR

0 > 0. Anyway in practice cR is usual not known and the impact of this situation is briefly
discussed further on in Section 3.3.3.

• When c1 = 0, specific weights can be computed (see Practitioner’s corner in Section 5.1).

Remark 3.11. The asymptotic number N of simulations given by (8) satisfies

N(ε) ∼
(

1 + 1

2αR

)
var(Y0)

ε2

(
R∑

j=1

q∗
j

R∑
i=1

ni1{Tj
i �=0}

)−1

as ε → 0

for an ML2R estimator and

N(ε) ∼
(

1 + 1

2α

)
var(Y0)

ε2

(
R∑

j=1

q∗
j

R∑
i=1

ni1{Tj
i �=0}

)−1

as ε → 0

for an MLMC estimator.

3.3.2. Templates for the design matrix T

We now specify the design matrices T in both multilevel settings MLMC defined in (22) and
ML2R defined in (23).
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MLMC estimator. The standard Multilevel Monte Carlo design matrix used by [12,19] is de-
rived from the telescopic summation

E[Y h
nR

] = E[Yh] +
R∑

j=2

E[Y h
nj

− Y h
nj−1

].

This telescopic sum corresponds to the design matrix T defined by Tj = ej − ej−1, j =
2, . . . ,R that is,

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · · · · 0

0 1 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · · · · 0 1 −1

0 · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (MLMC)

In that case, the resulting upper-bound φ̄∗ of φ∗ writes, with the convention n0 = (n0)
−1 = 0,

φ̄∗(π0) = var(Y0)

h

(
1 + θh

β
2

R∑
j=1

(
n

− β
2

j−1 + n
− β

2
j

)√
nj−1 + nj

)2

. (40)

With this design matrix (MLMC) the MLMC estimator writes

Ȳ
N,q
h,n = 1

N1

N1∑
k=1

Y
(1),k
h +

R∑
j=2

1

Nj

Nj∑
k=1

(
Y

(j),k
h
nj

− Y
(j),k

h
nj−1

)
(41)

with Nj = �qjN	.
ML2R estimator. The natural counterpart for the design matrix T in the ML2R setting appears

as Tj = −Wj ej−1 + Wj ej , j = 2, . . . ,R with Wj =∑R
k=j wk and w given by (12) that is,

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −W2 0 · · · · · · 0

0 W2 −W3 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · · · · 0 WR−1 −WR

0 · · · · · · · · · 0 WR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (ML2R)

The resulting upper-bound φ̄∗ reads (still with the convention n0 = (n0)
−1 = 0),

φ̄∗(π0) = var(Y0)

h

(
1 + θh

β
2

R∑
j=1

|Wj |
(
n

− β
2

j−1 + n
− β

2
j

)√
nj−1 + nj

)2

. (42)
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In the sequel, we will focus on the above choice (ML2R) for the design matrix T which leads
to the ML2R estimator (3) proposed in the Introduction. With this design matrix (ML2R), the
ML2R estimator writes as a weighted version of MLMC

Ȳ
N,q
h,n = 1

N1

N1∑
k=1

Y
(1),k
h +

R∑
j=2

Wj

Nj

Nj∑
k=1

(
Y

(j),k
h
nj

− Y
(j),k

h
nj−1

)
, (43)

where Nj = �qjN	. Alternative choices for T are proposed in Section 5.1.

3.3.3. Global optimization with varying depth R for geometric refiners

In this final sub-step, we consider geometric refiners with root M ≥ 2 of the form

ni = Mi−1, i = 1, . . . ,R

and we only analyze the ML2R and MLMC estimators defined by (43) and (41), respectively.
Note that geometric refiners have already been considered in regular multilevel Monte Carlo
framework in [12].

Theorem 3.12. Assume (SEβ ) holds for β > 0.

(a) ML2R estimator: Assume (WEα,R̄), supR∈N suph′∈(0,h) |ηR(h′)| < +∞ for every h ∈
H and limR→+∞ |cR| 1

R = c̃∞ ∈ (0,+∞). The ML2R estimator (43) with design matrix T
in (ML2R) satisfies

lim sup
ε→0

v(β, ε) × inf
h∈H,R≥2

|μ(h,R,q∗)|<ε

Cost
(
Ȳ

N,q
h,n

)≤ KML2R(α,β,M) (44)

with

v(β, ε) =

⎧⎪⎪⎨⎪⎪⎩
ε2, if β > 1,

ε2
(
log(1/ε)

)−1
, if β = 1,

ε2e
− 1−β√

α

√
2 log(1/ε) log(M)

, if β < 1.

When β < 1, the best rate is achieved with M = 2. These rates are achieved with a depth

R∗(ε) =
⌈

1

2
+ log(c̃

1
α h)

log(M)
+
√(

1

2
+ log(c̃

1
α h)

log(M)

)2

+ 2
log(A/ε)

α log(M)

⌉
, A = √

1 + 4α,

with c̃ > c̃∞, satisfying limε→0 R∗(ε) = +∞ and a bias parameter h∗(ε) = h/�h/h∗(ε,R∗(ε))	
where h∗(ε,R) is given by (37). The finite real constant KML2R(α,β,M) depends on M and on
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the structural parameters α, β , V1, var(Y0), h, namely

KML2R(α,β,M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

var(Y0)M

h

(
1 + θh

β
2

Wα(M)M
β−1

2
√

1 + M(1 + M− β
2 )

1 − M
1−β

2

)2

,

if β > 1,

2V1

α

(
Wα(M)M(1 + M)(1 + M− 1

2 )2

log(M)

)
, if β = 1,

V1h1−β c̃
(1−β)

α∞
(

W2
α(M)M2−β(1 + M)(1 + M− β

2 )2

(M
1−β

2 − 1)2

)
,

if β < 1,

(45)

where Wα(M) = M−α

π2
α,M

∑
k≥0 M−α

k(k+3)
2 + 1

πα,M
with πα,M =∏k≥1(1 − M−αk).

(b) MLMC estimator: Assume (WEα,1) and c1 �= 0. The MLMC estimator (41) (with design
matrix T defined in (MLMC)) satisfies

lim sup
ε→0

v(β, ε) × inf
h∈H,R≥2

|μ(h,R,q∗)|<ε

Cost
(
Ȳ

N,q
h,n

)≤ KMLMC(α,β,M) (46)

with

v(β, ε) =

⎧⎪⎪⎨⎪⎪⎩
ε2, if β > 1,

ε2
(
log(1/ε)

)−2
, if β = 1,

ε2+ 1−β
α , if β < 1.

These rates are achieved with a depth

R∗(ε) =
⌈

1 + log(|c1| 1
α h)

log(M)
+ log(A/ε)

α log(M)

⌉
, A = √

1 + 2α

satisfying limε→0 R∗(ε) = +∞ and a bias parameter h∗(ε) = h/�h/h∗(ε,R∗(ε))	 where
h∗(ε,R) is given by (38). The finite real constant KMLMC(α,β,M) depends on M and the struc-
tural parameters α,β,V1,var(Y0),h, namely

KMLMC(α,β,M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + 1

2α

)
var(Y0)M

h

(
1 + θh

β
2
M

β−1
2

√
1 + M(1 + M− β

2 )

1 − M
1−β

2

)2

,

if β > 1,(
1 + 1

2α

)
V1

α2

(
M(1 + M)(1 + M− 1

2 )2

log(M)2

)
, if β = 1,

(1 + 2α)1+ 1−β
2α

2α
V1h1−β |c1| (1−β)

α

(
M2−β(1 + M)(1 + M− β

2 )2

(M
1−β

2 − 1)2

)
,

if β < 1.



2666 V. Lemaire and G. Pagès

Comments

Claim (b) is essentially established in Giles’ complexity theorem from [12].

• When β < 1, ML2R (with M = 2) is asymptotically more efficient than MLMC by a factor

ε
− 1−β√

α e− 1−β
α

√
2 log(M) log(1/ε) which goes to +∞ as ε → 0 in a very steep way. To be precise

the ratio is greater than 1 as soon as

ε ≤ 2− 2
α .

It is clear that it is for this setting that ML2R is the most powerful compared to regular
MLMC.

• When β = 1, ML2R is asymptotically more efficient than MLMC by a factor log(1/ε) →
+∞ as ε → 0.

• When β > 1, both estimators achieve the same rate ε−2 as a virtual unbiased Monte Carlo
method based on the direct simulation of Y0. Some numerical experiments carried out with
the call in Black–Scholes model discretized by a Milstein scheme strongly suggest that the
constant of the ML2R estimator is significant lower than the MLMC one.

Remark 3.13.

• It is proved in Appendix B that limM→+∞ Wα(M) = 1 and, to be more precise, that
Wα(M) − 1 ∼ M−α as M → +∞.

• The assumption on the functions ηR and the sequence (cR)R≥2 in (a) of the above proposi-
tion are reasonable, though almost impossible to check in practice. In particular, note that
as soon as the sequence (cR)R≥2 has at most a polynomial growth as a function of R, it
satisfies the assumption since c̃∞ = 1.

• When c̃∞ = 0, the constant K(α,β,M) equals to 0 which emphasizes that we are not in the
right asymptotic. In practive c̃∞ is replaced in this constant by the parameter c̃ > 0 used to
define the depth.

Proof of Theorem 3.12. We provide a detailed proof of claim (a), that of (b) following the same
lines.

