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Multilinear Hyperquiver Representations

Tommi Muller, Vidit Nanda, and Anna Seigal

ABSTRACT. We count singular vector tuples of a system of tensors assigned to the edges
of a directed hypergraph. To do so, we study the generalisation of quivers to directed
hypergraphs. Assigning vector spaces to the nodes of a hypergraph and multilinear maps to
its hyperedges gives a hyperquiver representation. Hyperquiver representations generalise
quiver representations (where all hyperedges are edges) and tensors (where there is only one
multilinear map). The singular vectors of a hyperquiver representation are a compatible
assignment of vectors to the nodes. We compute the dimension and degree of the variety of
singular vectors of a sufficiently generic hyperquiver representation. Our formula specialises
to known results that count the singular vectors and eigenvectors of a generic tensor.

1. Introduction

The theory of quiver representations provides a unifying framework for some fundamental
concepts in linear algebra [7]. In this paper, we introduce and study a natural generalisation
of quiver representations, designed to analogously serve the needs of multilinear algebra.

Quiver Representations and Matrix Spectra. A quiver () consists of finite sets V/
and E, whose elements are called vertices and edges respectively, along with two functions
s,t : E — V sending each edge to its source and target vertex. It is customary to write
e : i — j for the edge e with s(e) = ¢ and t(e) = j. The definition does not prohibit
self-loops s(e) = t(e) nor parallel edges e1,es : @ — j. A representation (U, «) of Q) assigns
a finite-dimensional vector space U; to each ¢ € V' and a linear map «. : U; — U, to each
e :1 — j in E. Originally introduced by Gabriel to study finite-dimensional algebras [22],
quiver representations have since become ubiquitous in mathematics. They appear promi-
nently in disparate fields ranging from representation theory and algebraic geometry [12] to
topological data analysis [32]. In most of these appearances, the crucial task is to classify
the representations of a given quiver up to isomorphism. This amounts in practice to cat-
aloguing the indecomposable representations; i.e., those that cannot be expressed as direct
sums of smaller nontrivial representations.

For all but a handful of quivers, the set of indecomposables (up to isomorphism) is
complicated, and such a classification is hopeless [30, Theorem 7.5]. Nevertheless, one may
follow the spirit of [37] and use quivers to encode compatibility constraints with spectral
interpretations. We work with representations that assign vector spaces U; = C% to each
vertex and matrices A, : C% — C% to each edge. We denote the quiver representation
by (d,A), where d := (dy,...,d,) is the dimension vector. Let [x] € P(C?) denote the
projectivisation of £ € C? We define the singular vectors of a quiver representation

(d,A) to consist of tuples ([z;] € P(C%) |i € V) for which there exist scalars (A | e € E)
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so that the compatibility constraint A.x; = A.x; holds across each edge e : i — j. Standard
notions from linear algebra arise as special cases of such singular vectors, see also Figure 1:

(a) The eigenvectors of a matrix A : C* — C? are the singular vectors of the represen-
tation of the Jordan quiver that assigns C? to the unique node and A to the unique
edge.

(b) The singular vectors of a matrix A : C% — C% arise from the representation of
the directed cycle of length 2, with A assigned to one edge and A" assigned to the
other.

(c) The generalised eigenvectors of a pair of matrices A, B : C¢ — C? — i.e., non-zero
solutions * to Ax = X\ - Bx for some A\ € C — are the singular vectors of the
representation of the Kronecker quiver with A on one edge and B on the other.
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FIGURE 1. Quiver representations corresponding to (a) the eigenvectors of a
matrix, (b) the singular vectors of a matrix, (c) the generalised eigenvectors
of a pair of matrices.

For d = dy = d», a generic instance of any of these three quiver representations has d singular
vectors.

Hyperquiver Representations and Tensors. This century has witnessed progress
towards extending the spectral theory of matrices to the multilinear setting of tensors [34].
Given a tensor T' € C"* @ - - - ® C¥ | we write T(x1,...,Tj_1,,Tji1,...,&,) € CU for the
vector with ¢-th coordinate

djt1

dl djfl dn
Z Z Z ---ZTi1,...,ijfl,i,im,...,z‘n(ml)il"'(wj—l)ij,1($j+1),~j+1"'(wn)in-

=1 ijoi=lijpi=1  ip=1

Eigenvectors and singular vectors of tensors were introduced in [31, 33]|. The eigenvectors
of T € (CH®" are all non-zero & € C¢ satisfying

T(-,x,...,x) =\ x,

for some scalar A € C. In the special case of matrices, this reduces to the familiar formula
Az = \x. Similarly, the singular vectors of a tensor 7' € C% ® --- ® C% are the tuples of
non-zero vectors (xy,...,®,) € C" x --. x C¥ satisfying

T(CCl, ey L1, L1, 7wn) = [;T;
for all j. This specialises for matrices to the familiar pair of conditions Axy = piax; and
ATar;l = U2Zs.
Eigenvectors and singular vectors have been computed for special classes of tensors in
(35, 36]; they have been used to study hypergraphs [5, 34] and to learn parameters in latent
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variable models [3, 4]. For a symmetric tensor T € (C?)®" the eigenvectors are, equivalently,
all non-zero € C? for which a scalar multiple - 2®" constitutes a critical point to the best
rank-one approximation problem for 7'. Similarly, the singular vectors of T € C* ®@- - - @ Cé
are all tuples of non-zero vectors (x,...,x,) € C% x ... x C% for which A\ ¢, ® --- @ x,,
is a critical point to the best rank one approximation for 7" [31].

In order to create the appropriate generalisation of quiver singular vectors to subsume
these notions from the spectral theory of tensors, we generalise from quivers to hyperquivers.
In general, hyperquivers are obtained from quivers by allowing the source and target maps
s,t : E — V to be multivalued. For our purposes, it suffices to consider hyperquivers
where each edge e € E has a single target vertex. The hyperedge e now has a tuple of
sources (s1(e), s2(e),...,s,(e)) € V# for some e-dependent integer y¢ > 1. A representation
R = (d,T) of such a hyperquiver assigns to each vertex i a vector space C% and to each
edge e a tensor

T, € CHeo @ C¥1) @ ... @ Chul,

We identify a vector space C? with its dual (C?)*, allowing us to view the tensor T, as a
multilinear map

“w
T, : H C%©@ — Cheo
j=1
(wsl(e)v ERRE) wsﬂ(e)> = Te( L)y - - 7wsu(e)>-

Our hyperquiver representations reduce to usual quiver representations when each edge has
=1

The set of singular vectors of a hyperquiver representation R, denoted S(R), consists of
all tuples ([z;] € P(C%) | i € V) that satisfy

T.(- xi,. .., xi,) = A - x5, (1.1)

for some scalar A, across every edge e € E of the form (iy,...,7,) = j. We work with
vectors in a product of projective spaces, since we require the vectors to be non-zero (as for
the singular vectors of a matrix) and moreover because the equation (1.1) still holds after
non-zero rescaling of each x;, albeit for different scalars ..

