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Abstract. Natural images are the composite consequence of multiple factors re-

lated to scene structure, illumination, and imaging. Multilinear algebra, the alge-

bra of higher-order tensors, offers a potent mathematical framework for analyz-

ing the multifactor structure of image ensembles and for addressing the difficult

problem of disentangling the constituent factors or modes. Our multilinear mod-

eling technique employs a tensor extension of the conventional matrix singular

value decomposition (SVD), known as the N -mode SVD. As a concrete exam-

ple, we consider the multilinear analysis of ensembles of facial images that com-

bine several modes, including different facial geometries (people), expressions,

head poses, and lighting conditions. Our resulting “TensorFaces” representation

has several advantages over conventional eigenfaces. More generally, multilinear

analysis shows promise as a unifying framework for a variety of computer vision

problems.

1 Introduction

Natural images are formed by the interaction of multiple factors related to scene struc-

ture, illumination, and imaging. Human perception remains robust despite significant

variation of these factors. For example, people possess a remarkable ability to recog-

nize faces when confronted by a broad variety of facial geometries, expressions, head

poses, and lighting conditions, and this ability is vital to human social interaction. De-

veloping a similarly robust computational model of face recognition remains a difficult

open problem whose solution would have substantial impact on biometrics for identifi-

cation, surveillance, human-computer interaction, and other applications.

Linear algebra, i.e., the algebra of matrices, has traditionally been of great value in

the context of image analysis and representation. The Fourier transform, the Karhonen-

Loeve transform, and other linear techniques have been veritable workhorses. In partic-

ular, principal component analysis (PCA) has been a popular technique in facial image

recognition, as has its refinement, independent component analysis (ICA) [2]. By their

very nature, however, these offspring of linear algebra address single-factor variations

in image formation. Thus, the conventional “eigenfaces” facial image recognition tech-

nique [13, 17] works best when person identity is the only factor that is permitted to

vary. If other factors, such as lighting, viewpoint, and expression, are also permitted to

modify facial images, eigenfaces face difficulty.

In this paper, we employ a more sophisticated mathematical approach in the analysis

and representation of images that can account explicitly for each of the multiple factors
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inherent to image formation. Our approach is that of multilinear algebra—the algebra

of higher-order tensors. The natural generalization of matrices (i.e., linear operators

defined over a vector space), tensors define multilinear operators over a set of vector

spaces. Subsuming conventional linear analysis as a special case, tensor analysis offers

a unifying mathematical framework suitable for addressing a variety of computer vision

problems. Tensor analysis makes the assumption that images formed as a result of some

multifactor confluence are amenable to linear analysis as each factor or mode is allowed

to vary in turn, while the remaining factors or modes are held constant.1

We focus in this paper on the higher-order generalization of PCA and the singular

value decomposition (SVD) of matrices for computing principal components. Unlike

the matrix case for which the existence and uniqueness of the SVD is assured, the sit-

uation for higher-order tensors is not as simple. Unfortunately, there does not exist a

true “tensor SVD” that offers all the nice properties of the matrix SVD [6]. There are

multiple ways to decompose tensors orthogonally. However, one multilinear extension

of the matrix SVD to tensors is most natural. We demonstrate the application of this N -

mode SVD to the representation of collections of facial images, where multiple modes

are permitted to vary. The resulting representation separates the different modes under-

lying the formation of facial images, hence it is promising for use in a robust facial

recognition algorithm.

The remainder of this paper is organized as follows: Section 2 reviews related work.

Section 3 covers the foundations of tensor algebra that are relevant to our approach. Sec-

tion 4 formulates the tensor decomposition algorithm which is central to our multilinear

analysis. Section 5 applies our multilinear analysis algorithm to the analysis of facial

images. Section 6 concludes the paper and proposes future research topics.

