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Abstract 
 

Content-based video analysis calls for efficient video 
representation. In this paper, a novel multi-level 
representation of video is proposed based on the 
principle components derived from low-level visual 
features. It can characterize the video content from the 
coarse level to the fine level according to its intrinsic 
structure. This representation form provides a flexible 
scheme for video content analysis such as 
summarization, classification, and retrieval. A newly 
proposed subspace method, kernel based PCA, is 
explored to achieve this conveniently. The application 
in keyframe extraction is investigated to demonstrate 
the benefits of this representation.  
 
1. Introduction 
 

For content analysis, video is often characterized by 
low-level visual features based on color, texture, shapes, 
motion, etc [1]. A video sequence can then be modeled 
as a set of points in the space spanned by these visual 
feature vectors. In this scenario, video representation 
turns to the characteristics of these points [2-4]. The 
technique discussed in this paper falls into this category.  

Ideally, compact while informative video 
representation will facilitate fast and convenient 
browsing, indexing and retrieval. However, compact 
and informative are two conflicting demands: too 
compact representation faces the risk of losing some 
important information while too informative 
representation will result in redundancy. Finding a 
trade-off between compact and informative can be 
considered as a way, however, this is a tough problem 
in practice and the trade-off is not necessary to be 
consistent with the requirements of video analysis and 
the users. To achieve efficient and comprehensive 
content analysis, we argue that multi-level video 
representation (MLVR) is a practical alternative to 
avoid this problem. Under this scheme, video is 
represented from the coarse level to the fine level, 
according to its intrinsic structure, to satisfy different 
requirements on the properties of compact and 
informative. Video content analysis such as 
summarization, classification, and retrieval becomes 

flexible. The objective of this paper is to implement a 
MLVR scheme and demonstrate its application to 
keyframe extraction. Kernel-based Principal Component 
Analysis (KPCA) is explored to achieve this 
conveniently. 

In literature, algorithms employing multi-level 
representation for video analysis have been studied for 
various applications. For video retrieval, Ngo et al [16] 
reported a two-level video clustering algorithm; Day et 
al [15] proposed a multi-level framework for abstraction 
and modeling in video databases. In both approaches, 
each level employs one or more distinct features and the 
number of levels is fixed. Thus such schemes are not 
applicable for applications that demand for flexible 
representation level. In applications of keyframe 
extraction, hierarchical structure has been employed by 
many researchers and such hierarchical keyframe can be 
applied to MLVR. For example, Uchihashi et al [17] 
reported a bottom-up iterative merging approach to 
build a tree-structured representation for video summary. 
Kobla et al [2] described a video as a curve in the 
feature space and applied curve simplification algorithm 
to this curve. The simplified curve can be represented as 
a tree structure and used to extract keyframes at 
different level of details. Nevertheless, a nontrivial 
weakness of these hierarchical algorithms is that only 
local video structure is taken into account while the 
resulting video representation is far from optimal from 
the global point of view.  

Subspace method is an efficient way to capture the 
principal characteristic of the data in a high-dimensional 
space. Thus it can generate a globally optimized concise 
representation for the data.   In video domain, several its 
variations, such as principal component analysis (PCA) 
and singular value decomposition (SVD), have been 
used as an attempt to capture the principal structure of a 
video [5-7]. However, these methods cannot give 
satisfactory multi-level representation due to the 
following fact. In both PCA and SVD, the 
transformation from the original space to the subspace 
is linear only. When the structures of the data present 
nonlinear property, PCA and SVD cannot effectively 
capture them therein. Consequently, it is found that in 
this case neither of them can offer sufficiently coarse 
and fine structures. For the video data represented by 
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the low-level visual feature, it may not keep a linear 
structure. Hence, a more powerful method has to be 
used instead. 