Perhaps the simplest nontrivial family of examples is furnished by starting with the
quiver with a single vertex and a single hyperedge with m — 1 source vertices — we call
this the m-Jordan hyperquiver. Consider the representation that assigns, to the vertex, the
vector space C? for some dimension d > 0, and to the edge, a tensor T € (C%)®™, seen as
a multilinear map T : (C?)(™=1) — C? that contracts vectors along the last m — 1 modes
of T'; see Figure 2a for the case m = 3. The singular vectors of this representation are all
[x] € P(CY) satisfying T(-,x,x,...,x) = \- x for some scalar A € C. The singular vectors
of the representation are therefore the eigenvectors of the tensor 7'

The compatibility conditions that define singular vectors can be reframed in terms of the
vanishing of minors of suitable d; x 2 matrices. Hence S(R) is a multiprojective variety in
[;cyy P(C*). This variety simultancously forms a multilinear (and projective) generalisation
of the linear space of sections of a quiver representation from [37], and a multi-tensor general-
isation of the set of singular vectors of a single tensor from [20]. The property that a point lies
in S(R) is equivariant under an orthogonal change of basis on each vector space, as is true for
the singular vectors of a matrix, as follows. Let ([z1],...,[2,]) € [[,c, P(C%) be a singular

vector tuple of a hyperquiver representation with tensors 7, € C%© ®@ C%10 @ ... @ Chu®
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FIGURE 2. Examples of hyperquiver representations corresponding to (a) the
eigenvectors of a tensor, (b) the singular vectors of a tensor, and (c) the gen-
eralised eigenvectors of a pair of tensors.

and let Qy,...,Q, be a tuple of complex orthogonal matrices; i.e., QQ; = I;. Then
([Qix1], ..., [@nxy]) is a singular vector tuple of the hyperquiver representation where each
T, has its source components multiplied by Q;rj(e) and target component multiplied by Q).
We expect the topology of this variety, particularly its (co)homology groups, to provide rich
and interesting isomorphism invariants for hyperquiver representations.

Main Result. We derive exact and explicit formulas for the dimension and degree
of S(R) when R is a sufficiently generic representation of a given hyperquiver. Here is a
simplified version, in the special case when all vector spaces are of the same dimension.

THEOREM. Let R = (d,T) be a generic representation of a hyperquiver H = (V, E) with
d=(d,d,...,d). Let N = (d—1)(|V|—|E|) and D be the coefficient of ([1,c hi)d_l in the
polynomial

N d pi(e)
(Z h,) 11 (Z Iy - hf@’f) . where hyey =Y hye)-
iev e€E \k=1 j=1
Then S(R) = @ if and only if D = 0. Otherwise, S(R) has dimension N and degree D.
Moreover, if dim S(R) = 0, then each singular vector tuple occurs with multiplicity 1.

EXAMPLE 1.1. Let R be the hyperquiver representation in Figure 3, with T' € C?@C3®C3
a generic tensor. We have N = (3—1)(2—2) = 0. We seek the coefficient D of the monomial
h?h3 in the polynomial

((h1 + o) + ha(hy + o) + h2)* = 9h% + 18h3hy + 15h2h3 + 6l h3 + hi.

We see that D = 15. Hence the singular vector variety S(R) has dimension N = 0 and
consists of 15 singular vector tuples, each occurring with multiplicity 1.

Our argument follows the work of Friedland and Ottaviani from [20] — we first construct
a vector bundle whose generic global sections have the singular vectors of R as their zero set,
and then apply a variant of Bertini’s theorem to count singular vectors by computing the top
Chern class of the bundle. The authors of [20] compute the number of singular vectors of a
single generic tensor — this corresponds to counting the singular vectors of the hyperquiver
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FIGURE 3. The light-green hyperedge is the contraction T'(-,x,y) and the
dark-green hyperedge is the contraction T'(z, -,y), where &,y € C* are on
the left and right vertices respectively.

representation depicted in Figure 2(b). Here we derive general formulas to describe the
algebraic variety of singular vectors for an arbitrary network of (sufficiently generic) tensors.

Related Work. Special cases of our degree formula, all in the case dimS(R) = 0,
recover existing results from the literature — see [9] and [19, Corollary 3.2] for eigenvector
counts, [20] for singular vector counts, and [13, 20] for generalised eigenvector counts. Other
recent work that builds upon the approach in [20] includes [15, 38] which study the span of
the singular vector tuples, [40] which studies tensors determined by their singular vectors,
and the current work [2] which uses a related setup to count totally mixed Nash equilibria.
The eigenscheme of a matrix [1] and ternary tensor [6] is a scheme-theoretic version of S(R)
for the Jordan quiver in Figure 1a and the hyperquiver in Figure 2a.

Outline. The rest of this paper is organised as follows. In Section 2 we introduce
hyperquiver representations and their singular vector varieties. We state our main result,
Theorem 3.1, in Section 3 and describe a few of its applications. The construction of the
vector bundle corresponding to a hyperquiver representation is given in Section 4, and our
Bertini-type theorem — which we hope will be of independent interest — is proved in Section
5. We show that for generic R the hypotheses of the Bertini theorem are satisfied by the
associated vector bundle in Section 6, and compute its top Chern class in Section 7. For
completeness, we have collected relevant results from intersection theory in Appendix A.

2. The singular vector variety

We establish notation for hyperquiver representations, define their singular vector vari-
eties, and highlight the genericity condition which plays a key role in the sequel. Without
loss of generality, we henceforth assume V' = [n], where [n] := {1,...,n} for n € N.

DEFINITION 2.1. A hyperquiver H = (V, E) consists of a finite set of vertices V' of size
|V| = n and a finite set of hyperedges E. For each hyperedge e € E we have

(i) an integer p(e) > 1 called the index of e
(ii) a tuple of vertices v(e) € V™ called the vertices of e, where m := u(e) + 1.
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For brevity, we may refer to a hyperedge as an edge and write p as a shorthand for pu(e).
The j-th entry of tuple v(e) is denoted s;(e) € V. The tuple s(e) := (si(e),...,su(e)) are
the sources of e, and the vertex t(e) := s,,(e) is the target of e.

REMARK 2.2. Usual quivers are the special case with m = 2 for all e € E. Definition 2.1
does not exclude entries of s(e) being equal to t(e), nor does it exclude multiple hyperedges
with the same tuple v(e).

We now define representations of hyperquivers. The definition works for vector spaces
over any field, but we focus on C.

DEFINITION 2.3. Fix a hyperquiver H = (V, E). Let d = (dy,...,d,) be a dimension
vector. A representation R = (d,T) of H assigns
(i) A vector space C% to each vertex i € V.
(ii) A tensor T, € C° to each hyperedge e € E, where C¢ := C% @ C%1() ®- - . @CLue
which is viewed as a multilinear map []/_, Ch3( — Cieo,

We define for brevity
Te(a:s(e)) = Te(-,a:sl(e),...,a:s#(e)). (2.1)

We say that two tensors T, and T, agree up to permutation if the tuples v(e) and v(e’) agree
up to a permutation o and

(Te)imilwnyi'mfl = (Te/)io-(m)7720-(1)7"'7720'(777,71)'

DEFINITION 2.4. The singular vector variety S(R) of a representation R consists of
tuples x = ([x1], ..., [®n]) € []1~,; P(C%) such that

To(xs(e)) = Aey(e), (2.2)

for some scalar A\, € C, for every edge e € E. The points of the variety are called the singular
vector tuples of R.

REMARK 2.5. The scalars A, in (2.2) can be thought of as the singular values of the sin-
gular vector tuple (xy,...,x,). However, the non-homogeneity of (2.2) means that rescaling
vectors in the tuple can change the singular values. We say that a singular vector tuple has
a singular value zero if A\, = 0 for some edge e € F.