2 Related Work

Prior research has approached the problem of facial representation for recognition by

taking advantage of the functionality and simplicity of matrix algebra. The well-known

family of PCA-based algorithms, such as eigenfaces [13, 17] and Fisherfaces [1] com-

pute the PCA by performing an SVD on a XY ×P data matrix of “vectorized” X ×Y

pixel images of P people. These linear models are suitable in the case where the identity

of the subject is the only variable accounted for in image formation. Various researchers

have attempted to deal with the shortcomings of PCA-based facial image representation

in less constrained (multi-factor) situations, for example, by employing better classifiers

[11].

Bilinear models have attracted attention because of their richer representational

power. The 2-mode analysis technique for analyzing (statistical) data matrices of scalar

entries is described by Magnus and Neudecker [8]. 2-mode analysis was extended to

vector entries by Marimont and Wandel [9] in the context of characterizing color sur-

face and illuminant spectra. Freeman and Tenenbaum [4, 14] applied this extension in

three different perceptual domains, including face recognition.

1 Also of interest is the fact that, from a probabilistic point of view, multilinear algebra is to

higher-order statistics what linear algebra is to second-order statistics [3].
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As was pointed out by Shashua and Levin [12], the natural representation of a col-

lection of images is a three-dimensional array, or 3rd-order tensor, rather than a simple

matrix of vectorized images. They develop compression algorithms for collections of

images, such as video images, that take advantage of spatial (horizontal/vertical) and

temporal redundancies, leading to higher compression rates compared to applying con-

ventional PCA on vectorized image data matrices.

In addressing the motion analysis/synthesis problem, Vasilescu [19, 18] structured

motion capture data in tensor form and developed an algorithm for extracting “hu-

man motion signatures” from the movements of multiple subjects each performing sev-

eral different actions. The algorithm she described performed 3-mode analysis (with a

dyadic decomposition) and she identified the more general motion analysis problem in-

volving more than two factors (people, actions, cadences, ...) as one of N -mode analysis

on higher-order tensors. N -mode analysis of observational data was first proposed by

Tucker [16], who pioneered 3-mode analysis, and subsequently developed by Kapteyn

et al. [5, 8] and others, notably [3].

The N -mode SVD facial image representation technique that we develop in this

paper subsumes the previous methods reviewed above. In particular, when presented

with matrices of vectorized images that are amenable to simple, linear analysis, our

method reduces to SVD, hence PCA; i.e., the eigenfaces of Sirovich and Kirby or Turk

and Pentland. When the collection of images is more appropriately amenable to bilinear

analysis, our technique reduces to the “style/content” analysis of Freeman and Tenen-

baum. More importantly, however, our technique is capable of handling images that

are the consequence of any number of multilinear factors of the sort described in the

introduction.

3 Relevant Tensor Algebra

We now introduce the notation and basic definitions of multilinear algebra. Scalars are

denoted by lower case letters (a, b, . . .), vectors by bold lower case letters (a,b . . .),

matrices by bold upper-case letters (A,B . . .), and higher-order tensors by calligraphic

upper-case letters (A, B . . .).

A tensor, also known as n-way array or multidimensional matrix or n-mode matrix,

is a higher order generalization of a vector (first order tensor) and a matrix (second

order tensor). Tensors are multilinear mappings over a set of vector spaces. The order

of tensor A ∈ IRI1×I2×...×IN is N . An element of A is denoted as Ai1...in...iN
or

ai1...in...iN
or where 1 ≤ in ≤ In.