Recently, kernel based PCA (KPCA) has been 
proposed as a new subspace method [8]. In KPCA, by 
employing the kernel trick, the given data are 
nonlinearly mapped from the feature space into a 
higher-dimensional kernel space, and linear PCA is 
performed there afterwards. It has been reported that, 
compared with linear PCA, KPCA has more powerful 
capability in representing nonlinear patterns [8,14]. This 
is expected to be helpful for exploring the nonlinear 
structure in video data. As a result, more efficient 
MLVR can be produced. In this paper, a novel MLVR 
scheme based on KPCA is proposed and realized. By 
using KPCA, the coarse and fine structures in the video 
are efficiently characterized by the components 
extracted from the feature space. The application to 
keyframe extraction is also investigated to demonstrate 
the benefit of this representation form.  

The remainder of this paper is organized as follows. 
Section 2 describes the algorithm of Kernel PCA briefly. 
Section 3 proposes a MLVR scheme based on KPCA. 
Section 4 presents its application in extracting keyframe. 
Experimental results are shown in Section 5. Finally, we 
draw a conclusion and discuss the future work in 
Section 6.  
 
2. Kernel Principal Components Analysis 
 

KPCA performs linear PCA in a high-dimensional 
kennel space rather than the original feature space. 
Given a data set X ={xi ∈RN | i=1,…, n}, KPCA maps X 
into a kernel space, F, by an nonlinear mapping, Φ,  
associated with a given kernel function, k , where 

))(),((),( jiji xxxxk ΦΦ=  and ( , ) denotes the dot 

product. 
Φ : RN → F.   

The linear PCA problem in F finds the eigenvectors, 
V(V∈F), and the corresponding eigenvalues,  λ ( λ ≥ 0), 
that satisfy 
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Scholkopf et al [8] reformulate the problem for (1) as 
αα K=λn ,                             (3) 

where α denotes the column vector with entries α1, … 
αn such that 
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and K is a symmetric n x n kernel matrix where 
))()((),( jijiij kK xxxx Φ⋅Φ== .             (5)  

By solving the eigen problem in (3), α can be obtained, 
and the k-th principal component (PC) of a datum, x, is 
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where 1 ≤ k ≤ n. The obtained subspace is the one 
spanned by the eigenvectors corresponding to the larger 
eigenvalues. These eigenvectors provide an orthogonal 
basis for X and the eigenvalue represent the importance 
of the corresponding PC. Therefore, the obtained PCs 
can be used to represent the given data in a subspace of 
F. Such representation is better than the one in the 
original feature space as the former contains explicit 
structure information that facilitates the later analysis. 
Besides the advantage in capturing nonlinear structure, 
KPCA can produce up to n (the sample size) PCs to 
describe the given data. However, linear PCA can only 
offer N (the dimensionality of visual feature space) 
components. Considering that n is usually larger than N 
in video data, KPCA is expected to give both coarser 
and finer structures than linear PCA. 
 
3. Muti-Level Video Representation with 
KPCA 
 

Considering the capability of KPCA aforementioned, 
we apply KPCA to the video domain to achieve the 
proposed MLVR scheme. The principle components 
obtained from the low-level visual feature space are 
used to build up this scheme. By changing either the 
kernel parameters or the dimensionality of the subspace, 
two ways to achieve MLVR can be obtained, and either 
has its own characteristic and advantage.  

Kernel is the soul of KPCA and its parameters have 
significant impact on the result. Gaussian Radial Basis 
Function (RBF) kernel function is one of the commonly 
used kernels, and it is defined as 
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where σ is a parameter known as the “width”, and it has 
to be set beforehand [8]. The magnitude of σ affects the 
nonlinearity of the mapping, Φ, associated with the 
kernel, k . Commonly, a smaller σ results in higher 
nonlinearity while a larger σ  corresponds to lower one. 
As mentioned before, the nonlinearity of the mapping 
affects the capability of KPCA on capturing the coarse 
structure of data if it is nonlinear. Hence, the coarseness 
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level of the structure in a fixed lower-dimensional 
subspace can be adjusted by changing the magnitude of 
σ. This is an elegant property that the structure of video 
can be clearly shown from coarse level to fine level in a 
fixed dimensional subspace. The potential advantage is 
that the analysis results in different levels can be 
obtained by performing video analysis and processing 
in the same dimensional subspaces. This is very helpful 
to the algorithms sensitive to the dimensionality of 
subspace. The following example illustrates the claimed 
property explicitly.   