The singular vector variety is a subvariety of the multiprojective space X = []_, P(C%).
Its defining equations are as follows. The singular vector tuples x = ([x1],.. ., [x,]) are the
tuples whose dy) X 2 matrix

| |
Me(w) = Te(ws(e)) Ti(e)

has rank < 1 for all e € E. The rank of this matrix depends only on the points [z;] € P(C%),
and not on the vectors &; € C%. Equations for the multiprojective variety S(R) are the
2 x 2 minors of all matrices M, (x) for e € E. When we speak of the degree of S(R), we refer
to the degree of its image under the Segre embedding s : X < PP for D =[], d; — 1.
Our main result finds the dimension and degree of the singular vector variety for a
hyperquiver representation with sufficiently general tensors on the hyperedges. We say that
a property P holds for a generic point of an affine variety V if there exists a Zariski-open
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set U in V such that P holds for all points in U. We call any point of such a U a generic
point of V. One way that a hyperquiver representation can be sufficiently generic is for the
tuple of tensors (T, | e € F) assigned to its edges to be generic; that is, a generic point of
[Les @™, C%i . This holds, for example, in Figure 1a and lc. But our notion of genericity
allows tensors on different hyperedges to coincide, as in Figure 1b. Our genericity condition
is encoded by a partition of the hyperedges.

DEFINITION 2.6 (Genericity of a hyperquiver representation).

(i) A partition of a hyperquiver H = (V, E') is a partition of its hyperedges F = ]_[f/il E,
such that for any hyperedges e, ¢’,e” € E,,
(a) the indices u(e) and p(e’) equal the same number
(b) the tuples v(e) and v(e’) coincide up to a permutation o of [p + 1]
(c) if o and ¢’ are permutations in (b) for the pairs v(e),v(e’) and v(e’),v(e”)
respectively, where e # ¢’ and €’ # €, then o(u + 1) # o'(n + 1).
(ii) The partition of a representation R = (d,T') is the unique partition of hyperedges
such that for any e, e’ € E,, the tensors on e and ¢’ agree up to a permutation o.
(iii) The representation R = (d,T) is generic if given hyperedges e, € E, for r € [M],
the tuple of tensors (1,,,T,,, . .., Ts,,) is a generic point in [, Cer

) 61\/]

EXAMPLE 2.7. We fix a basis on each vector space U; = C% in Definition 2.3 because
being a singular vector tuple is not invariant under an arbitrary change of basis. For example,
the quiver in Figure 1(b) with a generic square matrix A : C¢ — C¢ has d singular vector
pairs ([x], [y]). However, there exist change of basis matrices M, My € GL(d,C) such that
MyAM;! = I, and the identity matrix I; has infinitely many singular vector pairs: all
pairs ([z],[2]). The property of being a singular vector tuple is preserved, however, by an
orthogonal change of basis, cf. the discussion in the introduction and [6, Remark 1.1].

REMARK 2.8. A (usual) quiver representation may be defined as assigning (abstract)
vector spaces to vertices and linear maps to edges. Similarly, we could define a hyperquiver
representation as assigning vector spaces U; to each vertex ¢ and multilinear maps 7. :
Hle Us;e) = Uge) to each edge e € E. The dimension of the linear space of sections of
a quiver representation [37] and the dimension and degree of the singular vector variety of
a hyperquiver representation are invariant under the action of GL(U;) on each vertex and
edge. Since there is no given choice of a basis, or more generally no inner product on each
vector space, the notion of a transpose of a linear map or permutation of a multilinear map
does not make sense. Therefore, a generic representation in the sense of Definition 2.6 can
only apply when each E, is a singleton and we assign a distinct generic matrix or tensor to
each edge. With a choice of basis, our genericity conditions allow permutations of tensors
along the edges, via coarser partitions. The space of sections and the singular vector variety
are then O(d;)-invariant but not G L(d;)-invariant.

3. Main theorem and its consequences

In this section, we present our main result in full generality and study its consequences.

THEOREM 3.1. Let R = (d,T) be a generic hyperquiver representation and S(R) be the
singular vector variety of R. Let N =Y ., (d;—1) =) . p(dye)—1) and D be the coefficient
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of the monomial K~ ... hin=1 in the polynomial

N di(e) o p(e)
k—1p %t(e)— o
<Z hi> LD b ™ | where haey = haje. (3.1)
eV c€E \ k=1 j=1
Then S(R) = @ if and only if D = 0. Otherwise, S(R) is of pure dimension N and has
degree D. If R has finitely many singular vector tuples, then each singular vector tuple is of
multiplicity 1, is not isotropic, and has no singular value equal to 0.

Note that the partition from Definition 2.6 does not appear in the statement of Theo-
rem 3.1: the partition provides a genericity condition for the result to hold, but the dimension
and degree of the singular vector variety do not depend on the partition. Next we give a
sufficient condition for a hyperquiver representation to consist of finitely many points. This
condition applies to Figure 2a and Figure 2b, but not to Figure 2c.

COROLLARY 3.2. The hyperquivers with finitely many singular vector tuples for any
choice of generic representation are those whose vertices each have exactly one incoming
hyperedge.

Proor. If dimS(R) = N =) .., (di = 1) = > _cp(dyey — 1) = 0 for all dimensions d;,
then ) ., (di — 1) = Y _cp(dye) — 1) as polynomials in the variables d;. Each d; appears
exactly once on the left hand side of the equation. Hence it must also appear exactly once
on the right hand side. Therefore |V| = |E| and every ¢ € V has exactly one e € E with
i=t(e). O

We show how Theorem 3.1 specialises to count the eigenvectors and singular vectors of
a generic tensor, as well as to count the solutions to the generalised eigenproblem from [13].

ExaMPLE 3.3 (Eigenvectors of a tensor). We continue our discussion from the introduc-
tion. The representation of the m-Jordan hyperquiver with a generic tensor T' € (C%)®™
on its hyperedge is generic in the sense of Definition 2.6, since we have only one hyperedge.
There are finitely many eigenvectors, by Corollary 3.2. The polynomial (3.1) is

i R ((m — 1)) = <i(m _ 1)d—k> pd-1 — (m—1)¢— 1hd—1'

m— 2
k=1 k=1

The coefficient of A% is % This agrees with the count for the number of eigenvectors

of a generic tensor from [9, Theorem 1.2] and [19, Corollary 3.2].
We now consider singular vectors. A result of Friedland and Ottaviani [20] is:

THEOREM 3.4 (Friedland and Ottaviani [20, Theorem 1]). The number of singular vectors
of a generic tensor T € CU @ --- @ C¥ is the coefficient of the monomial h{* ™ ... hd=" in
the polynomaial

B
H ﬁ, where h; = Z hi, i € [n]. (3.2)

i€[n] Jem\{i}
FEach singular vector tuple is of multiplicity 1, is not isotropic, and does not have singular
value 0.

We explain how the above result follows from Theorem 3.1.
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EXAMPLE 3.5 (Singular vectors of a tensor). Consider the hyperquiver with n vertices
V = [n] and n hyperedges. For every vertex i € V| there is a hyperedge e; with s(e;) =
(1,...,i—1,i+1,...,n) and target t(e) = i. Consider the representation that assigns the
vector space C% to each vertex and the same generic tensor 7' € CU ® --- @ C% to each
hyperedge. On each edge e;, the tensor 7' is seen as a multilinear map

T:C" x ... xCh 1 x Chtt x ... x C¥ — C%

(.’El, ey L1, L1y - .,.’Bn) — T(.’El, ey i1y L1, - .,.’Bn).