An N th−order tensor A ∈ IRI1×I2×...×IN has rank-1 when it is expressible as the

outer product of N vectors: A = u1 ◦ u2 ◦ . . . ◦ uN . The tensor element is expressed

as aij...m = u1iu2j . . . uNm, where u1i is the ith component of u1, etc. The rank of a

N th order tensor A, denoted R=rank(A), is the minimal number of rank-1 tensors that

yield A in a linear combination:

A =

R∑

r=1

σru
(r)
1 ◦ u

(r)
2 ◦ . . . ◦ u

(r)
N . (1)
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A singular value decomposition (SVD) can be expressed as a rank decomposition

as is shown in the following simple example:

M =

[
a b

c d

] [
σ11 0
0 σ22

] [
f g

h i

]

= σ11

[
a

c

]

◦

[
f

g

]

+ σ22

[
b

d

]

◦

[
h

i

]

(2)

= U1ΣU
T
2 (3)

=
[

u
(1)
1 u

(2)
1

] [
σ11 0
0 σ22

] [

u
(1)
2 u

(2)
2

]T

(4)

=

R=2∑

i=1

R=2∑

j=1

σiju
(i)
1 ◦ u

(j)
2 (5)

Note that a singular value decomposition is a combinatorial orthogonal rank decompo-

sition (5), but that the reverse is not true; in general, rank decomposition is not neces-

sarily singular value decomposition. For further discussion on the differences between

matrix SVD, rank decomposition and orthogonal rank decomposition for higher order

tensors see [6].

Next, we generalize the definition of column and row rank of matrices. In ten-

sor terminology, column vectors are referred to as mode-1 vectors and row vectors

as mode-2 vectors. The mode-n vectors of an N th order tensor A ∈ IRI1×I2×...×IN

are the In-dimensional vectors obtained from A by varying index in while keeping

the other indices fixed. The mode-n vectors are the column vectors of matrix A(n) ∈

IRIn×(I1I2...In−1In+1...IN ) that results from flattening the tensor A, as shown in Fig. 1.

The n-rank of A ∈ IRI1×I2×...×IN , denoted Rn, is defined as the dimension of the

vector space generated by the mode-n vectors:

Rn = rankn(A) = rank(A(n)). (6)

A generalization of the product of two matrices is the product of a tensor and a

matrix. The mode-n product of a tensor A ∈ IRI1×I2×...×In×...×IN by a matrix M ∈

IRJn×In , denoted by A ×n M, is a tensor B ∈ IRI1×...×In−1×Jn×In+1×...×IN whose

entries are computed by

(A×n M)i1...in−1jnin+1...iN
=

∑

in

ai1...in−1inin+1...iN
mjnin

. (7)

The mode-n product can be expressed in tensor notation as follows:

B = A×n M, (8)

or, in terms of flattened matrices,

B(n) = MA(n). (9)

The mode-n product of a tensor and a matrix is a special case of the inner product

in multilinear algebra and tensor analysis. In the literature, it is often denoted using

Einstein summation notation. For our purposes, however, the mode-n product symbol

is more suggestive of multiplication and expresses better the analogy between matrix

and tensor SVD [16] (see Section 4). The mode-n product has the following properties:
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Fig. 1. Flattening a (3rd-order) tensor. The tensor can be flattened in 3 ways to obtain matrices

comprising its mode-1, mode-2, and mode-3 vectors.

1. Given a tensor A ∈ IRI1×...In×...Im... and two matrices, U ∈ IRJm×Im and V ∈

IRJn×In the following property holds true:

A×m U ×n V = (A×m U) ×n V (10)

= (A×n V) ×m U (11)

= A×n V ×m U (12)

2. Given a tensor A ∈ IRI1×...×In×...×IN and two matrices, U ∈ IRJn×In and V ∈

IRKn×Jn the following property holds true:

(A×n U) ×n V = A×n (VU) (13)

4 Tensor Decomposition

A matrix D ∈ IRI1×I2 is a two-mode mathematical object that has two associated

vector spaces, a row space and a column space. SVD orthogonalizes these two spaces

and decomposes the matrix as D = U1ΣU
T
2 , the product of an orthogonal column-

space represented by the left matrix U1 ∈ IRI1×J1 , a diagonal singular value matrix

5



Published in the Proc. of the European Conf. on Computer Vision (ECCV ’02), Copenhagen, Denmark, May, 2002, 447–460.