Step 1: We start from equation (39) in the proof of Proposition 3.9 which reads

inf
h∈H

|μ(h,q∗)|<ε

Cost
(
Ȳ

N,q∗
h,n

)≤ (1 + 1

2αR

)
φ̄∗(h∗(ε,R))

ε2

1

1 − (ηR,n(h∗(ε,R))+1)2−1
2αR

with

φ̄∗(h∗(ε,R)
)= var(Y0)

h∗(ε,R)

(
1 + θh∗(ε,R)

β
2

R∑
j=1

|Wj |
(
n

− β
2

j−1 + n
− β

2
j

)√
nj−1 + nj

)2

(convention n0 = (n0)
−1 = 0). The idea is to choose R = R∗(ε) as large as possible provided the

optimal bias parameter lies in H. The form of the refiners ni = Mi−1 implies that n! = M
R(R−1)

2
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so that

h∗(ε,R) = (1 + 2αR)−
1

2αR |cR|− 1
αR ε

1
αR M

R−1
2 .

To determine the dependence of R with respect to ε we consider the auxiliary function

h̃(ε,R) = (1 + 4α)−
1

2αR c̃− 1
α ε

1
αR M

R−1
2 ,

and the polynomial function P defined by

P(R) = R(R − 1)

2
log(M) − R log(K) − 1

α
log(

√
1 + 4α/ε)

with K = c̃
1
α h, so that h̃(ε,R) = he

P(R)
R . Note that P has a unique positive root R+(ε) given by

R+(ε) = 1

2
+ log(K)

log(M)
+
√(

1

2
+ log(K)

log(M)

)2

+ 2
log(

√
1 + 4α/ε)

α logM
,

hence satisfying h̃(ε,R+(ε)) = h. We then consider R∗(ε) = �R+(ε)	 and define h∗(ε) as the
projection of h∗(ε,R∗(ε)) on H so that h∗(ε) ≤ h and h∗(ε) is equal to h for small enough ε.

Let us show that our choice h∗(ε) is admissible, i.e. μ(ε) := μ(h∗(ε),R∗(ε), q∗)2 < ε2 at least
for small enough ε. Elementary computations show that

μ(ε)2 = (cR∗(ε)M
− R∗(ε)(R∗(ε)−1)

2 αh∗(ε)αR∗(ε))2(1 + ηR∗(ε),n
(
h∗(ε)

))2
= (1 + 4α)−1ε2e−2αP (R∗(ε))

(
cR∗(ε)
c̃R∗(ε)

)2(
1 + ηR∗(ε),n

(
h∗(ε)

))2
.

First note that we have limR→+∞ |cR| 1
R = c̃∞ and c̃ > c̃∞. Moreover, Claim 6 of Proposition A.2

in Appendix A and the assumption on ηR imply that

sup
0<h′<h

∣∣ηR∗(ε),n
(
h′)∣∣≤ Bα(M) sup

h′∈(0,h)

∣∣ηR∗(ε)
(
h′)∣∣≤ Bα(M) sup

R≥1
sup

h′∈(0,h)

∣∣ηR

(
h′)∣∣< +∞.

As a consequence of the assumption made on the functions ηR , it is clear that μ(ε)2 = o(ε2)

since R∗(ε) → +∞ as ε → 0. Hence, our choice for the bias parameter is admissible, at least
for small enough ε.

Likewise, the assumption on the functions ηR implies limε→0
(ηR∗(ε),n(h∗(ε))+1)2−1

2αR∗(ε) = 0.
We have then proved that

lim sup
ε→0

(
l
(
ε,R∗(ε)

)
inf

h∈H
|μ(h,R,q∗)|<ε

×Cost
(
Ȳ

N,q∗
h,n

))≤ M var(Y0)

h

with

l(ε,R) = ε2

(
1 + θh∗(ε,R)

β
2

R∑
j=1

|Wj |
(
n

− β
2

j−1 + n
− β

2
j

)√
nj−1 + nj

)−2

.
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It follows from Claim 5 of Proposition A.2 in Appendix A that maxj=1,...,R |Wi | ≤ Wα(M). On
the other hand, standard computations show that, for every j = 2, . . . ,R,

(
n

− β
2

j−1 + n
− β

2
j

)√
nj−1 + nj = Mβ−1Mj

1−β
2
(
1 + M− β

2
)
(1 + M)

1
2 . (47)

Moreover, with our convention on n0, it still holds true as an inequality (≤) for j = 1. So

l(ε,R) ≥ ε2

(
1 + θh∗(ε,R)

β
2 Wα(M)Mβ−1

√
1 + M

(
1 + M− β

2
) R∑

j=1

Mj
1−β

2

)−2

.

Step 2: Now we will inspect successively the three cases depending on the strong rate conver-
gence parameter β > 0.

Case β = 1. In that case,

l
(
ε,R∗(ε)

) ≥ ε2(1 + θh∗(ε)
β
2 Wα(M)

√
1 + M

(
1 + M− 1

2
)
R∗(ε)

)−2

≥ ε2(1 + θh
β
2 Wα(M)

√
1 + M

(
1 + M− 1

2
)
R+(ε)

)−2
,

and, as R∗(ε)2 ∼ R+(ε)2 ∼ 2
α log(M)

log(1/ε) as ε → 0, we get (44) with KML2R(α,1,M) given

by (45) keeping in mind that V1 = var(Y0)θ
2.

Case β > 1. Noting that
∑R

j=1 Mj
1−β

2 ≤ M
1−β

2

1−M
1−β

2
, we get

l
(
ε,R∗(ε)

)≥ ε2
(

1 + θh
β
2

Wα(M)M
β−1

2
√

1 + M(1 + M− β
2 )

1 − M
1−β

2

)−2

,

which yields (44) with KML2R(α,β,M) given by (45).

Case β < 1. In that setting, we note this time that
∑R

j=1 Mj
1−β

2 ≤ M
(R+1)

1−β
2

M
1−β

2 −1
so that

l
(
ε,R∗(ε)

)≥ ε2
(

1 + θh
β
2

Wα(M)
√

1 + M(1 + M− β
2 )

M
1−β

2 − 1
M(R∗(ε)−1)

1−β
2

)−2

.

As R+(ε) satisfies h̃(ε,R+(ε)) = h, we obtain M
R+(ε)−1

2 = (1+4α)
1

2αR+(ε) hc̃
1
α ε

− 1
αR+(ε) . We have

ε
− 1

αR+(ε) ∼ e

√
log(M)

2α
log(1/ε) as ε → 0. Elementary, though tedious, computations yield (44) with

KML2R(α,β,M) given by (45).

(b) The choice for R∗(ε) follows from by considering the auxiliary function

h̃(ε,R) = (1 + 2α)−
1

2α |c1|− 1
α ε

1
α MR∗(ε)−1.

Then, the proof follows the same lines as that of (a). �
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Remark 3.14 (On the constraint h). In the proof, we chose to saturate the constraint h∗ ≤ h.
If we consider h∗ = χ where χ is a free parameter in (0,h], then the asymptotic constants
K(α,β,M) for the renormalized optimized cost in Theorem 3.12 depends on χ and one verifies
the following facts:

• When β < 1, one can write KML2R(α,β,M,χ) = χ1−βKML2R(α,β,M,1) which this time
suggests to start the simulation with a small upper bias parameter χ < h.

• When β = 1, the asymptotic constant KML2R(α,1,M,χ) does not depend on χ . This sug-
gests that the choice of the upper bias parameter is not decisive, at least for high accuracy
computations (ε close to 0). The choice χ = h remains the most natural.

• When β > 1, the asymptotic cost of the simulation increases in ε2 like a (virtual) unbiased
one. In that very case, it appears that the asymptotic constant KML2R(α,β,M,χ) can itself
be optimized as a function of χ . Namely, if we set

κ1 = var(Y0)M

χ
and κ2 = θ2 Wα(M)2Mβ−1(1 + M)(1 + M−β)

(1 − M
1−β

2 )2
,

then

χopt = β
− 2

β+1 κ
− 1

β+1
2 and KML2R(α,β,M,χopt) = (β + 1)2β

− 2
β+1 κ1κ

1
β+1

2 .

4. Examples of applications

4.1. Brownian diffusion approximation

Euler scheme

In fact, the (one-step) Richardson–Romberg extrapolation is well known as an efficient mean to
reduce the time discretization error induced by the use of an Euler scheme to simulate a Brownian
diffusion. In this field of Numerical Probability, its introduction goes back to Talay and Tubaro in
their seminal paper [30] on weak error expansion, followed by the case of non-smooth functions
in [2], under an Hörmander hypo-ellipticity assumption.

It relies on the following theorem.

Theorem 4.1. Let b : Rd → Rd , σ : Rd → M(d, q) and let (Wt )t≥0 be a q-dimensional stan-
dard Brownian motion defined on a probability space (�,A,P). Let X = (Xt )t∈[0,T ] be a diffu-
sion process, strong solution to the Stochastic Differential equation (SDE)

dXt = b(Xt )dt + σ(Xt )dWt, t ∈ [0, T ],X0 = x0 ∈ Rd, (48)

and its continuous Euler scheme X̄h = (X̄h
t )t∈[0,T ] with bias (step) parameter h = T/n defined

by

X̄h
t = X0 +

∫ t

0
b
(
X̄h

s

)
ds +

∫ t

0
σ
(
X̄h

s

)
dWs,
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where

s = kh on
[
kh, (k + 1)h

)
, k = 0, . . . , n.