This representation is generic in the sense of Definition 2.6, where the partition of the edge
set I has size M = 1 and the permutation o sending v(e;) to v(e;) is the one that swaps ¢ and
j and keeps all other entries fixed. Figure 2b illustrates this representation for n = 3. The
singular vector variety consists of all non-zero vectors x; € C% such that T (Ts(e)) = Aei(e)
for some A\. € C and all e € E, where T'(x4()) is defined in (2.1). That is, the singular vector
variety consists of all singular vector tuples of T'. Corollary 3.2 shows that there are finitely
many singular vector tuples. The polynomial (3.1) specialises to

d;
H (Zh?_lﬁidi_k), where h; = Z hj, i € [n
J€

i€[n] \k=1 i€ m]\{i}
This is equivalent to (3.2) via the identity % =Y akTlynhk

ExXAMPLE 3.6 (The generalised tensor eigenvalue problem). Consider a generic represen-
tation of the Kronecker hyperquiver with a generic pair of tensors A, B € C% ® (C4)®m-1)
see Figure 2¢ with m = 3 and d = d; = dy. The edge set E has a partition with M = 2.
We remark that Corollary 3.2 implies that there will not be finitely many singular vector
tuples for all representations of this hyperquiver. There will be a non-zero finite number of
singular vectors if and only if d := d; = d, since this is when N = 0 in Theorem 3.1. The
singular vector tuples are the non-zero pairs x,y € C? such that A(-,x,..., ) = Ny and
B(-,z,...,x) = Ny, for some X', \" € C. This reduces to the single equation

A(-,z,...,x) = AB(-,x,...,x)

for some A € C. This is a tensor-analogue of the generalised eigenvalue problem for two
matrices. It was shown in [20, Corollary 16] and [13, Theorem 2.1] that there are d(m—1)4"1
generalised tensor eigenvalue pairs @ and y for the tensors A and B. Our general formula
in Theorem 3.1 also recovers this number, as follows. The polynomial (3.1) is

d
(Zh’;—l m — 1)hy)? ) (th Y((m = 1)hy) ™ ) (3.3)
k=1

A monomial h{'h§ ! is obtained from the product of a k-th summand and an ¢-th summand
such that k + ¢ = d + 1. There are d such pairs of summands k,¢ € {1,...,d}. Each such

monomial will have a coefficient of (m — 1)¢~'. Hence the coefficient of h%~*h$~! in (3.3) is
d(m — 1)L,

Now we find the dimension and degree of the singular vector variety S(R) for a generic
representation R of a hyperquiver with a single hyperedge, as shown in Figure 4.
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FIGURE 4. A hyperquiver with a single hyperedge and a representation

COROLLARY 3.7. Let H be a hyperquiver with one hyperedge with all entries of its tuple
of vertices distinct. Let R be the representation that assigns the vector space C% to each
vertex © and a generic tensor to the hyperedge. Then:

(a) The dimension of S(R) is N = 3" d; —n + 1
(b) The degree of S(R) is

d

mn _ N

>y dn =k . (34)
Kty ook ) \di—1 =Ky, dyy — 1 — kg, dy — k

k=1 k1+“‘+k3n71
=dn—k

PRrROOF. The dimension of S(R) is N = (3.0 d; —n) — (d, — 1) = 30 d; —n + 1, by
Theorem 3.1. The degree of S(R) is the coefficient of A% ~!- .. hd~1 in the product

n N dn n—1 dn—k
(Sn) (Z(En) w
i=1 k=1 \i=1
%/_/ ~ /
1) 2)
For each k € {1,...,d,}, the monomial h¥ - k" 'h5=1 in the expansion of (2) for some
ki,...,k,_1 such that Z;:ll k; = d, — k has coefficient (klc.lf;]j,l)' This is combined

with the monomial RS 1R ... g 1 En-tpdn—k from the expansion of (1), which has co-
N

efficient ( di—1—kp.odyy =1k dn_k). Multiplying these coefficients and summing over those
ki,..., knp_1 with Z;:ll k; = d,, — k, we obtain

5 d, — k N
ks ko )\ =1 — ks dy — 1 — ke, dy — k)

kit tkn—1
—dn—k
Summing over k =1,...,d, gives the result. U
When d :=d; = --- = d,, we can use Corollary 3.7 to find the degree of S(R), which is

displayed in Table 1 for d = 1,...,6 and n = 2,...,6. Observe that: (i) the degree row of
d = 2 consist of the factorial numbers; and (ii) the degree column of n = 2 consist of powers
of 2. We explain these observations. To see (i), if d = 2, then (3.4) becomes

2
2—k n—1
)N DI PR | R 35)

k=1 k1+---+kn71
=2—k
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When k = 2, the only summands satisfying ky +---+k, 1 =2—kisk;=---=k,_1 =0,
which is 1 for the first factor and (n — 1)! for the second factor in (3.5). When k = 1, the
only allowed indices are of the form k; = 1 and k; = 0 for all ¢ # j, from which we get 1 for
the first factor and (n —1)! for the second factor in (3.5). Since there are n — 1 such allowed
indices, (3.5) evaluates to (n — 1)! 4+ (n — 1)(n — 1)! = n!. For (ii), when n = 2, we have

1 3 ([ SR B of 4 [ ARy

k1 =d—
— d—1
kod—1—k k '
k=0 k=0

n
d 2 |3 4 5 6
1 1 |1 1 1 1
2 2 |6 24 120 720
3 4 |66 1980 93240 6350400
4 8 | 840 218400 110510000 96864800000
S 16 | 11410 | 27512100 1.5873 x 10™ ] 1.89313 x 10"
6 32 [ 160776 | 3741400000 | 2.54601 x 10 | 4.26416 x 10

TABLE 1. The degree of the singular vector variety S(R) of the hyperquiver
in Figure 4 with d; = ... = d,, = d and generic tensor 7. The dimension of
S(R)is N = (d—1)(n—1). In particular, S(R) is positive-dimensional except
in the first row.

ExAaMPLE 3.8 (Periodic orbits of order n). Consider the hyperquiver representation in
Figure 5 with a generic tensor T € (C%)®™. The singular vector tuples are the non-zero

vectors &y, ..., x, € C? such that

T(~,w1,...,w1):)\1w2

T(',wg,...,wg):)\gwg

T(- @py ..., Tp) = Ay

for some \; € C. In other words, each x; is a periodic point of order n.

The hyperquiver representation is not generic in the sense of Definition 2.6 as edges with
different tuples v(e) up to permutation are assigned the same tensor 7'. Hence Theorem 3.1
does not apply. Nonetheless, we predict the dimension and degree, using Theroem 3.1. The
result predicts finitely many n-periodic points, by Corollary 3.2. Their count is predicted to
be the coefficient of the monomial h%~" ... h¢~! in the polynomial

d
(j{:iﬁ;l (phy)? ) (?{:iﬁ;l (puhs)® ) . (j{:quﬂ(uhﬂ)d—k> , (3.6)
k=1
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by Theorem 3.1. This monomial is obtained from the product of terms

(hy ™" (peha)* =) (5™ (uh2) %) o (B (1))

coming from each of the respective factors in (3.6), for each k € [d]. The coefficient of this
product is 4%, Thus, the coefficient of h¢~' ... h¢~1 in (3.6) is

d T T
Zﬂn(d—k)zud_lz(m_l)d_l
-1 (m—1lp—1

This turns out to be the correct number of period-n fixed points, as proved in [18, Corollary
3.2]. The number of eigenvectors of a generic tensor is the special case n = 1 (Example 3.3).