D U Z

=

U

U
1

2

3

Fig. 2. An N -mode SVD orthogonalizes the N vector spaces associated with an order-N tensor

(the case N = 3 is illustrated).

Σ ∈ IRJ1×J2 , and an orthogonal row space represented by the right matrix U2 ∈

IRI2×J2 . In terms of the mode-n products defined in the previous section, this matrix

product can be rewritten as D = Σ ×1 U1 ×2 U2.

By extension, an order N > 2 tensor or n-way array D is an N -dimensional matrix

comprising N spaces. “N -mode SVD” is a an extension of SVD that orthogonalizes

these N spaces and expresses the tensor as the mode-n product (7) of N -orthogonal

spaces

D = Z ×1 U1 ×2 U2 . . . ×n Un . . . ×N UN , (14)

as illustrated in Fig. 2 for the case N = 3. Tensor Z , known as the core tensor, is anal-

ogous to the diagonal singular value matrix in conventional matrix SVD. It is important

to realize, however, that the core tensor does not have a diagonal structure; rather, Z is

in general a full tensor [6]. The core tensor governs the interaction between the mode

matrices Un, for n = 1, . . . , N . Mode matrix Un contains the orthonormal vectors

spanning the column space of the matrix D(n) that results from the mode-n flattening

of D, as was illustrated in Fig. 1. 2

2 Note that the N -mode SVD can be expressed as an expansion of mutually orthogonal rank-1

tensors (analogous to equation (5)), as follows:

D =

R1∑

i1=1

. . .

Rn∑

in=1

. . .

RN∑

iN =1

zi1...iN
U

(i1)
1 ◦ . . . ◦ U

(in)
n ◦ . . .U

(iN )
N

,

where U
(in)
n is the in column vector of the matrix Un. In future work, we shall address the

problem of finding the best rank-(R1, R2, . . . , RN ) tensor. This is not to be confused with the

classical “rank-R problem” [7].
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4.1 The N -Mode SVD Algorithm

In accordance with the above theory, our N -mode SVD algorithm for decomposing D

is as follows:

1. For n = 1, . . . , N , compute matrix Un in (14) by computing the SVD of the

flattened matrix D(n) and setting Un to be the left matrix of the SVD.3

2. Solve for the core tensor as follows

Z = D ×1 U
T
1 ×2 U

T
2 . . . ×n U

T
n . . . ×N U

T
N . (15)

5 TensorFaces: Multilinear Analysis of Facial Images

As we stated earlier, image formation depends on scene geometry, viewpoint, and il-

lumination conditions. Multilinear algebra offers a natural approach to the analysis of

the multifactor structure of image ensembles and to addressing the difficult problem of

disentangling the constituent factors or modes.

In a concrete application of our multilinear image analysis technique, we employ the

Weizmann face database of 28 male subjects photographed in 15 different poses under

4 illuminations performing 3 different expressions. We used a portion of this database,

employing images in 5 poses, 3 illuminations, and 3 expressions.4 Using a global rigid

optical flow algorithm, we roughly aligned the original 512× 352 pixel images relative

to one reference image. The images were then decimated by a factor of 3 and cropped as

shown in Fig. 3, yielding a total of 7943 pixels per image within the elliptical cropping

window. Our facial image data tensor D is a 28× 5× 3× 3× 7943 tensor. The number

of modes is N = 5.

We apply multilinear analysis to the facial image data using the N -mode decompo-

sition algorithm described in Section 4. The 5-mode decomposition of D is

D = Z ×1 Upeople ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, (16)

where the 28 × 5 × 3 × 3 × 7943 core tensor Z governs the interaction between the

factors represented in the 5 mode matrices: The 28 × 28 mode matrix Upeople spans the

space of people parameters, the 5 × 5 mode matrix Uviews spans the space of viewpoint

parameters, the 3×3 mode matrix Uillums spans the space of illumination parameters and

the 3×3 mode matrix Uexpres spans the space of expression parameters. The 7943×7943
mode matrix Upixels orthonormally spans the space of images.