(a) Smooth setting (Talay–Tubaro [30]): If b and σ are infinitely differentiable with bounded
partial derivatives and if f : Rd → R is an infinitely differentiable function, whose all partial
derivatives have polynomial growth, then, for a fixed T > 0 and every integer R ∈ N∗,

E
[
f
(
X̄h

T

)]− E
[
f (XT )

]= R∑
k=1

ckh
k + O

(
hR+1), (49)

where the coefficients ck depend on b, σ , f , T (but not on h).
(b) (Hypo-)Elliptic setting (Bally–Talay [2]): If b and σ are infinitely differentiable with

bounded partial derivatives and if σ is uniformly elliptic in the sense that

∀x ∈ Rd, σσ ∗(x) ≥ ε0Iq, ε0 > 0

or, more generally, if (b, σ ) satisfies the strong Hörmander hypo-ellipticity assumption, then (49)
holds true for every bounded Borel function f : Rd → R.

Other results based on the direct expansion of the density of the Euler scheme allow to deal
with a drift b with linear growth (see [24], in a uniformly elliptic setting, see also [18] at order 1
in a tempered distribution framework). It is commonly shared by the “weak error community”,
relying on an analogy with recent results on the existence of smooth density from the diffusion,
that if the hypo-ellipticity assumption is satisfied except at finitely many points that are never
visited by the diffusion, then the claim (b) remains true. The boundedness assumption on σ is
probably more technical than a mandatory assumption. For a recent review on weak error, we
refer to [22].

To deal with our abstract multilevel framework, we consider for a fixed horizon T > 0, the
family of Euler schemes X̄h with step h ∈ H = {T

n
, n ≥ 1}. We set Yh = f (X̄h

T ) and Y0 = f (XT )

for a function f either smooth enough with polynomial growth or simply Borel and bounded,
depending on the smoothness of b and σ and the (hypo-)ellipticity of σ . The above theorem
says that condition (WEα,R̄) is satisfied with R̄ = +∞ and α = 1. However, for a fixed R̄, the
differentiability assumption on b, σ and f can be relaxed by simply assuming that these three

functions are CR̄+5
b on [0, T ] × Rd .

On the other hand, as soon as f : Rd → R is Lipschitz continuous, it is classical results
that (SEβ ) is satisfied with β = 1 as an easy consequence of the fact that the (continuous) Euler
scheme X̄h converges for the sup-norm toward X in L2 (in fact in every Lp-space) at rate

√
h as

the step h goes to 0.
In such a setting, we can implement multilevel estimators with α = β = 1.

Milstein scheme

The Milstein scheme is a second order scheme which satisfies (SEβ ) with β = 2 and (WEα,R̄)
still with α = 1 (like the Euler scheme). Consequently, provided it can be implemented, the
resulting multilevel estimators should be designed with these parameters.
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However, the main drawback of the Milstein scheme when the SDE is driven by a multidi-
mensional Brownian motion (q ≥ 2), is that it requires the simulation of Lévy areas, for which
there is no known efficient method (except in dimension 2). In a recent work [14], Giles and
Szpruch introduce a suitable antithetic multilevel correction estimator which avoids the simula-
tion of these Lévy areas. This approach can be easily combined with our weighted version of
MLMC.

Note that in the β > 1 case, Rhee and Glynn introduced in [28] a class of finite-variance
optimally randomized multilevel estimators which are unbiased with a square root convergence
rate.

Path-dependent functionals

When a functional F : C([0, T ],Rd) → R is Lipschitz continuous for the sup-norm, it is straight-
forward that F(X̄h) and F(X) satisfy (SEβ ), with β = 1 and H = {T

n
, n ≥ 1} (but this is

no longer true if one considers the stepwise constant Euler scheme since the rate of con-
vergence is then

√
logn/n � √−h logh). More generally, if F is β-Hölder, β ∈ (0,1], then

this family satisfies (SEβ ). High order expansions of the weak error are not available in the
general case, however first order expansion have been established for specific functionals like
F(w) = f (

∫ T

0 w(s)ds) or F(w) = f (w(T ))1{τD(w)>T } where τD(w) is the exit time of a domain
D of Rd showing that (WEα,R̄) holds with α = 1 and R̄ = 1 (see, e.g., [16,25]). More recently,
new results on first order weak error expansions have been obtained for functionals of the form
F(w) = f (w(T ), supt∈[0,T ] w(t)) (see [13] and [1]). Thus, for the weak error expansion, it is
shown in [1] that, for every η > 0, there exists a real constant Cη > 0 such that∣∣∣E[f (XT , sup

t∈[0,T ]
Xt

)]
− E
[
f
(
X̄n

T , sup
t∈[0,T ]

X̄n
t

)]∣∣∣≤ Cη

N
2
3 −η

.

For a review of recent results on approximation of solutions of SDEs, we again refer to [22].

Remark 4.2. Note that, as concerns the MLMC estimator, in the general setting of the discretiza-
tion of a Brownian diffusion by an Euler scheme, a central limit theorem (with stable weak con-
vergence) has been obtained in [6]. In fact both the ML2R and MLMC estimators attached to the
design matrices (ML2R) and (MLMC) satisfy, under a sharp version of (SEβ ), a central limit the-
orem (see [15]) as ε → 0. In the case of ML2R, it requires an in-depth analysis of the asymptotic
behaviour of the weight vector (Wi ) = (Wα,R

i )1≤i≤R as R goes to ∞.

4.2. Nested Monte Carlo

The purpose of the so-called nested Monte Carlo method is to compute by simulation quantities
of the form

E
[
f
(
E[X|Y ])],

where (X,Y ) is a couple of R × RqY -valued random variable defined on a probability space
(�,A,P) with X ∈ L2(P) and f : R → R is a Lipschitz continuous function with Lipschitz
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coefficient [f ]Lip. Such quantities often appear in financial applications, like compound option
pricing or risk estimation (see [7]) and in actuarial sciences (see [10]) where nested Monte Carlo
is widely implemented. The idea of replacing conditional expectations by Monte Carlo estimates
also appears in [5] where the authors derive a multilevel dual Monte Carlo algorithm for pricing
American style derivatives.

We make the following more stringent assumption: there exists a Borel function F : RqZ ×
RqY → R and a random variable Z : (�,A) → RqZ independent of Y such that

X = F(Z,Y ).

Then, if X ∈ L2, one has the following representation

E[X|Y ](ω) = (E[F(Z,y)
])

|y=Y(ω)
=
∫

RqZ

F
(
z,Y (ω)

)
PZ(dz).

To comply with the multilevel framework, we set

H = {1/K,K ≥ 1}, Y0 = f
(
E[X|Y ]), Y 1

K
= f

(
1

K

K∑
k=1

F(Zk,Y )

)
,

where (Zk)k≥1 is an i.i.d. sequence of copies of Z defined on (�,A,P) and independent of Y

(up to an enlargement of the probability space if necessary).
The following proposition shows that the nested Monte Carlo method is eligible for multilevel

simulation when f is regular enough with the same parameters as the Euler scheme for Brownian
diffusions.

Proposition 4.3. Assume X ∈ L2R . If f is Lipschitz continuous and 2R times differentiable with
f (k) bounded, k = R, . . . ,2R, the nested Monte Carlo satisfies (SEβ ) with β = 1 and (WEα,R̄)
with α = 1 and R̄ = R − 1.

Remark 4.4. When f is no longer smooth, typically if it is the indicator function of an interval,
it is still possible to show that nested Monte Carlo is eligible for multilevel Richardson–Romberg
approach e.g. in the more constrained framework developed in [17,20] where X can be viewed
as an additive perturbation of Y . Assuming enough regularity in y on the joint density gN(y, z)

of Y and the renormalized perturbation, yields an expansion of the weak error (but seems in a
different scale). However, in this work we focus on the regular case (see [26] for the non-regular
case and applications in actuarial sciences).

The proof follows from the two lemmas below.

Lemma 4.5 (Strong approximation error). Assume f is Lipschitz continuous. For every h,h′ ∈
H ∪ {0},

‖Yh′ − Yh‖2
2 ≤ [f ]2

Lip

(‖X‖2
2 − ∥∥E[X|Y ]∥∥2

2

)∣∣h′ − h
∣∣ (50)
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so that (Yh)h∈H satisfies (SEβ ) with β = 1 and the alternative assumption (Var′β ) from Re-
mark 2.2.