FIGURE 5. A hyperquiver representing a period-n orbit

ExaMPLE 3.9 (Empty singular vector variety). Consider the quiver in Figure 6, where
the vertices are assigned vector spaces of dimension d > 1, and the two edges are assigned
generic matrices A, B € C™?. Any singular vector would need to be an eigenvector of both
matrices A and B, but a pair of generic matrices A and B do not share an eigenvector.
We see how the emptiness of the singular vector variety is captured by Theorem 1: The
polynomial is (dh{ )2, which has coefficient of (h;hy)?" equal to zero.

FIGURE 6. A quiver representation with empty singular vector variety

ExAMPLE 3.10 (Insufficiently generic representations). The quiver representations in
Figure 7 with d > 1 and generic matrix A € C®? do not satisfy the genericity conditions in
Definition 2.6. In Figure 7(a), the only permutations o,0’ on {1,2} sending the matrix A
on one edge to the matrix A on the other edge and vice versa are the identity permutations,
which fail to satisfy the condition o(2) # ¢’(2), causing one of the edges to be redundant.
The resulting singular vector variety has dimension d — 1 and degree 2¢=! by Corollary 3.7,
rather than the expected dimension 0 and degree d in Example 3.6. In Figure 7(b), the
singular vectors are the non-zero points & € C¢ such that A’z = AAx for some \ € C, of
which there are d solutions, rather than the expected 0 solutions in Theorem 3.1.
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Cd Cd

cd A
() (b)

FIGURE 7. Insufficiently generic quiver representations

In the remainder of this section, we explore connections to dynamical systems and mes-
sage passing.

ExaMPLE 3.11 (Fixed Homology Classes). A parameterised dynamical system is a con-
tinuous map f : X x P — X, where X and P are compact triangulable topological spaces,
respectively called the state and parameter space of f. Taking homology with complex
coefficients, we obtain a C-linear map

in each dimension k£ > 0. We know from the Kiinneth formula [39, Section 5.3] that the
domain of Hy, f is naturally isomorphic to the direct sum € H;(X)® H,;(P). Therefore,
each Hj f admits a component of the form

Ty, : Hy(X) ® Ho(P) — Hy(X),

i+j=k

We say that a non-zero homology class £ € Hy(X) is fized by f at a non-zero homology class
n € Ho(P) whenever there exists a scalar A € C satisfying T(§ ® n) = X - £. The set of all
such fixed homology classes (up to scaling) is the singular vector variety of the hyperquiver
representation in Figure 8.

Let k := dim H(X) and suppose P has d connected components; i.e., dim Hy(P) = d.
Then the singular vector variety has dimension d — 1 and degree equal to the coefficient
of W*7'h4=1 in the polynomial (hy 4 hy)?~? Zle(hl + hy)*hy7", by Theorem 3.1. The
monomial h¥~*hd~" arises by pairing a term (*-7)hihs ™ 'Ry = (") Riks! in the ex-
panded sum with the term (k‘iil) h'f_i_lhgd_l)_(k_z_l)
0<i<k—jand 1<j <k. Thus, its coefficient is

2y ()65

7=1 =0

in the expanded parentheses, for all

In particular, if P is connected (i.e., d = 1), then there is exactly one non-zero homology
class in Hy(X) fixed by f.

ExAMPLE 3.12 (Message Passing). Our framework counts the fixed points of certain

multilinear message passing operations, as we now describe. Assign vectors :132(0) =x, € C4
to each i € V. Apply the multilinear map 7T, to the vectors (:cgf%e), e ,wgi)(e)) at nodes in

s(e). Then, update the vector at the target vertex t(e) to

2\ = T.(2)) € Clo, (3.7)
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Hi(X) T

FIGURE 8. Fixed points in homology

In the limit, one converges to a fixed point of the update steps. The singular vector variety
consists of tuples of directions in C% that are fixed under these operations, for any order of
update steps.

We compare the update (3.7) to message passing graph neural networks, see e.g. [23, 25].
The vector at each vertex is the features of the vertex. The vectors typically lie in a vector
space of the same dimension, as in Theorem 1. Message passing operations take the form

" = {2V u (e N(0))), (3.8)

where N (i) is the neighbourhood of vertex i. That is, the vector of features at node i in the
(k 4+ 1)-th step depends on the features of node i and its neighbours at the k-th step. Our
update step in (3.7) is a special case of (3.8). We relate (3.7) to operations in the literature.

The function f in (3.8) often involves a non-linearity, applied pointwise. In comparison,
we focus on the (multi)linear setting, as discussed for example in [11]. There, the authors
study the optimisation landscapes of linear update steps, relating them to power iteration
algorithms. Our approach to count the locus of fixed points sheds insight into the global
structure of this optimisation landscape, in the spirit of [10, 14]. Studying such fixed point
conditions directly is the starting point of implicit deep learning [17, 24].

The neighbourhood N (i), for us, consists of nodes j that appear in a tuple s(e) for some
edge e with t(e) = i. Update steps are usually over a graph rather than a hypergraph.
The tensor multiplications from (3.7) incorporate higher-order interactions. Such higher-
order structure also appears in tensorised graph neural networks [27] and message passing
simplicial networks [8].

4. The singular vector bundle

In this section, we define the singular vector bundle. It is a vector bundle on X =
[T, P(C%) whose global sections are associated to hyperquiver representations. The zeros
of a section are the singular vectors of the corresponding representation.

Following [20, Section 2], for each integer d > 0 we consider four vector bundles over
P(C?): the free bundle .7 (d), the tautological bundle 7 (d), the quotient bundle 2(d), and
the hyperplane bundle #(d). Their fibres at each [z] € P(CY) are

F(d)j = C* 2(d)z) = C?/ span(z)
T (d) ) = span(z) H(d)[z) = span(x)”.
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Here if V' is a vector space or vector bundle, then V'V denotes its dual. We have a short
exact sequence of vector bundles

0— 7(d;) = F(d;) - 2(d;) — 0. (4.1)

There are projection maps m; : X — P(C%) with m;(x) = ], where x = ([z4], ..., [z,]).
We pull back a vector bundle # over P(C%) to a bundle 77 % over X, whose fiber at x € X
equals Hg,. There is an exact sequence 0 = F(d;)z,) = Z (di)jz) = 2(di)jz;) — 0 of
vector spaces at every [x;] € P(C%). Hence there is an exact sequence of vector bundles

0— 7w T (d;) — m F(d;) = 7; 2(d;) — 0. (4.2)

DEFINITION 4.1. Let R = (d, T') be a hyperquiver representation and let X = []7_, P(C%).
For each hyperedge e € F, we consider the following vector bundles over X.

¢) = ®7T:j(e)<7(d5j(e))’ 2(e) := Hom (g(e)a W:(e)g(dt(e))> :

We define the singular vector bundle of R over X to be B(R) := @, 5 HB(e).

The vector bundle Z(R) depends on the hypergraph H and the assigned vector spaces U,
but not on the multilinear maps 7. It can be written in terms of a partition of edges as
A(R) = @fil D.cr #(e). We will see that when R is a generic hyperquiver representation,
the zero locus of a generic section of Z(R) is the singular vector variety S(R). We make
the following observations about its summands %(e).