3 When D(n) is a non-square matrix, the computation of Un in the singular value decom-

position D(n) = UnΣV
T

n can be performed efficiently, depending on which dimension

of D(n) is smaller, by decomposing either D(n)D
T

(n) = UnΣ
2
U

T

n and then computing

V
T

n = Σ
+
U

T

nD(n) or by decomposing D
T

(n)D(n) = VnΣ
2
V

T

n and then computing

Un = D(n)VnΣ
+.

4 A computer-controlled robot arm positioned the camera to ±34
◦, ±17

◦, and 0
◦, the frontal

view in the horizontal plane. The face was illuminated by turning on and off three light sources

fixed at the same height as the face and positioned to the left, center, and right of the face. For

additional details, see [10].
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(a)

(b)

Fig. 3. The facial image database (28 subjects × 45 images per subject). (a) The 28 subjects

shown in expression 2 (smile), viewpoint 3 (frontal), and illumination 2 (frontal). (b) The full

image set for subject 1. Left to right, the three panels show images captured in illuminations 1, 2,

and 3. Within each panel, images of expressions 1, 2, and 3 are shown horizontally while images

from viewpoints 1, 2, 3, 4, and 5 are shown vertically. The image of subject 1 in (a) is the image

situated at the center of (b).
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Our multilinear analysis, which we call TensorFaces, subsumes linear, PCA analysis

or conventional eigenfaces. Each column of Upixels is an “eigenimage”. These eigenim-

ages are identical to conventional eigenfaces [13, 17], since the former were computed

by performing an SVD on the mode-5 flattened data tensor D which yields the matrix

D(pixels) whose columns are the vectorized images. To further show mathematically that

PCA is a special case of our multilinear analysis, we write the latter in terms of matrix

notation. A matrix representation of the N -mode SVD can be obtained by unfolding D

and Z as follows:

D(n) = UnZ(n)(Un−1 ⊗ . . . ⊗ U1 ⊗ UN ⊗ . . . ⊗ Un+2 ⊗ Un+1)
T , (17)

where ⊗ denotes the matrix Kronecker product. Using (17) we can express the decom-

position of D as

D(pixels)
︸ ︷︷ ︸

image data

= Upixels
︸ ︷︷ ︸

basis vectors

Z(pixels)(Uexpres ⊗ Uillums ⊗ Uviews ⊗ Upeople)
T

︸ ︷︷ ︸

coefficients

. (18)

The above matrix product can be interpreted as a standard linear decomposition of

the image ensemble, where the mode matrix Upixels is the PCA matrix of basis vectors

and the associated matrix of coefficients is obtained as the product of the flattened

core tensor times the Kronecker product of the people, viewpoints, illuminations, and

expressions mode matrices. Thus, as we stated above, our multilinear analysis subsumes

linear, PCA analysis.

The advantage of multilinear analysis is that the core tensor Z can transform the

eigenimages present in the matrix Upixels into eigenmodes, which represent the principal

axes of variation across the various modes (people, viewpoints, illuminations, expres-

sions) and represents how the various factors interact with each other to create an image.

This is accomplished by simply forming the product Z ×5 Upixels. By contrast, PCA ba-

sis vectors or eigenimages represent only the principal axes of variation across images.

To demonstrate, Fig. 4 illustrates in part the results of the multilinear analysis of the

facial image tensor D. Fig. 4(a) shows the first 10 PCA eigenimages contained in Upixels.

Fig. 4(b) illustrates some of the eigenmodes in the product Z ×5 Upixels. A few of the

lower-order eigenmodes are shown in the three arrays. The labels at the top of each ar-

ray indicate the names of the horizontal and vertical modes depicted by the array. Note

that the basis vector at the top left of each panel is the average over all people, view-

points, illuminations, and expressions, and that the first column of eigenmodes (people

mode) is shared by the three arrays.