Proof. Let h = 1
K

, h′ = 1
K ′ , K , K ′ ∈ N∗, K ≤ K ′. Now set for convenience X̃k = F(Zk,Y ) −

EY [F(Zk,Y )], Mk = ∑k
�=1 X̃k and Gk = σ(Y,Z1, . . . ,Zk), k ≥ 0. It is clear that (Mk)k≥0

is a square integrable martingale (null at time 0) satisfying E[(Mk − Mk−1)
2|Gk−1](‖X‖2

2 −
‖E[X|Y ]‖2

2). Elementary computations yield for every integers K ′ ≥ K ≥ 1,

‖Yh − Yh′ ‖2
2 =
∥∥∥∥∥f
(

1

K ′
K ′∑
k=1

F(Zk,Y )

)
− f

(
1

K

K∑
k=1

F(Zk,Y )

)∥∥∥∥∥
2

2

≤ [f ]2
Lip

∥∥∥∥∥ 1

K ′
K ′∑
k=1

F(Zk,Y ) − 1

K

K∑
k=1

F(Zk,Y )

∥∥∥∥∥
2

2

= [f ]2
Lip

∥∥∥∥∥ 1

K ′
K ′∑
k=1

X̃k − 1

K

K∑
k=1

X̃k

∥∥∥∥∥
2

2

= [f ]2
Lip

∥∥∥∥MK ′

K ′ − MK

K

∥∥∥∥2

2

since EY [F(Zk,Y )] = EY [F(Z,Y )] does not depend on k owing to the independence of (Zk)k≥1

and Y . Then elementary computations show that∥∥∥∥MK ′

K ′ − MK

K

∥∥∥∥2

2
= K ′ − K

KK ′ ‖X̃k‖2
2 = (h − h′)(‖X‖2

2 − ∥∥E[X|Y ]∥∥2
2

)
.

The case h′ = 0 can be treated likewise (or by letting K ′ go to infinity). �

Lemma 4.6 (Weak error). Let f : R → R be a 2R times differentiable function with f (k),
k = R, . . . ,2R, bounded over the real line. Assume X ∈ L2R(P). Then there exists c1, . . . , cR−1

such that

∀h ∈ H, E[Yh] = E[Y0] +
R−1∑
r=1

crh
r + O

(
hR
)
. (51)

Consequently, (Yh)h∈H satisfies (WEα,R̄) with α = 1 and R̄ = R − 1.

Proof. Let K ≥ 1 and X̃k = F(Zk,Y ) − EY [F(Zk,Y )] = F(Zk,Y ) − Y0, k = 1, . . . ,K . By the
multinomial formula, we get

(X̃1 + · · · + X̃K)k =
∑

k1+···+kK=k

k!
k1! · · ·kK ! X̃

k1
1 · · · X̃kK

K .



2674 V. Lemaire and G. Pagès

Then, taking conditional expectation given Y , yields

EY

[
(X̃1 + · · · + X̃K)k

]= k!
∑

k1+···+kK=k

K∏
i=1

EY [X̃ki ]
ki !

since EY [X̃ki

i ] = EY [X̃ki ]. As EY [X̃i] = 0, we obtain

EY

[
(X̃1 + · · · + X̃K)k

]= k!
∑

k1+···+kK=k,ki �=1

K∏
i=1

EY [X̃ki ]
ki ! .

Let I = I (k) denote the generic set of indices i such that ki �= 0. It is clear that 1 ≤ |I | ≤ k/2.
By symmetry, we have now that

∑
k1+···+kK=k,ki �=1

K∏
i=1

EY [X̃ki ]
ki !

=
∑

1≤�≤(k/2)∧K

∑
I⊂{1,...,K},|I |=�,∑

i∈I ki=k,ki≥2

K∏
i=1

EY [X̃ki ]
ki !

=
∑

1≤�≤k/2

(
K

l

) ∑
∑

1≤i≤� ki=k−2�

�∏
i=1

EY [X̃2+ki ]
(2 + ki)! .

As a consequence, for every integer R ≥ 1,

EY [Yh] = EY [Y0] +
2R−1∑
k=1

f (k)(EY [X])
k!Kk

EY (X̃1 + · · · + X̃K)k + R2R−1(Y )

= EY [Y0] +
2R−1∑
k=1

f (k)(EY [X])
k!Kk

∑
1≤�≤(k/2)∧K

(
K

�

)
ck,� + R2R−1(Y ),

where

ak,� =
∑

k1+···+k�=k−2�

�∏
i=1

EY [X̃2+ki ]
(2 + ki)!

and ∣∣R2R−1(Y )
∣∣≤ ‖f (2R)‖sup

(2R)!
1

K2R
EY

[|X̃1 + · · · + X̃K |2R
]
.
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By the Marcinkiewicz–Zygmund Inequality, we get

∣∣R2R−1(Y )
∣∣ ≤ (BMZ

2R

)2R ‖f (2R)‖sup

(2R)!
1

K2R
EY

[∣∣X̃2
1 + · · · + X̃2

K

∣∣R]
≤ ∥∥f (2R)

∥∥
sup

(BMZ
2R )2R

(2R)!
1

KR
EY

[
X̃2R
]
,

where BMZ
p = 18 p

3
2

(p−1)
1
2

, p > 1 (see [29], page 499). Now, we write the polynomial function

x(x − 1) · · · (x − � + 1) on the canonical basis 1, x, . . . , xn, . . . as follows

x(x − 1) · · · (x − � + 1) =
�∑

m=0

b�,mxm (b�,� = 1 and b�,0 = 0).

Hence,

EY [Yh] = EY [Y0] +
2R−1∑
k=1

k
2∑

�=1

�∑
m=1

f (k)(EY [X])
k!

1

Kk−m
ak,�b�,m + O

(
K−R

)
,

where KRO(K−R) is bounded by a deterministic constant. For every r ∈ {1, . . . ,R − 1}, set

JR,r = {(k, l,m) ∈ N3,1 ≤ k ≤ 2R − 1,1 ≤ � ≤ k/2,1 ≤ m ≤ �, k = m + r
}

(note that one always has k ≥ (2m) ∨ 1 so that k − m ≥ 1 when k, l,m vary in the admissible
index set). We finally get

EY [Yh] = EY [Y0] +
2R−1∑
r=1

( ∑
(k,�,m)∈JR,r

f (k)(EY [X])
k! ak,�b�,m

)
1

Kr
+ O
(
K−R

)
.

= EY [Y0] +
R−1∑
r=1

cr

Kr
+ O
(
K−R

)
.

Taking the expectation in the above equality yields the announced result. �

Remark 4.7. Though it is not the only term included in the final O(K−R), it is worth notic-

ing that (
(BMZ

2R )2R

(2R)! )
1
R ∼ (36R)2( 2R

e
)−2 ∼ 18e2 as R → +∞ owing to Stirling’s formula. This

suggests that, if all the derivatives of f are uniformly bounded, lim supR→+∞ |cR| 1
R < +∞.
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5. Numerical experiments

5.1. Practitioner’s corner

We summarize here the study of the Section 3. We have proved in Theorem 3.6, Proposition 3.9
and Theorem 3.12 that the asymptotic optimal parameters (as ε goes to 0) R, h, q and N depend
on structural parameters α, c1, β , V1, var(Y0) and h (recall that θ = √

V1/var(Y0)). Note that we
did not optimize the design matrix T and the refiners ni , i = 2, . . . ,R.

About structural parameters

Implementing MLMC or ML2R estimator needs to know both the weak and strong rates of
convergence of the biased estimator Yh toward Y0. The exponents α and β are generally known by
a mathematical study of the approximation (see Section 4.1 for Brownian diffusion discretization
and Section 4.2 for nested Monte Carlo). The parameter V1 comes from the strong approximation
rate assumption (SEβ ) and a natural approximation for V1 is

V1 � lim sup
h→0

h−β‖Yh − Y0‖2
2.

Since Y0 cannot be simulated at a reasonable computational cost, one may proceed as follows to
get a good empirical estimator of V1. First, assume that, in fact, ‖Yh − Y0‖2

2 ∼ V1h
β as h → 0

but that this equivalence still holds as an approximation for not too small parameters h. Then,
one derives from Minkowski’s Inequality that, for every integer M ≥ 1,

‖Yh − Y h
M

‖2 ≤ ‖Yh − Y0‖2 + ‖Y0 − Y h
M

‖2

so that

V1 �
(
1 + M− β

2
)−2

h−β‖Yh − Y h
M

‖2
2.

As a consequence, if we choose M = Mmax large enough (see (56) below), we are led to consider
the following estimator

V̂1(h) = (1 + M
− β

2
max
)−2

h−β‖Yh − Y h
Mmax

‖2
2. (52)

If the assumption (SEβ ) is replaced by one of the alternative assumptions (Varβ ) and (Var′β )
proposed in Remark 2.2, the estimator of V1 must be modified. For instance, if we consider
the assumption var(Yh − Yh′) ≤ V1|h − h′|β , a standard estimator of V1 becomes V̂1(h) = (1 −
M−β)−1h−β var(Yh − Y h

M
), M being fixed.

The estimation of the real constants ci , c1 for crude Monte Carlo and an MLMC estimators
and c̃ = limR→∞ |cR| 1

R for the ML2R estimator is much more challenging. So, these methods

are usually implemented in a blind way by considering the coefficients c1 and |cR| 1
R equal to 1.

Note that, even in a crude Monte Carlo method, such structural parameters are useful (and
sometimes necessary) to deal with the bias error (see Proposition 2.3).
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Design of the multilevel

The standard design matrix is fixed by the template (ML2R) for the multilevel Richardson–
Romberg estimator and by the template (MLMC) for the multilevel Monte Carlo estimator. Al-
ternative choices could be to consider for the ML2R estimator another design matrix T satisfy-
ing (20) like Tj = −wj e1 + wj ej for j ∈ {2, . . . ,R} which reads

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −w2 −w3 · · · −wR

0 w2 0 · · · 0

0 0 w3
. . . 0

...
...

. . .
. . .

...