PROPOSITION 4.2. Let #(e) = Hom <§(e), T Q(dt(e))). Then the following hold.

(a) The fibre of B(e) at x is Hom (span <®“( 1)2133](6 ) , Clio) / span(mt(e))>.
(b) The bundle %(e) has rank dyey — 1.
(¢) We have the isomorphism %B(e) = ( ;‘( ©) o) %(dsj(e))> ® Ty 2(die))-

ProOF. The bundle .7 (e) has fibres

w(e) w(e)
®7T 53(6 ®9 s;(e) [wsj(e)
u(e

— ®span T, () = span <®“( l):csj(e)) )

The bundle ;) 2(dy()) has fibre 7} ) 2(dye))x = C"© / span(@(). This proves (a). Then
(b) follows, since the dimension of the fibre is dy) — 1. To prove (c), observe that %(e) ~
T (€)' @7y, 2(dye)) and that

\
wn(e) wn(e) v
® 07 (dsy0) ® (7207 (deyi))
wn(e) w(e)

= ®7T Sﬂ(e ®7TSJ(6 ) 0
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We relate the singular vector variety to the singular vector bundle. The global sections
of a vector bundle & are denoted by I'(#). They are the holomorphic maps o : X — £
that send each x € X to a point in %,. A global section of %(e) is a map sending each
X € X to an element in

Hom (span <®§fl) :L‘sj(e)) ,Che / Span(wt(e))) ;

by Proposition 4.2(a). Definition 2.6(ii) of a partition gives an equivalence relation between
tensors assigned to E, via permutation of the modes. Following the notation of Definition
2.6(iii), we denote by T, € C* a representative for the class corresponding to E,., for some
e, € E,, and we define T, (x4()) := Te(xs()) for all e € E,, where T, (x4 ) is defined in (2.1).
A tensor T' € C* determines a global section of %(e) for every e € E,., which we denote by
Le(T). The map L.(T) sends x to the map

®”( 1):1353(@) — T (T () € CU [ span(zye)).

where T'(xs()) is the image of T'(z4()) in the quotient vector space C% /span(z)). In
other words, following [20, Lemma 9], we define the map
L.:C" — I'(A(e))
T — L(T).

We form the composite map

L: écer — I(%(R))

r=1

y (4.3)
(T1, ... Tw) — P P LT,

We connect the global sections in the image of L to the singular vector tuples of a
hyperquiver representation, generalizing [20, Lemma 11].

PROPOSITION 4.3. Let R = (d,T) be a hyperquiver representation. Let X = [[;_, P(C%)
and let B(R) be the singular vector bundle, with L : @M, Cer — I'(B(R)) the map in (4.3).
Then a point x € X lies in the zero locus of the section o = L((T,)™M.,) if and only if x is a
singular vector tuple of R.

PROOF. L((T,)M,)(x) is the |E|-tuple of zero maps each in %(e), if and only if for all
e € E, and r € [M], Le(T)(x)((X)”(l):ch ) = 0, if and only if T}(zs)) = Acy) for some
Ae € C, if and only if x is a singular vector tuple of the hyperquiver representatlon R O

In light of the preceding result, it becomes necessary to determine the image of L within
I'(#(R)). For this purpose, we make use of the following Kiinneth formula for vector
bundles. Note that H°(X, B) := I'(A).

PROPOSITION 4.4 (Kiinneth Formula, [29, Proposition 9.2.4]). Let X and Y be complex
varieties and mx - X XY — X and 7y : X XY =Y be the projection maps. If F and 4
are vector bundles on X and 'Y respectively, then

H"(X xY,7%F @my9) = P H'(X,Z)® HI(Y.9).

p+q=n
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The following result, which generalises [20, Lemma 9 parts (1) and (2)], characterises the
image of L.

PROPOSITION 4.5. The linear map L : @i\il C = I'(A(R)) in (4.3) is bijective.

PROOF. By the definition of L, it suffices to show for each e € E that L. is an injective
linear map between vector spaces of the same dimension. First we show that L. is injective.
Consider e € E, and let T' € C*. If T # 0, then there exist ) € C*© for j € [u(e)]
with v := T'(z4()) # 0. Let @) € C%© \ span(v). Then LE(T)(x)(®’jSl)a:Sj(e)) # 0. Hence,
the global section L.(T") is not the zero section.

We recursively apply the Kiinneth formula in the case n = 0 to obtain

p(e)

HO(Xv'%(e)) = HO(X7 T, %(dsj(e)))®H0(X77T:(6)‘Q(dt(e)>>’

s;(e)
1

—~

J
It remains to compute the dimensions of the factors. We have dim H°(X, 7} (d;)) = d; by

results on the cohomology of line bundles over projective space [26, Theorem 5.1]. Finally,
the short exact sequence (4.2) gives a long exact sequence in cohomology

0— HYX, 7 7(d;)) — H' (X, ;. F(d;)) — H'(X,7; 2(d;)) — H (X, 7T (d;)) —
=0 =0
The underlined terms are 0, again by [26, Theorem 5.1]. Thus dim H*(X, 7} 2(d;)) =

d;, since dim H°(X, 7} #(d;)) = d;. Hence dim H°(X, %(e)) = [[/L, ds;e). This is the
dimension of C*, so L, is a bijection. O

5. Bertini-type theorem

In this section, we relate the zeros of a generic section of a vector bundle to its top Chern
class, cf. [20, Section 2.5]. This relation holds when the vector bundle is “almost generated”,
see Definition 5.2. We refer the reader to Appendix A for relevant background on Chern
classes and Chow rings. In this section, X is any smooth complex projective variety. Recall
that the global sections of %, denoted I'(#), are the holomorphic maps o : X — % that
send each x € X to a point in the fibre %,

DEFINITION 5.1. Let X be a smooth projective variety and % a vector bundle over X.
The vector bundle Z is globally generated if there exists a vector subspace A C I'(A) such
that for all x € X, we have A(x) = %y, where A(x) :={o(x) | o € A}.

DEFINITION 5.2. Let X be a smooth projective variety and % a vector bundle over X.
The vector bundle £ is almost generated if there exists a vector subspace A C I'(#) such

that either 4 is globally generated, or there are k > 1 smooth irreducible proper subvarieties
Yy, ..., Y, of X, with Yy = X, such that:
(i) For all ¢ > 0, there is a vector bundle %; over Y;, and for any j > 0, if Y; is a
subvariety of Y}, then %; is a subbundle of %;
(i) A(x) C (%i)y forall x € Y; and i >0
(ili) If a; C [K] is the set of all j € [k] such that Y; is a proper subvariety of Y;, then
A(x) = (Zi)x for all x € Y; \ (Ujea,Y) -

Y:
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Now we state our Bertini-type theorem; cf. [20, Theorem 6]. The zero locus of a section
oel'(B)is Z(o) == {x € X | o(x) = 0}. The top Chern class and top Chern number of
A, see Definition A.5, are denoted ¢, (#) € A*(X) and v(A) € Z, respectively. We assume
X C PP via some closed immersion s : X < PP and regard (%) = s.(c,.(8)) € A*(PP),
see Remark A.3.

THEOREM 5.3 (Bertini-Type Theorem). Let X C PP be a smooth irreducible complex
projective variety of dimension d, and % a vector bundle of rank r over X, almost generated
by a vector subspace A C I'(#B). Let o € A be a generic section with Z(c) C X its zero
locus.