PCA is well suited to parsimonious representation, since it orders the basis vectors

according to their significance. The standard PCA compression scheme is to truncate the

higher order eigenvectors associated with this representation. Our multilinear analysis

enables an analogous compression scheme, but it offers much greater control. It allows

the strategic truncation of higher-order eigenmodes depending on the task at hand and

the modalities that should be represented most faithfully.

Multilinear analysis subsumes mixtures of probabilistic PCA or view-based mod-

els [15, 11] when one uses a different choice of basis functions. Starting with the eigen-

modes Z ×5 Upixels, we multiply the viewpoint parameter matrix Uviews to form the prod-

uct Z ×2 Uviews ×5 Upixels, which yields the principal axes of variation of the image

9
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(a)

people↓ viewpoints→ people↓ illuminations→ people↓ expressions→

...
...

...

(b) (c) (d)

Fig. 4. Some of the basis vectors resulting from the multilinear analysis of the facial image data

tensor D. (a) The first 10 PCA eigenvectors (eigenfaces), which are contained in the mode matrix

Upixels, and are the principal axes of variation across all images. (b,c,d) A partial visualization of

the product Z ×5 Upixels, in which the core tensor Z transforms the eigenvectors Upixels to yield a

5-mode, 28× 5× 3× 3× 7943 tensor of eigenmodes which capture the variability across modes

(rather than images). Some of the first few eigenmodes are shown in the three arrays. The labels at

the top of each array indicate the names of the horizontal and vertical modes depicted in that array.

Note that the basis vector at the top left of each panel is the average over all people, viewpoints,

illuminations, and expressions (the first column of eigenmodes (people mode) is shared by the

three arrays).
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illumination basis 1 illumination basis 2 illumination basis 3

people↓ expressions→ people↓ expressions→ people↓ expressions→

...
...

...

(a) (b) (c)

Fig. 5. Some of the eigenvectors in the 28 × 3 × 3 × 7943 tensor Z ×2 Uviews ×5 Upixels for

viewpoint 1. These eigenmodes are viewpoint specific.

ensemble across the people mode, illumination mode, and expression mode for each of

the 5 viewpoints. Fig. 5 shows the eigenvectors that span all the images in viewpoint 1.

In essence, the multilinear analysis provides for each viewpoint the principal axes of a

multidimensional Gaussian.

Similarly, we can define a person specific set of eigenvectors that span all the im-

ages. Fig. 6(a–c) illustrates the effect of multiplying the eigenvectors of Fig. 4(b–d) by

Upeople to obtain the 5×3×3×7943 tensor of eigenvectors Z ×1 Upeople ×5 Upixels. These

new eigenvectors are now person-specific. The figure shows all of the eigenvectors for

slice 1 of the tensor, associated with subject 1 in Fig. 3(a). The eigenvectors shown

capture the variations across the distribution of images of this particular subject over all

viewpoints, expressions, and illuminations. Fig. 6(d–e) shows portions of slices 2 and

3 through the tensor (the upper 3 × 3 portions of arrays analogous to that in (a) of the

figure are shown), showing some of the eigenvectors specific to subject 2 and to subject

3, respectively.

11
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illumination basis 1 illumination basis 2 illumination basis 3

viewpoints↓ expressions→ viewpoints↓ expressions→ viewpoints↓ expressions→

(a) (b) (c)

illumination basis 1 illumination basis 1

viewpoints↓ expressions→ viewpoints↓ expressions→

...
...

(d) (e)

Fig. 6. (a,b,c) All the eigenvectors in the 5×3×3×7943 tensor Z×1Upeople×5Upixels for subject 1.

This is the top slice (subject 1 in Fig. 3(a)) of the tensor depicted in Fig. 4(b–d) but multiplied by

Upeople, which makes the eigenvectors person-specific. (d) Person specific eigenvectors for subject

2 and (e) for subject 3; the upper 3 × 3 portions of arrays analogous to that in (a) are shown.
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expres. 1 & illum. 2 expres. 1 & view 3 illum. 2 & view 3

people↓ viewpoints→ people↓ illuminations→ people↓ expressions→

...
...