Figure 1 (a) to (c) show plots of the first two PCs of 
the video “news” produced by KPCA with σ=0.10, 1.00 
and 16.0 respectively, in which the visual feature is 
color histogram extracted from the video as in (8). For 
comparison, the first two PCs produced by linear PCA 
are plotted in Figure 1 (d). In these plots, the frames 
with similar color histogram are represented by points 
close to each other and vice versa. The temporal 
relationship between the frames is represented by the 
lines connecting the points. The video “news” begins 
with an interview with Mr. Blair (shot 1:1-197), then an 
anchorperson shot (shot 2:198-583) followed by a series 
of Blair’s activities: the Blairs with children (shot 3: 
584-655, shot 4: 656-714, shot 5:715-783), the 
Downing Street (shot 6: 784-834), Blair came out of his 
office (shot 7: 835-985) and the meeting room (shot 8: 
986-1034). The descriptions of the camera motion are 
summarized in Table 1. As expected, when σ is very 
small, e.g. 0.10 in Figure 1 (a), the PCs given by KPCA 
show the coarser structure of this video with three 
clusters corresponding to shot 1, 2 and 3-8 respectively. 
With the increase of σ, finer structures are disclosed in 
Figure 1 (b) and Figure 1 (c) gradually: shots are 
separated first and then the internal activities in each 
shot. However, only finer structure in the video can be 
seen in the plot of PCs given by linear PCA (Figure 1 
(d)). It is similar to that in Figure 1 (c), where σ = 16.0 
and the mapping is less nonlinear for the given data set.  

The other way to achieving MLVR is to increase the 
dimensionality of the subspace while fixing the σ value. 
It is known that in KPCA, the magnitude of an 
eigenvalue represents the importance of the 
corresponding component. The subspace spanned by the 
first M PCs represents the video structure in a certain 
level of details. The larger the value of M, the finer the 
represented structure. The benefit of this way is that we 
only need perform KPCA once to achieve multi-level 
representation and the computational load is less. If we 
change the dimension of the linear subspace method, 
say, linear PCA, multi-level can also be displayed. 
However, due to the limitation of the linear 
transformation, the resolution is limited in scale, and the 
video structure obtained can neither coarser nor finer 

than those given by KPCA. The influence of M can be 
demonstrated clearly in the following example.  

Figure 2 demonstrates the influence of M. The video 
is the same as above. We set σ=0.10 and plot the first 
two and three PCs given by KPCA in Figure 2 (a) and 
(b) respectively. The cases from linear PCA are also 
plotted in Figure 2 (c) and (d) for comparison. It can be 
seen that the coarser structure of the video is shown 
with three clusters in the subspace produced by KPCA, 
where M =2. When M increases to 3, five clusters are 
obtained and the finer structure is shown. But the 
influence of M on the linear PCA is not as significant as 
that on KPCA because the structure represented by PCs 
given by linear PCA has already been very fine. Note 
that although the cases of higher dimensionality are not 
plotted due to inconvenience, similar comparison results 
can be expected.  

In summary, we proposed a MLVR scheme based on 
KPCA in this section. Thanks to the capability of KPCA, 
we achieve MLVR conveniently by changing either σ 
or M. Such representation facilitates many video 
analysis applications, such as video summary, video 
indexing and retrieval, etc. A MLVR based keyframe 
extraction application is presented in the next section to 
demonstrate its benefits.  
  
4. Muti-Level Keyframe Extraction 
 

After obtaining MLVR with KPCA, the structure of 
the video has been described efficiently in multiple 
levels. In this section, we demonstrate a multi-level 
keyframe extraction algorithm, which can benefit 
directly from the proposed MLVR scheme. Figure 3 
illustrates the overall diagram of the proposed algorithm. 
It is detailed as follows. 