0 0 · · · 0 wR

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (53)

We could also consider a lower triangular design matrix (through it does not satisfy the conven-
tional assumption T 1 = e1)

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W̃1 0 · · · · · · · · · 0

−W̃1 W̃2 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · · · · −W̃R−2 W̃R−1 0

0 · · · · · · · · · −W̃R−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where W̃j =

j∑
k=1

wk. (54)

The refiners can be specified by users but it turns out that the parametrized family ni = Mi−1,
i = 1, . . . ,R (M ∈ N, M ≥ 2) seems the best compromise between variance control and imple-
mentability. The parameter α being settled, all the related quantities like (Wi (R,M))1≤i≤M can
be tabulated for various values of M and R and can be stored offline.

Taking advantage of c1 = 0

When c1 = 0, only R − 1 weights are needed to cancel the (remaining) coefficients up to order R

that is, cr , r = 2, . . . ,R − 1 (instead of R). One easily shows that, if (w(R−1)
r )r=1,...,R−1 denotes

the weight vector at order R − 1 associated to refiners n1 = 1 < n2, . . . , nR−1 (for a given α),
then the weight vector w̃(R) at order R (with size R − 1) reads

w̃(R)
r = nα

r w(R−1)
r∑

1≤s≤R−1 nα
s w(R−1)

s

, r = 1, . . . ,R − 1.

Optimal parameters

Diffusion approximation. In the case ni = Mi−1 (with the convention n0 = n−1
0 = 0), we

can summarize the asymptotic optimal value of the parameters q , R, h and N in Table 1 for
the (ML2R) estimator and in Table 2 for the (MLMC) estimator.
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Table 1. Optimal parameters for the ML2R estimator (standard case)

R(ε)
⌈

1
2 + log(c̃

1
α h)

log(M)
+
√(

1
2 + log(c̃

1
α h)

log(M)

)2 + 2 log(A/ε)
α log(M)

⌉
, A = √

1 + 4α

h(ε) h/
⌈
(1 + 2αR)

1
2αR ε− 1

αR c̃
1
α M− R−1

2 h
⌉

q(ε) q1 = μ∗
R

(
1 + θh

β
2
)

qj = μ∗
R

θh
β
2

(∣∣Wj (R,M)
∣∣n− β

2
j−1+n

− β
2

j√
nj−1+nj

)
, j = 2, . . . ,R; μ∗

R
s.t.
∑

1≤j≤R qj = 1

N(ε)
(

1 + 1
2αR

) var(Y0)
(
1+θh

β
2
∑R

j=1 |Wj (R,M)|(n− β
2

j−1+n
− β

2
j )

√
nj−1+nj

)
ε2μ∗

R

Nested Monte Carlo. In a Nested Monte Carlo framework, the unitary complexity is given
by (26).

• The unitary cost term nj−1 + nj in Tables 1 and 2 must be replaced by nj .

• The unitary variance term n
−β/2
j−1 + n

−β/2
j must be replaced by ( 1

nj−1
− 1

nj
)β/2.

Optimization of the root M . Note that these optimal parameters given in the above Tables only
depend on the structural parameters and on the user’s choice of the root M ≥ 2 for the refiners.
For a fixed ε > 0, if we emphasize the dependance in M = M(ε) that is, R(M), h(M), q(M) and
N(M) the global cost Cε as a function of M is given by

Cε(M) = Cost
(
Ȳ

N(M),q(M)

h(M),n

)= N(M)κ
(
h(M),R(M),q(M)

)
, (55)

where κ(h,R,q) = 1
h

∑R
j=1 qj

∑R
i=1 ni1{Tj

i �=0} (in the framework of Section 4.1) and

κ(h,R,q) = 1
h

∑R
j=1 qj max1≤i≤R ni1{Tj

i �=0} (in the framework of Section 4.2). This function

Table 2. Optimal parameters for the MLMC estimator (standard case)

R(ε)
⌈

1 + log(|c1| 1
α h)

log(M)
+ log(A/ε)

α log(M)

⌉
, A = √

1 + 2α

h(ε) h/
⌈
(1 + 2α)

1
2α ε− 1

α |c1| 1
α M−(R−1)h

⌉
q(ε) q1 = μ∗

R

(
1 + θh

β
2
)

qj = μ∗
R

θh
β
2

(
n

− β
2

j−1+n
− β

2
j√

nj−1+nj

)
, j = 2, . . . ,R; μ∗

R
s.t.
∑

1≤j≤R qj = 1

N(ε)
(

1 + 1
2α

) var(Y0)
(
1+θh

β
2
∑R

j=1(n
− β

2
j−1+n

− β
2

j )
√

nj−1+nj

)
ε2μ∗

R
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can be optimized for likely values of M . In our numerical experiments, we consider

M = argmin
M∈{2,...,Mmax}

Cε(M) with Mmax = 10. (56)

5.2. Correlation between Y h
ni

and Y h
ni−1

Diffusion approximation

In many situations (like e.g., the numerical experiments carried out below), discretization
schemes of Brownian diffusions need to be simulated with various steps (say T

nni
and T

nni+1
in our

case). This requires to simulate consistent Brownian increments over [0, T
n
], then [ (k−1)T

n
, kT

n
],

k = 2, . . . , n. This can be performed by simulating recursively the Brownian increments over all
successive sub-intervals of interest, having in mind that the “quantum” size for the simulation is
given by T

nm
where m = gcd(n1, . . . , nR). This recursive refinement is also known as the Brown-

ian Bridge simulation procedure. One can also produce once and for all an abacus of coefficients
to compute by induction the needed increments from smaller subintervals up to the root inter-
val of length T

n
. This is done for example, in [27] up to R = 5 for α = 1 and up to R = 3 for

α = 1
2 .

Nested Monte Carlo

In a Nested Monte Carlo, the relation between Y h
ni

and Y h
ni−1

is simply based on the following

rule: the ni−1/h first terms of the sequence of copies of Z used to simulate Y h
ni−1

must be used

to simulate Y h
ni

.

5.3. Methodology

We compare the two MLMC and ML2R estimators for different biased problems. In the sequel,
we consider the standard design matrix (ML2R) for the ML2R estimator, idem for the MLMC
estimator. After a crude evaluation of var(Y0) and V1 (using (52)) we compute the “optimal”
parameter M solution to (56). The others parameters are specified according to Tables 1 and 2
with c̃ = c1 = 1.

The empirical bias error μ̃L of the estimator Ȳ
N,q
h,n is obtained using L = 256 independent

replications of the estimator, namely

μ̃L = 1

L

L∑
�=1

(
Ȳ

N,q
h,n

)(�) − I0,

where I0 = E[Y0] is the true value.
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The empirical L2-error or empirical root mean squared error (RMSE) ε̃L of the estimator used
in our numerical experiments is given by

ε̃L =
√√√√ 1

L

L∑
�=1

((
Ȳ

N,q
h,n

)(�) − I0
)2

. (57)

The computations were performed on a computer with 4 multithreaded(16) octo-core proces-
sors (Intel(R) Xeon(R) CPU E5-4620 @ 2.20GHz). The code of one estimator runs on a single
thread (program in C++11 available on request).

5.4. Euler scheme of a geometric Brownian motion: Pricing of European
options

We consider a geometric Brownian motion (St )t∈[0,T ], representative in a Black–Scholes model
of the dynamics of a risky asset price between time t = 0 and time t = T :

St = s0e
(r− σ2

2 )t+σWt , t ∈ [0, T ], S0 = s0 > 0,

where r denotes the (constant) “riskless” interest rate, σ denotes the volatility and W =
(Wt )t∈[0,T ] is a standard Brownian motion defined on a probability space (�,A,P). The price
or premium of a so-called vanilla option with payoff ϕ is given by e−rT E[ϕ(ST )] and the price
of a path dependent option with functional payoff ϕ is given by e−rT E[ϕ((St )t∈[0,T ])]. Since
(St )t∈[0,T ] is solution to the diffusion SDE

dSt = St (r dt + σ dWt), S0 = s0 > 0,

one can compute the price of an option by a Monte Carlo simulation in which the true process
(St )t∈[0,T ] is replaced by its Euler scheme (S̄kh)0≤k≤n, h = T

n
(even if we are aware that ST can

be simulated). The bias parameter set H is then defined by H = {T/n,n ≥ 1} and h = T .
Although nobody would adopt any kind of Monte Carlo simulation to compute option price

in this model since a standard difference method on the Black–Scholes parabolic PDE is much
more efficient to evaluate a vanilla option and many path-dependent ones, it turns out that the time
discretization of a Black–Scholes model and its Euler scheme is a very demanding benchmark
to test and evaluate the performances of Monte Carlo method(s). As a consequence, it is quite
appropriate to carry out numerical tests with ML2R and MLMC.

5.4.1. Vanilla call option (α = β = 1)

The Black–Scholes parameters considered here are s0 = 100, r = 0.06 and σ = 0.4. The payoff
is a European Call with maturity T = 1 year and strike K = 80.

In such a regular diffusion setting (both drift and diffusion coefficients are C∞
b and the payoff

function is Lipschitz continuous), one has α = β = 1. The parameters θ = √
V1/var(Y0) and
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var(Y0) have been roughly estimated following the procedure (52) on a sample of size 100 000
described in Section 5.1, leading to the values V1 � 56 and var(Y0) � 876 (so that θ � 0.25).
The empirical L2-error ε̃L is estimated using L = 256 runs of the algorithm and the bias is
computed using the true value of the price I0 = 29.4987 provided by the Black–Scholes for-
mula.