(a) If r > d, then Z(o) is empty

(b) If r = d, then Z(o) consists of v(A) points. Furthermore, if rank ; > dimY; for
all 1 > 1, then each point has multiplicity 1 and does not lie on UleYi.

(c) If r < d, then Z(o) is empty or smooth of pure dimension d —r. In the latter case,
the degree of Z(o) is v (%}L), where L C PP is the intersection of d — r generic
hyperplanes in PP. If v (%"L) # 0, then Z(o) is non-empty.

REMARK 5.4. The above theorem generalises [20, Theorem 6], where parts (a) and (b)
appear. We add part (¢). Compared to [20, Theorem 6], our extra assumption dim(%;) >
dim(Y;) for i > 0 in (b) appears because it is absent from Definition 5.2, whereas it appears
in [20, Definition 5].

To prove Theorem 5.3, we use the following results.

THEOREM 5.5 (Fiber Dimension Theorem [28, Theorem 1.25]). Let f : X — Y be a
dominant morphism of irreducible varieties. Then there exists an open set U CY such that
for ally € U, dim X = dimY + dim(f~!(y)).

THEOREM 5.6 (Generic Smoothness Theorem [26, Corollary I11.10.7]). Let f : X — Y be
a morphism of irreducible complex varieties. If X is smooth, then there exists an open subset
U CY such that f|s-1qy is smooth. Furthermore, if f is not dominant, then f~(U) = @.

PrROOF OF THEOREM 5.3. Consider I = {(x,0) € X x A| o(x) = 0} with projection

maps
I
N
X A

Then I is a vector bundle over X. Since the base space X is irreducible, so is the total space I.
We show that dim I = dim A+ d —r. The map p is surjective, and hence dominant, since the
zero section lies in A. There exists an open set U C X such that dim I = d+dim(p~!(x)) for
all x € U, by Theorem 5.5. The fibre p~t(x) =~ {o € A: o(x) = 0} consists of sections in A
that vanish at x. Consider the evaluation map {x} x A — %, that sends (x, o) to o(x).
This is a linear map of vector spaces and its kernel is isomorphic to p~1(x). Let Y := UF_, Y,
where the Y; are from Definition 5.2. The variety Y is a proper subvariety of X. For each
X € X\ Y, the evaluation map is surjective, by Definition 5.2(iii). Thus, the evaluation map
has rank r and nullity dim A — r. Hence dim(p~'(x)) =dimA —r forall x e UN (X \ Y).
Therefore dim I = dim A +d — r.
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The fiber ¢~ !(0) ~ {x € X : o(x) = 0} is the zero locus Z(o). We show that the map ¢
is dominant if and only if g7*(0) # @ for generic o € A. If ¢ is dominant, then there exists
an open set W C A such that ¢~!(¢) is smooth of codimension dim I — dim A = d — r for
all 0 € W, by Theorems 5.5 and 5.6. In particular, g~'(¢) is non-empty. Conversely if ¢ is
not dominant, then there is an open set W C A such that ¢7'(c) = @ for all ¢ € W, by
Theorem 5.6.

Now we show that Z (o) # @ for generic 0 € A if and only if ¢,.(#) # 0. If Z(0) = @,
then the existence of a nowhere vanishing section of % implies that ¢,(#) = 0 [21, Lemma
3.2]. Conversely, if Z (o) # @, then the map ¢ is dominant, so Z(¢) is smooth of codimension
d—r. If ¢,(#) =0, then 0 = ¢,(#) = [Z(0)] by Definition A.5(ii), which is a contradiction
since the degree of a non-empty projective variety is a positive integer [26, Proposition
1.7.6.a]. In particular, if r = d and v(#) =0, then Z(0) = @.

The map ¢ is not dominant if dim/ < dim A4; i.e., if r > d. This proves (a) and the
emptiness possibility in (c¢). It remains to consider the case r < d with the map ¢ dominant
and generic o € A.

Z(o) C PP is smooth of dimension d —r. It is pure dimensional by [21, Example 3.2.16].
When r = d, we have [Z(0)] = ¢.(#B) = v(%B)[p] for some p € X, by Definition A.5(ii),
so the zero locus consists of v(#) points. It remains to relate the degree to the top Chern
class for r < d. The degree of Z(o) is the number of points in the intersection of Z(o) with
d — r generic hyperplanes PP. Denote the intersection of d — r such hyperplanes by L. Let
L <% PP be its inclusion. We have [Z(0)] = ¢, (%) by Definition A.5(ii) and seek [L]c, ().
We compute in A*(PP):

(definition of pushforward)
(projection formula)

(Definition A.5(iv))

(definition of top Chern number)
(pushforward is a morphism)

(

intersection with a point) (5.1)

for some point p € L. Thus, the degree of Z (o) is v (%}L) As a corollary, we obtain that if

v(#) #0orv (A|,) #0, then Z(c) # @. This proves the dimension and degree statements
in (b) and (c).

Lastly, we show that when r = d and the additional assumptions of (b) hold, the points in
Z (o) are generically of multiplicity 1 and do not lie on Y. Smoothness in Theorem 5.6 shows
that each of the finitely many points in ¢~'(o) are of multiplicity 1. We have rank %; >
dimY; for all « > 1. Hence dim(p~(¥;)) = dimY; + dim A — rank %; < dim A. Thus,
dim(p~(Y)) < dim A, and using the fact that the projection P" x A™ — A™ is a closed
map, we deduce that ¢ is a closed map. Hence q(p~'(Y)) is a proper subvariety of A. For
all points in the open set 0 € W N W' where W' = A\ ¢(p~(Y)), the fibre ¢~' (o) contains
no points in Y. O

REMARK 5.7. Our proof of Theorem 5.3, is analogous to the proofs in [20] of their
Theorems 4 and 6. Their proof uses [21, Example 3.2.16], which is equivalent to axiom (ii)
in Definition A.5. Our proof adds the Chern number computation for case (c).
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6. Generating the singular vector bundle

In this section we show that Z(R) is almost generated, so that Theorem 5.3 may be
applied to it. We generalise the singular vector bundle to a bundle #(R, F'), for a subset
of hyperedges F' C E. The zeros of a global section of (R, F') are singular vectors with
singular value zero along the edges in F. We show that Z(R, F') is almost generated. This
will later yield not only the dimension and degree of the singular vector variety S(R) in
Theorem 3.1, but also the final statement about the non-existence of a zero singular value.

DEFINITION 6.1. Let R = (d, T') be a hyperquiver representation and let X = []7_, P(C%).
Given F' C E, we define
Hom 9(6),7Tf(e)o@(dt(e))) ifed F

HBle, F) =
(e, ) Hom ( 7 (e), w;‘(e)gf(dt(e)» if e € F.

It has fibres

Ble, F) Hom ( span ®5Sl)acsj(e) ,Cice) / span(act(e))) ife¢gF
e, =
X Hom ( span ®?(el)ac8j(e) ,Cdt(e>> ife € F,

where x = ([x1],...,[xs]). The singular vector bundle of R over X with respect to F' is
BR,F) =P, . Ble F).

The singular vector bundle #(R) from Definition 4.1 is B(R, &).
PROPOSITION 6.2. The bundle (R, F) has rank ) . p(dyey — 1) + | F|.