Firstly, we extract the color histogram from the 
MPEG video as the feature and KPCA is performed 
thereafter. The color histogram in our algorithm is 
constructed from the DC-image, which is recovered 
from the MPEG stream by Yeo’s method [9]. It is 
composed of 24 bins, in which 16 for Y component and 
4 for Cb and Cr components respectively. For the i-th 
frame, the color histogram Hi is 
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The color histogram of a MPEG sequence form a data 
set H {Hi ∈R24 | i=1,…, n} and n is the number of frame 
in the sequence. KPCA is performed in H and the first 
M components, PC={PC(xi)k| i=1,…,n, k=1,…, M} are 
computed by (6).  
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Then, Fuzzy c-means clustering [10] is used to find 
the cluster structures in the subspace spanned by the 
first M components. Since the cluster number c is 
unknown a priori. We employ cluster validity analysis 
to find the optimal cluster number [11] among integers 
from 1 to N. The maximum cluster number N for a 
video with length S is defined as [12]  







+==

25
10)( SroundSNN .             (9) 

Finally, a keyframe is extracted from each cluster by 
finding the frame closest to the cluster centroid ci 

)()|(min
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≤≤
.              (10) 

Multi-level keyframe extraction can be achieved by 
changing σ or M. The procedures of FCM, cluster 
validity analysis and keyframe extraction are performed 
in a multi-pass manner and each pass produces a 
keyframe set in a certain level with specified σ and M.  

 
Figure 3. Multi-level keyframe extraction based on MLVR 

 
5. Experimental Results 
 

We conduct experiments on three video clips taken 
from MPEG-7 test video set. They are in MPEG-1 
format with size 352 x 240, frame rate 29.97fps and 
CBR 1150kbps. Their characteristic descriptions are 
summarized in Table 1. In all experiments, we set 
m=2.0, ε=1.0e-5 and L = 100 for the FCM clustering 
algorithm.  

Firstly, we test the influence of σ on performance of 
keyframe extraction. Figure 4 shows the keyframes 
extracted from the video “news” with KPCA, where 
σ=0.10, 1.00 and 16.00 respectively. Keyframes 
extracted with linear PCA are also shown for 
comparison. In all these experiments, we set M=2. By 
changing σ, we obtained keyframes which describe the 
video content from coarse to fine level while linear PCA 

can only provide fine level results. This is consistent 
with the discussion of the influence of σ on MLVR in 
Section 3. Table 2 lists the results of the other two 
videos and they are similar to that of the video “news”. 

Then we investigate the influence of M on extracting 
keyframes. Figure 5 shows the keyframes of video 
“news” with KPCA where σ=0.10 while M=2,3, and 8 
respectively. Again, the cases for linear PCA are 
presented for comparison. In Section 3, we have plotted 
the PCs with M=2 and 3. Although we cannot 
conveniently plot the PCs when M>3, the keyframes 
with M>3 can be easily extracted for comparison. It can 
be seen that M has more significant impact on keyframe 
extraction with KPCA than the on with linear PCA. The 
keyframes obtained with linear PCA almost remain 
unchanged for all M while those with KPCA present 
multi-level structure. The test results on the other two 
sequences are also listed in Table 3 and similar 
conclusion can be drawn. 

From above test results, we can see that multi-level 
keyframe extraction is greatly simplified when it is 
performed on the proposed MLVR scheme. The 
proposed MLVR has clearly represented the intrinsic 
structure of the video data, and the consequent video 
processing and analysis, e.g., extracting keyframe, in 
different levels becomes much easier.  
 
6. Conclusion and future work 
 

In this paper, a multi-level video representation 
scheme is proposed. KPCA is employed to achieve this 
representation and its benefits on keyframe extraction 
are demonstrated.  