The results are summarized in Table 3 for the ML2R estimator and in Table 4 for the MLMC
estimator.

As an example, the third line of the Table 3 reads as follows: for a prescribed RMSE error
ε = 2−3 = 0.125, the ML2R estimator Ȳ

N,q
h,n (with design matrix (ML2R)) is implemented with

the parameters R = 3, h = 1 and refiners ni = 4i−1 (then n1 = 1, n2 = 4 and n3 = 16) and the
sample size N � 319 000. The allocation weights qi (not reported in this table) are such that the
numerical cost Cost(Ȳ N,q

h,n ) � 709 800. For such parameters, the empirical RMSE ε̃L � 0.0928

and the computational time of Y
N,q
h,n � 0.559 seconds. The empirical bias error μ̃L is reported

in the 5th column (bias) and the empirical unitary variance ν̃L is reported in the 6th column
(variance). Recall that ε̃L =√(μ̃L)2 + ν̃L.

Note first that, as expected, the depth parameter R ≥ 2 and the numerical cost Cost(Ȳ N,q
h,n )

grow slower for ML2R than for MLMC as ε goes to 0. Consequently, regarding the CPU-time
for a prescribed error ε = 2−k , ML2R is about 10% to 100% (twice) faster than MLMC when
k goes from 2 to 8. On the other hand, both estimators ML2R and MLMC provide an empirical
RMSE close to the prescribed RMSE i.e. ε̃L ≤ ε. We can conclude that the automatic tuning of
the algorithm parameters is satisfactory for both estimators.

In Figure 1(a) is depicted the CPU-time (4th column) as a function of the empirical L2-error
(3rd column). It provides a direct comparison of the performance of both estimators. Each point
is labeled by the prescribed RMSE ε = 2−k , k = 1, . . . ,8 for easy reading. The plot is in log2–
log scale. The ML2R estimator (blue solid line) is below the MLMC estimator (red dashed line).
The ratio of CPU-times for a given ε̃L shows that ML2R goes from 1.28 up to 2.8 faster, within
the range of our simulations. Figure 1(b) represents the product (CPU-time) × ε2 as a function
of ε.

5.4.2. Lookback option (α = 0.5, β = 1)

We consider a partial Lookback Call option defined by its functional payoff

ϕ(x) = e−rT
(
x(T ) − λ min

t∈[0,T ]x(t)
)

+, x ∈ C
([0, T ],R

)
,

where λ ≥ 1. The parameters of the Black–Scholes model are s0 = 100, r = 0.15, σ = 0.1 and
T = 1 and the coefficient λ is set at λ = 1.1. For these parameters, the price given by a closed-
form expression is I0 = 8.89343.

For such payoff with Lipschitz continuous functional, (SEβ ) holds with β = 1 and (WEα,R̄)
holds with α = 0.5. Note that the full expansion R̄ = +∞ is not yet proved to our knowledge.
An estimation of structural parameters yields var(Y0) � 41 and V1 � 3.58 (and then θ � 0.29).
Both estimators are implemented using the automatic tuning previously exposed.
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Table 3. Call option (α = 1, β = 1): Parameters and results of the ML2R estimator

k ε = 2−k L2-error Time (s) Bias Variance R M h−1 N Cost

1 5.00 ·10−01 3.91 ·10−01 3.02 ·10−02 1.47 ·10−01 1.31 ·10−01 2 5 1 1.50 ·10+04 2.47 ·10+04

2 2.50 ·10−01 2.18 ·10−01 1.12 ·10−01 8.99 ·10−02 3.96 ·10−02 2 9 1 5.91 ·10+04 1.06 ·10+05

3 1.25 ·10−01 9.28 ·10−02 5.59 ·10−01 −5.61 ·10−04 8.62 ·10−03 3 4 1 3.19 ·10+05 7.09 ·10+05

4 6.25 ·10−02 5.01 ·10−02 2.12 ·10+00 −1.90 ·10−02 2.15 ·10−03 3 4 1 1.27 ·10+06 2.84 ·10+06

5 3.12 ·10−02 2.71 ·10−02 8.13 ·10+00 −1.15 ·10−02 6.00 ·10−04 3 5 1 4.99 ·10+06 1.15 ·10+07

6 1.56 ·10−02 1.35 ·10−02 3.22 ·10+01 −4.41 ·10−03 1.63 ·10−04 3 6 1 1.99 ·10+07 4.72 ·10+07

7 7.81 ·10−03 6.98 ·10−03 1.31 ·10+02 −2.32 ·10−03 4.33 ·10−05 3 7 1 7.98 ·10+07 1.95 ·10+08

8 3.91 ·10−03 3.57 ·10−03 5.51 ·10+02 −9.35 ·10−04 1.19 ·10−05 3 9 1 3.25 ·10+08 8.37 ·10+08

Table 4. Call option (α = 1, β = 1): Parameters and results of the MLMC estimator

k ε = 2−k L2-error Time (s) Bias Variance R M h−1 N Cost

1 5.00 ·10−01 5.02 ·10−01 2.53 ·10−02 3.87 ·10−01 1.02 ·10−01 2 4 1 1.57 ·10+04 2.32 ·10+04

2 2.50 ·10−01 2.85 ·10−01 1.31 ·10−01 2.25 ·10−01 3.04 ·10−02 2 7 1 6.48 ·10+04 1.06 ·10+05

3 1.25 ·10−01 1.20 ·10−01 6.28 ·10−01 8.77 ·10−02 6.63 ·10−03 3 4 1 3.64 ·10+05 7.33 ·10+05

4 6.25 ·10−02 6.31 ·10−02 2.44 ·10+00 4.45 ·10−02 2.00 ·10−03 3 6 1 1.49 ·10+06 3.32 ·10+06

5 3.12 ·10−02 3.42 ·10−02 1.05 ·10+01 2.48 ·10−02 5.59 ·10−04 3 8 1 6.15 ·10+06 1.47 ·10+07

6 1.56 ·10−02 1.66 ·10−02 5.17 ·10+01 1.23 ·10−02 1.22 ·10−04 4 5 1 3.06 ·10+07 8.38 ·10+07

7 7.81 ·10−03 7.83 ·10−03 2.20 ·10+02 5.06 ·10−03 3.57 ·10−05 4 7 1 1.27 ·10+08 3.82 ·10+08

8 3.91 ·10−03 4.48 ·10−03 9.14 ·10+02 3.26 ·10−03 9.43 ·10−06 4 8 1 5.17 ·10+08 1.62 ·10+09
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Figure 1. Call option in a Black–Scholes model.

The results are summarized in Table 5 for the ML2R and in Table 6 for the MLMC. Note first
that as a function of the prescribed ε = 2−k the ratio between CPU-times goes from 1.1 (k = 2)
up to 3.5 (k = 9), as does the ratio Cost(MLMC)/Cost(ML2R). However, the empirical RMSE
of MLMC is greater than ε (certainly because c1 �= 1) unlike that of ML2R. One observes that
the L2-error of ML2R has a very small bias μ̃L (5th column) due to the particular choice of the
weights (Wi )1≤i≤R .

Figure 2(a) provides a graphical representation of the performance of both estimators, now as
a function of the empirical RMSE ε̃. It shows that ML2R is faster then MLMC by a factor that
goes from 18 up to 48 within the range of our simulations.

5.4.3. Barrier option (α = 0.5, β = 0.5)

We consider now an up-and-out call option to illustrate the case β = 0.5 < 1 and α = 0.5. This
path-dependent option with strike K and barrier B > K is defined by its functional payoff

ϕ(x) = e−rT
(
x(T ) − K

)
+1{maxt∈[0,T ] x(t)≤B}, x ∈ C

([0, T ],R
)
.

The parameters of the Black–Scholes model are s0 = 100, r = 0, σ = 0.15 and T = 1. With
K = 100 and B = 120, the price computed by closed-form solution is I0 = 1.855225.

We consider here a simple (and highly biased) approximation of maxt∈[0,T ] St by
maxk∈{1,...,n} S̄kh. This allows us to compare both estimators in the case β = 0.5. Like in the
Lookback option, we assume that (WEα,R̄) holds with α = 0.5 and R̄ = +∞. A first computa-
tional stage gives us var(Y0) � 303, V1 � 5.30 and θ � 0.41.