...

(a) (b) (c)

Fig. 7. This 28 × 5 × 3 × 3 × 7943 tensor Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels defines

45 different basis for each combination of viewpoints, illumination and expressions. These basis

have 28 eigenvectors which span the people space. The topmost row across the three panels

depicts the average person, while the eigenvectors in the remaining rows capture the variability

across people in the various viewpoint, illumination, and expression combinations. (a) The first

column is the basis spanning the people space in viewpoint 1, illumination 2 and expression 1,

the second column is the basis spanning the people space in viewpoint 2, illumination 2 and

expression 1, etc. (b) The first column is the basis spanning the people space in viewpoint 1,

illumination 1 and expression 1, the second column is the basis spanning the people space in

viewpoint 1, illumination 2 and expression 1, etc. (c) The first column is the basis spanning the

people space in viewpoint 3, illumination 2 and expression 1, the second column is the basis

spanning the people space in viewpoint 3, illumination 2 and expression 2, etc.
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An important advantage of multilinear analysis is that it maps all images of a person,

regardless of viewpoint, illumination and expression, to the same coefficient vector,

given the appropriate choice of basis, thereby achieving zero intra-class scatter. Thus,

multilinear analysis creates well separated people classes by maximizing the ratio of

inter-class scatter to intra-class scatter [1]. By comparison, PCA will represent each

different image of a person with a different vector of coefficients.

In our facial image database there are 45 images per person that vary with viewpoint,

illumination, and expression. PCA represents each person as a set of 45 vector-valued

coefficients, one for each image in which the person appears. The length of each PCA

coefficient vector is 28 × 5 × 3 × 3 = 1215. By contrast, multilinear analysis enables

us to represent each person with a single vector coefficient of dimension 28 relative

to the bases comprising the tensor Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels, some of

which are shown in Fig. 7. Each column in the figure is a basis and it is composed of

28 eigenvectors. In any column, the first eigenvector depicts the average person and

the remaining eigenvectors capture the variability across people, for the particular com-

bination of viewpoint, illumination, and expression associated with that column. The

eigenvectors in any particular row play the same role in each column. This is the reason

why images of the same person taken under different viewpoint, illumination, and ex-

pression conditions are projected to the same coefficient vector by the bases associated

with these conditions.

6 Conclusion

We have identified the analysis of an ensemble of images resulting from the confluence

of multiple factors related to scene structure, illumination, and viewpoint as a problem

in multilinear algebra. Within this mathematical framework, the image ensemble is rep-

resented as a higher-dimensional tensor. This image data tensor must be decomposed

in order to separate and parsimoniously represent the constituent factors. To this end,

we prescribe the “N -mode SVD” algorithm, a multilinear extension of the conventional

matrix singular value decomposition (SVD).

Although we have demonstrated the power of N -mode SVD using ensembles of

facial images, which yielded TensorFaces, our tensor decomposition approach shows

promise as a unifying mathematical framework for a variety of computer vision prob-

lems. In particular, it subsumes as special cases the simple linear (1-factor) analysis

associated with conventional SVD and principal components analysis (PCA), as well

as the incrementally more general bilinear (2-factor) analysis that has recently been in-

vestigated in the context of computer vision [4, 14]. Our completely general multilinear

approach accommodates any number of factors by taking advantage of the mathemati-

cal machinery of tensors.

Not only do tensor decompositions play an important role in the factor analysis

of multidimensional datasets, as described in this paper, but they also appear in con-

junction with higher order statistics (higher order moments and cumulants) that are

employed in independent component analysis (ICA). Hence, we can potentially apply

tensor decomposition to ICA.
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In future work, we will develop algorithms that exploit our multilinear analysis

framework in a range of applications, including image compression, resynthesis, and

recognition.
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