Nevertheless, there are still several open issues in the 
proposed algorithm. Firstly, KPCA solves the eigen 
problems of the kernel matrix whose size is directly 
proportional to the square of n, which corresponds to 
the number of frames in the given video sequence in 
this paper. This limits the application of KPCA in 
longer video sequence. Several ways have the potential 
to remove this obstacle. For example, the number of 
frames used in KPCA can be reduced by subsampling or 
setting up MLVR at shot level [13]. Computation 
complexity can be reduced significantly if we compute 
only the top several eigenvectors [8]. They will be 
further verified in our future work. Secondly, tuning of 
σ and M for a given application should be investigated 
in the future.  

We demonstrated an application of the proposed 
MLVR scheme to keyframe extraction in this paper. It 
can be extended to more applications, such as video 
index and retrieval and we have included them in our 
future work.  
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Table 1. Characteristic description of the testing videos 

 
Name #Frame Duration #Shot Camera Motion 
News.mpg 1034 41s 8 1-197, 198-583 :medium shot, static 

584-655:long shot, static 
656-714, 715-783:medium shot, static 
784-834:long shot, static 
835-985: medium shot, following 
986-1034, long shot, static 

Golf.mpg 951 32s 2 1-141: long shot, static 
142-311:closeup 
312-485:zoom out 
486-887:medium shot, static 
888-951:zoom in 

Basketball.mpg 1046 35s 4 1-155: medium shot, following 
156-884:long shot, panning 
885-951, 952-1046 : medium shot, following 

 
Table 2. Keyframe number obtained with changing of σ   

 
Name #shot KPCA, σ = 0.10, M=2 KPCA, σ = 1.00, M =2 KPCA,σ = 16.00, M =2 LPCA, M =2 

News.mpg 8 3 8 13 11 
Golf.mpg 2 3 6 12 5 

Basketball.mpg 4 3 6 13 7 
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Table 3. Keyframe number obtained with changing of M  
 

Name #shot KPCA, σ = 
0.10, M =2 

KPCA, σ = 
0.10, M =3 

KPCA, σ = 
0.10, M =8 

LPCA, M =2 LPCA, M =3 LPCA, M =8

News.mpg 8 3 5 10 11 12 13 
Golf.mpg 2 3 4 8 5 6 6 

Basketball.mpg 4 3 4 12 7 7 7 
 
 

 

  
(a)                                                                                               (b) 

  
(c)                                                                                           (d) 

Figure 1. Plots of the first 2 PCs for news.mpg. (a) – (c) plot the PCs produced by KPCA, where in (a) σ=0.10, in (b) σ=1.00 and in (c) 
σ =16.00.  (d) plots the PCs produced by linear PCA. All components have been normalized into (-1, 1).  

 
 

 

  
                                                            (a)                                                                                              (b) 
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(c)                                                                                                (d) 

Figure 2. The plot of the PCs of news.mpg. (a) and (b) plot the PCs produced by KPCA, where σ=0.10 , in (a) M=2 and in (b) M=3. (c) 
and (d) plot the PCs produced by linear PCA, where in (c) M=2 and in (d) M=3. 
 
 
 
 

 
 
KPCA  
σ = 0.10 
M=2 

 

 
 

 
KPCA  
σ = 1.00 
M=2 

 

 
 

 
KPCA  
σ = 16.00 
M=2 

 

 
 

 
LPCA 
M=2 

 

 
 

 
Figure 4. The influence of σ on keyframe extraction. All keyframes are produced by FCM with cluster validity analysis in the 2-
dimension subspace, i.e., M=2. The first three rows are those extracted with KPCA, where σ  = 0.10, 1.00 and 16.00 respectively and 
the last row is those produced with linear PCA.  
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KPCA 
σ =0.10 
M=2 

 

 
 

 
KPCA 
σ =0.10 
M=3 

 

 
 

 
KPCA 
σ =0.10 
M=8 

 

 
 

 
LPCA 
M=2 

 

 
 

LPCA 
M=3 

 

 
 

LPCA 
M=8 

 

 
 

 
Figure 5. The influence of M, dimensionality of subspace, on keyframe extraction. The first three rows are keyframes produced with 
KPCA , where σ=0.10 and M=2, 3, 8 respectively and the last three rows are those with linear PCA, where M=2, 3, 8 respectively.  

 
 

 