The results are summarized in Table 7 for ML2R and in Table 8 for MLMC.
See Figure 3 for a graphical representation. Note that since β = 0.5, we observe that the

function (CPU-time) × ε2 increases much faster for MLMC than ML2R as ε goes to 0 which
agrees with the theoretical asymptotic rates from Theorem 3.12. In fact, in this highly biased
example with slow strong convergence rate, the ratio Cost(MLMC)/Cost(ML2R) as a function
of the prescribed ε = 2−k goes from 1.1 (k = 2) up to 22 (k = 8), likewise the ratio between
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Table 5. Lookback option (α = 0.5, β = 1): Parameters and results of the ML2R estimator

k ε = 2−k L2-error Time (s) Bias Variance R M h−1 N Cost

1 5.00 ·10−01 3.54 ·10−01 2.42 ·10−03 −5.80 ·10−02 1.22 ·10−01 3 6 1 1.46 ·10+03 4.40 ·10+03

2 2.50 ·10−01 1.80 ·10−01 1.04 ·10−02 −3.66 ·10−02 3.10 ·10−02 3 6 1 5.82 ·10+03 1.76 ·10+04

3 1.25 ·10−01 9.95 ·10−02 4.17 ·10−02 −3.98 ·10−02 8.31 ·10−03 3 7 1 2.30 ·10+04 7.07 ·10+04

4 6.25 ·10−02 5.45 ·10−02 1.53 ·10−01 −9.53 ·10−03 2.88 ·10−03 3 10 2 6.48 ·10+04 3.55 ·10+05

5 3.12 ·10−02 2.31 ·10−02 8.69 ·10−01 −1.50 ·10−03 5.33 ·10−04 4 5 1 4.50 ·10+05 1.68 ·10+06

6 1.56 ·10−02 1.22 ·10−02 3.43 ·10+00 −8.49 ·10−04 1.47 ·10−04 4 6 1 1.77 ·10+06 6.74 ·10+06

7 7.81 ·10−03 6.31 ·10−03 1.39 ·10+01 −2.76 ·10−04 3.98 ·10−05 4 7 1 7.03 ·10+06 2.74 ·10+07

8 3.91 ·10−03 3.34 ·10−03 5.74 ·10+01 1.19 ·10−04 1.11 ·10−05 4 9 1 2.83 ·10+07 1.16 ·10+08

9 1.95 ·10−03 1.80 ·10−03 2.10 ·10+02 1.08 ·10−04 3.23 ·10−06 4 10 2 7.88 ·10+07 5.45 ·10+08

Table 6. Lookback option (α = 0.5, β = 1): Parameters and results of the MLMC estimator

k ε = 2−k L2-error Time (s) Bias Variance R M h−1 N Cost

1 5.00 ·10−01 1.35 ·10+00 1.47 ·10−03 −1.32 ·10+00 6.60 ·10−02 2 8 1 1.17 ·10+03 2.05 ·10+03

2 2.50 ·10−01 6.86 ·10−01 1.13 ·10−02 −6.72 ·10−01 1.87 ·10−02 3 6 1 6.80 ·10+03 1.61 ·10+04

3 1.25 ·10−01 3.00 ·10−01 6.27 ·10−02 −2.91 ·10−01 5.37 ·10−03 4 6 1 3.59 ·10+04 1.11 ·10+05

4 6.25 ·10−02 1.96 ·10−01 2.73 ·10−01 −1.92 ·10−01 1.57 ·10−03 4 8 1 1.49 ·10+05 5.04 ·10+05

5 3.12 ·10−02 9.25 ·10−02 1.46 ·10+00 −9.03 ·10−02 4.04 ·10−04 5 7 1 7.26 ·10+05 2.93 ·10+06

6 1.56 ·10−02 4.38 ·10−02 6.80 ·10+00 −4.25 ·10−02 1.20 ·10−04 5 10 1 3.10 ·10+06 1.40 ·10+07

7 7.81 ·10−03 2.47 ·10−02 3.26 ·10+01 −2.42 ·10−02 2.87 ·10−05 6 8 1 1.42 ·10+07 7.17 ·10+07

8 3.91 ·10−03 9.06 ·10−03 1.72 ·10+02 −8.64 ·10−03 7.49 ·10−06 7 8 1 6.62 ·10+07 3.89 ·10+08

9 1.95 ·10−03 6.16 ·10−03 7.34 ·10+02 −6.00 ·10−03 1.97 ·10−06 7 9 1 2.71 ·10+08 1.66 ·10+09
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Figure 2. Lookback option in a Black–Scholes model.

CPU-times behaves. When looking at this ratio as a function of the empirical RMSE, it even
goes from 3 up to 61 which is huge having in mind that MLMC provides similar gains with
respect to a crude Monte Carlo simulation.

5.5. Nested Monte Carlo: Compound option pricing (α = β = 1)

A compound option is simply an option on an option. The payoff of a compound option involves
the value of another option. A compound option has then two expiration dates T1 < T2 and two
strike prices K1 and K2. We consider here the example of a European style Put on a Call where
the underlying risky asset S is still given by a Black–Scholes process with parameters (r, σ ). At
the first expiration date T1, the holder has the right to sell a new Call option at the strike price K1.
The new Call has expiration date T2 and strike price K2. The payoff of such a Put-on-Call option
writes (

K1 − E
[
(ST2 − K2)+|ST1

])
+.

To comply with the multilevel framework, we set H = {1/K,K ≥ 1},

Y0 = f
(
E
[
(ST2 − K2)+|ST1

])
, Y 1

K
= f

(
1

K

K∑
k=1

(
F
(
Zk,ST1

)− K2
)
+

)
,

where (Zk)k≥1 is an i.i.d. sequence of standard Gaussian N (0;1), f (x) = (K1 − x)+ and F is
such that

ST2 = F(G,ST1) = ST1e
(r− σ2

2 )(T2−T1)+σ
√

T2−T1Z.

Note that, in this experiments, the underlying process (St )t∈[0,T2] is not discretized in time.
The bias error is exclusively due to the inner Monte Carlo estimator of the conditional expecta-
tion.
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Table 7. Barrier option (α = 0.5, β = 0.5): Parameters and results of the ML2R estimator

k ε = 2−k L2-error Time (s) Bias Variance R M h−1 N Cost

1 5.00 ·10−01 3.85 ·10−01 6.07 ·10−03 −3.92 ·10−02 1.46 ·10−01 3 4 1 2.65 ·10+03 1.17 ·10+04

2 2.50 ·10−01 1.94 ·10−01 2.29 ·10−02 −3.82 ·10−02 3.62 ·10−02 3 4 1 1.06 ·10+04 4.66 ·10+04

3 1.25 ·10−01 1.14 ·10−01 9.65 ·10−02 −2.00 ·10−02 1.26 ·10−02 3 7 1 4.02 ·10+04 2.07 ·10+05

4 6.25 ·10−02 6.28 ·10−02 5.05 ·10−01 −5.45 ·10−03 3.92 ·10−03 3 10 2 1.34 ·10+05 1.44 ·10+06

5 3.12 ·10−02 2.83 ·10−02 3.05 ·10+00 1.24 ·10−03 8.01 ·10−04 4 5 1 1.01 ·10+06 7.94 ·10+06

6 1.56 ·10−02 1.49 ·10−02 1.31 ·10+01 6.98 ·10−04 2.22 ·10−04 4 6 1 4.15 ·10+06 3.54 ·10+07

7 7.81 ·10−03 7.81 ·10−03 5.79 ·10+01 7.82 ·10−04 6.03 ·10−05 4 7 1 1.71 ·10+07 1.58 ·10+08

8 3.91 ·10−03 4.13 ·10−03 2.77 ·10+02 −2.01 ·10−05 1.71 ·10−05 4 9 1 7.39 ·10+07 7.81 ·10+08

Table 8. Barrier option (α = 0.5, β = 0.5): Parameters and results of the MLMC estimator

k ε = 2−k L2-error Time (s) Bias Variance R M h−1 N Cost

1 5.00 ·10−01 7.83 ·10−01 2.26 ·10−03 7.25 ·10−01 8.73 ·10−02 2 8 1 1.36 ·10+03 2.83 ·10+03

2 2.50 ·10−01 4.03 ·10−01 2.05 ·10−02 3.67 ·10−01 2.75 ·10−02 3 6 1 1.03 ·10+04 3.57 ·10+04

3 1.25 ·10−01 1.81 ·10−01 1.83 ·10−01 1.56 ·10−01 8.30 ·10−03 4 6 1 7.18 ·10+04 4.28 ·10+05

4 6.25 ·10−02 1.09 ·10−01 9.52 ·10−01 9.71 ·10−02 2.47 ·10−03 4 8 1 3.27 ·10+05 2.40 ·10+06

5 3.12 ·10−02 5.33 ·10−02 8.38 ·10+00 4.70 ·10−02 6.27 ·10−04 5 7 1 2.11 ·10+06 2.40 ·10+07

6 1.56 ·10−02 2.61 ·10−02 6.16 ·10+01 2.22 ·10−02 1.88 ·10−04 5 10 1 1.09 ·10+07 1.74 ·10+08

7 7.81 ·10−03 1.41 ·10−02 4.90 ·10+02 1.23 ·10−02 4.51 ·10−05 6 8 1 6.40 ·10+07 1.43 ·10+09

8 3.91 ·10−03 5.58 ·10−03 6.05 ·10+03 4.43 ·10−03 1.15 ·10−05 7 8 1 4.37 ·10+08 1.67 ·10+10
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Figure 3. Barrier option in a Black–Scholes model.

The parameters used for the underlying process (St )t∈[0,T2] are S0 = 100, r = 0.03 and σ =
0.3. The parameters of the Put-on-Call payoff are T1 = 1/12, T2 = 1/2 and K1 = 6.5, K2 = 100.
Section 4.2 strongly suggests that (SEβ ) and (WEα,R̄) are satisfied with β = α = 1. A crude
computation of other structural parameters yields var(Y0) � 9.09, V1 � 7.20 and θ � 0.89.

The results are summarized in Table 9 for ML2R and in Table 10 for MLMC.
Note on Figure 4 that ML2R is faster than MLMC as a function of the empirical RMSE by a

factor approximately equal to 5 within the range of our simulations.

Appendix A

Lemma A.1. (a) The solution of the system V w = e1 where V is a Vandermonde matrix

V = V
(
1, n−α

2 , . . . , n−α
R

)=
⎛⎜⎜⎜⎜⎝

1 1 · · · 1

1 n−α
2 · · · n−α

R

...
... · · · ...

1 n
−α(R−1)
2 · · · n

−α(R−1)
R

⎞⎟⎟⎟⎟⎠ ,

is given by wi = (−1)R−in
α(R−1)
i∏

1≤j<i (n
α
i −nα

j )
∏

i<j≤R(nα
j −nα

i )
.

(b) Furthermore,

w̃R+1 =
R∑

i=1

wi

nαR
i

= (−1)R−1∏
1≤i≤R nα

i

.

Proof. (a) Let ai = n−α
i . Note that by Cramer’s rule the solution of this linear system is

given by wi = det(Vi )
det(V )

where Vi is the matrix formed by replacing the ith column of V
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Table 9. Nested compound option (α = 1, β = 1): Parameters and results of the ML2R estimator

k ε = 2−k L2-error Time (s) Bias Variance R M h−1 N Cost

1 5.00 ·10−01 4.36 ·10−01 8.82 ·10−04 3.17 ·10−01 8.95 ·10−02 2 5 1 6.53 ·10+02 1.37 ·10+03

2 2.50 ·10−01 2.70 ·10−01 4.91 ·10−03 2.14 ·10−01 2.70 ·10−02 2 9 1 2.51 ·10+03 6.33 ·10+03

3 1.25 ·10−01 1.18 ·10−01 2.67 ·10−02 8.42 ·10−02 6.89 ·10−03 3 3 1 1.75 ·10+04 4.65 ·10+04

4 6.25 ·10−02 5.94 ·10−02 1.05 ·10−01 3.79 ·10−02 2.09 ·10−03 3 4 1 6.27 ·10+04 1.87 ·10+05

5 3.12 ·10−02 3.36 ·10−02 4.02 ·10−01 2.31 ·10−02 5.97 ·10−04 3 5 1 2.41 ·10+05 7.84 ·10+05

6 1.56 ·10−02 1.89 ·10−02 1.17 ·10+00 1.38 ·10−02 1.65 ·10−04 3 6 1 9.52 ·10+05 3.32 ·10+06

7 7.81 ·10−03 1.20 ·10−02 5.13 ·10+00 1.00 ·10−02 4.45 ·10−05 3 7 1 3.80 ·10+06 1.41 ·10+07

8 3.91 ·10−03 6.37 ·10−03 2.26 ·10+01 5.30 ·10−03 1.25 ·10−05 3 9 1 1.54 ·10+07 6.28 ·10+07

9 1.95 ·10−03 2.48 ·10−03 1.06 ·10+02 1.89 ·10−03 2.62 ·10−06 4 4 1 8.22 ·10+07 3.26 ·10+08

Table 10. Nested compound option (α = 1, β = 1): Parameters and results of the MLMC estimator

k ε = 2−k L2-error Time (s) Bias Variance R M h−1 N Cost

1 5.00 ·10−01 8.97 ·10−01 5.54 ·10−04 8.59 ·10−01 6.62 ·10−02 2 4 1 6.38 ·10+02 1.14 ·10+03

2 2.50 ·10−01 5.74 ·10−01 4.25 ·10−03 5.56 ·10−01 2.05 ·10−02 2 7 1 2.64 ·10+03 5.76 ·10+03

3 1.25 ·10−01 2.69 ·10−01 2.37 ·10−02 2.58 ·10−01 6.08 ·10−03 3 4 1 1.72 ·10+04 4.57 ·10+04

4 6.25 ·10−02 1.32 ·10−01 1.13 ·10−01 1.24 ·10−01 1.95 ·10−03 3 6 1 6.98 ·10+04 2.26 ·10+05

5 3.12 ·10−02 7.21 ·10−02 4.99 ·10−01 6.81 ·10−02 5.69 ·10−04 3 8 1 2.88 ·10+05 1.06 ·10+06

6 1.56 ·10−02 3.78 ·10−02 1.57 ·10+00 3.59 ·10−02 1.40 ·10−04 4 5 1 1.53 ·10+06 6.21 ·10+06

7 7.81 ·10−03 1.43 ·10−02 8.70 ·10+00 1.27 ·10−02 4.28 ·10−05 4 7 1 6.32 ·10+06 3.02 ·10+07

8 3.91 ·10−03 9.78 ·10−03 3.63 ·10+01 9.17 ·10−03 1.15 ·10−05 4 8 1 2.58 ·10+07 1.31 ·10+08

9 1.95 ·10−03 4.95 ·10−03 1.68 ·10+02 4.61 ·10−03 3.21 ·10−06 4 10 1 1.07 ·10+08 6.06 ·10+08
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Figure 4. Nested compound option in a Black–Scholes model.

by the column vector e1. The first point is that Vi is again a Vandermonde matrix of type
Vi = V (1, . . . , ai−1,0, ai+1, . . . , aR). On the other hand, the determinant of a square Van-
dermonde matrix can be expressed as det(V ) = ∏1≤j<k≤n(ak − aj ). We have for every i ∈
{1, . . . ,R}

wi =
∏

1≤j<k≤R;j,k �=i (ak − aj )
∏

1≤j<i(−aj )
∏

i<k≤R ak∏
1≤j<k≤R(ak − aj )

=
∏

1≤j<i(−aj )
∏

i<k≤R ak∏
1≤j<i(ai − aj )

∏
i<k≤R(ak − ai)

.

Using that ai = n−α
i , i = 1, . . . ,R, we get∏

1≤j<i(−aj )∏
1≤j<i(ai − aj )

= n
α(i−1)
i∏

1≤j<i(n
α
i − nα

j )

and ∏
i<k≤R ak∏

i<k≤R(ak − ai)
= (−1)R−in

α(R−i)
i∏

i<k≤R(nα
k − nα

i )

which completes the proof.
(b) follows by setting x = 0 in the decomposition

1∏
1≤i≤R(x − nα

i )
=

R∑
i=1

1

(x − nα
i )
∏

j �=i (n
α
i − nα

j )
.

�

Proposition A.2. When ni = Mi−1, i = 1, . . . ,R, the following holds true for the coefficients
wi = wi (R,M).
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1. Closed form for wi , i = 1, . . . ,R:

wi = wi (R,M)

= (−1)R−i M− α
2 (R−i)(R−i+1)∏

1≤j≤i−1(1 − M−jα)
∏

1≤j≤R−i (1 − M−jα)
, i = 1, . . . ,R.

2. Closed form for w̃R+1:

w̃R+1 = (−1)RM− R(R−1)
2 α.

3. A useful upper bound:

sup
R∈N∗

R−1∑
i=1

∣∣wi (R,M)
∣∣≤ M−α

π2
α,M

∑
k≥0

M−α
k(k+3)

2 and 1 ≤ wR(R,M) ≤ 1

πα,M

,

where πα,M =∏k≥1(1 − M−αk).
4. Asymptotics of the coefficients wi when M → +∞:

lim
M→+∞ sup

R∈N∗
max

1≤i≤R−1

∣∣wi (R,M)
∣∣= 0 and lim

M→+∞ sup
R∈N∗

∣∣wR(R,M) − 1
∣∣= 0.

5. Asymptotics of the coefficients Wi = Wi (R,M) when M → +∞: the coefficients Wi are
defined in (ML2R). It follows from what precedes that they satisfy W1 = 1,

max
1≤i≤R

∣∣Wi (R,M)
∣∣≤ Wα(M) := M−α

π2
α,M

∑
k≥0

M−α
k(k+3)

2 + 1

πα,M

(58)

and

max
1≤i≤R

∣∣Wi (R,M) − 1
∣∣≤ Wα(M) − 1 ∼ M−α → 0 as M → +∞.

In particular, the matrix T = T(R,M) in (ML2R) converges toward the matrix of the stan-
dard Multilevel Monte Carlo (MLMC) at level M when M → +∞.

6. One more useful inequality

∀R ∈ N,
1

|w̃R+1|
R∑

r=1

|wr (R,M)|
nαR

r

≤ Bα(M)
1

π2
α,M

∑
k≥0

M− α
2 k(k+1).

Proof. Claim 6: For every r ∈ {1, . . . ,R},

|wr (R,M)|
nαR

r

≤ M− α
2 ((R−r)(R−r+1)+2(r−1)R)

π2
α,M

.
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Noting that ((R − r)(R − r + 1) + 2(r − 1)R) = R(R − 1) + r(r − 1), we derive that

R∑
r=1

|wr (R,M)|
nαR

r

≤ 1

π2
α,M

M−α
R(R−1)

2

R∑
r=1

M−α
r(r−1)

2

which yields the announced inequality since M−α
R(R−1)

2 = |w̃R+1|. �

Appendix B: Sketch of proof of Propositions 2.3 and 2.5

The multistep Richardson–Romberg estimator with the formal framework of Section 3, is char-
acterized by the design matrix T = (w,0, . . . ,0). Note that the first column is not e1 but this has
no influence on what follows. The expansion of E[Ȳ N

h,n] follows from Proposition 2.5. No allo-
cation is needed here since only one Brownian motion is involved. The proof of Proposition 3.9
applies here with q = (1,0, . . . ,0). Furthermore,

φ
(
Ȳ N

h,n

)= var
(〈

w, Y 1
h,n

〉) |n|
h

∼ var(Y0)
|n|
h

as h → 0

since Y 1
h,n → Y01 in L2 and

∑R
i=1 wi = 1. �
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