PRrROOF. The rank of Z(R, F)is ) .prank B(e, F). For e ¢ F,rank #(e, F') = dyey—1,
as in Proposition 4.2(b). For e € F, rank #(e, F') = rank Hom(.7 (¢), 7/, F (di(e))) = di(e)-
U

We construct global sections for Z(R, F') whose zero loci correspond to singular vectors
with zero singular value along the edges in F'. Define the map
Lep:C" — I'(A(e, F))

W)y N T (@) € CH0 fspan(aee) e ¢ F (6.1)
T(zy(e)) € CH© ee L. '

We define the composite map
M

Ly : @ C" - I'(#(R, F)) (6.2)
Lp= é P Le.r.

r=1 eck,
We connect the global sections in the image of Lr to the singular vector tuples of R,
generalizing Proposition 4.3 and [20, Lemma 11].

PROPOSITION 6.3. Let B(R, F) be the singular vector bundle with respect to F and
Lp: @fil Cr — I'(AB(R, F)) the linear map in (6.2). A point x = ([x1], ..., [xn]) € X lies
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in the zero locus of the section o = Lp((T,)™,) if and only if x is a singular vector tuple of
R with zero singular value along all edges in F.

PROOF. The image Lr((7,)M,)(x) is the tuple of zero maps each in (e, F), if and only

if for all e € E, and r € [M], LE,F(TT)(x)(®5i61)ij(e)) is the zero vector in the appropriate
case of (6.1), if and only if T}.(24)) = Aes() for some A\, € C with A\ = 0 if e € F, if and
only if x is a singular vector tuple of the hyperquiver representation R, with zero singular

values along the edges of F'. U

DEFINITION 6.4. The isotropic quadric Q, = {v € C" : v'v = 0} is the quadric
hypersurface in C" of isotropic vectors. The variety @), is defined by a homogeneous equation.
We consider it as a subvariety P(Q,,) of P".

DEFINITION 6.5. If T" € C¢ is a tensor and x,, () € C%® are vectors for j € [m], then
we denote by T'(xe) := To(Tie)s Tsy(e)s - - - » Ts,(e)) = :ctT(e)T(:cs(e)) € C the contraction of the
tensor T by the vectors &, (), Where T(Z4()) is the vector defined in (2.1).

We give a necessary and sufficient condition for when the maps in (6.1) generate the
vector space Z(e)y. This generalises [20, Lemma 8| from a single tensor to a hyperquiver
representation. Later, in our proof that Z(R, F') is almost generated, we apply this condition
to the vector subbundles %; in Definition 5.2. This will allow us to associate a single tensor
to each piece of the partition.

LEMMA 6.6. Let H = (V, E) be a hyperquiver, E = Hi\/[:1 E, be a partition, and assign
vector spaces C4 to each vertex i € V. Fix a collection of vectors x; € C% \ {0} fori € [n]
and y. € C¥ for e € E. Fix F C E a subset of hyperedges. Let G, be the hyperedges
e € B, \ I such that xy is isotropic. Then for all r € [M], the following are equivalent:

(a) There exist tensors T, € C for some e, € E, satisfying the equations
T (Zs()) = Ye € C4) / span(zy.)) ec E.\F (6.3)
T (zye) =ye € CH© ec E.NF. (6.4)
(b) Given any pair of edges e, e’ € (F N E,)UG,, we have
th(e)ye = CUtT(e/)ye'- (6.5)

PROOF. (a = b) : There is a tensor 7T, satisfying (6.3) if and only if there are scalars
Ae € C such that T,.(xs()) = Ye + Ay for all e € £, \ F'. Multiplying both sides by @)
gives T (x,) = ar;tT(e)ye + )\eac:(e)a:t(e). Similarly, from (6.4) we obtain, for e € F' N E,, the
condition T}(x.) = :ctT(e)ye. The scalar T,.(x.) only depends on r via the set E,. Thus for
any pair of edges e, e’ € E,., we have

actT(e)ye + )\ea:tT(e)ar;t(e) = ac:(e,)ye/ + )\e/azj(e,)a:t(e,)
where A, = 0 for e € F'N E,.. For the hyperedges in G,, the terms th(e):ct(e) vanish. Hence
(6.5) holds for all e,e¢’ € (FNE,)UG,.
(b = a) : Let u, € C be the value of (6.5) if (FFNE,) UG, # & and zero otherwise.
Define

v o J0 ec(FNE,)UG,
‘ (wt(e)wt(e))_l(,ur - CCtT(e)ye) otherwise.
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Choose some e, € E,. We show that, for such a choice of \., there exists a tensor T, € C°
that satisfies

Tr(xse) = Ye + Aeye) (6.6)
for all e € E,, and hence there exists a tensor 7T, that satisfies (6.3) and (6.4). A change of
basis in each C% does not affect the existence or non-existence of solutions to (6.6). Consider
the change of basis that sends each x; to the first standard basis vector in C%, which we

denote by e;; = (1,0,...,0)". For each e € E,, there is a permutation o of [m] sending v(e)
to v(e,) by Definition 2.6(i.b). Then (6.6) becomes the condition

(Tr)17”'717z71"”71 - (ye)é + )\55175 fOl" all E € [dt(e)],

where ¢; ; is the Kronecker delta and the ¢ on the left hand side appears in position o(m).
We define T, to be the tensor whose non-zero entries are given by the above equation. This
is well-defined, since o(m) # o’(m) for o # o', by Definition 2.6(i.c). It remains to show
that we do not attempt to assign different values to the same entry of 7,.. When ¢ = 1, we
assign the value (y.); + Ae. For all edges this quantity equals (y.); = g O

To conclude this section, we show that % := B(R, F) satisfies the conditions of Defini-
tion 5.2. This shows that & is almost generated. First we define the subvarieties Y; and the
vector bundles %; over Y; that appear in Definition 5.2.

We use the following notation. A linear functional ¢ : C% /span(xy.)) — C can be
uniquely represented by a vector u € C% such that 'u,Tar;t(e) =0 and ¢([y]) = u'y, [20,
Lemma 7). In particular when ;) € Qy), we abbreviate :1:1;6) [y] to ar;tT(e)y.

For a subset o C [n], define the smooth proper irreducible subvariety

P(Q;) i€«
P(C%) i¢ a.

In particular, Yy = X. Fix F C E and define F' = {t(e)}eer. Fix a C [n]\ F'. Let
G, C E,. \ F denote the edges whose target vertex lies in . Define 4, to be the vector
bundle over Y, whose fiber at x = ([1],...,[z,]) € Y, is the subspace U(aq, x) of linear
maps 7 = (T )ecr € (%), satistying

Ya:X1X"'XXn, where Xz:{

w;/l;e)Te(@jSl)ij(@)) = w;lge’)Te’(@)?Sl)

wsj-(e’))a (67)
for any edges e, ¢’ € (FNE,)UG,, for every r € [M].

PROPOSITION 6.7. Let the map Lp be as in (6.2). For any subset of hyperedges ' C E,
the vector subspace Lp (@7{\11 C6T> almost generates (R, F).

PROOF. We first show that the vector bundles A, satisfy Definition 5.2(i). If «, 8 C
[n] \ F’, then o« C B if and only if Yj is a proper subvariety of Y,. Furthermore, %3 is a
subbundle of %Q‘Ya, since U([3, x) is a vector subspace of U(a, x).

Next we prove that Definition 5.2(ii) holds. Recall that A(x) := {o(x) | o € A}. We
show that A(x) C (%a)x- If x € Y,, then an element of A(x) is an |E|-tuple of linear maps
L. r(T,)(x) for some tensors T, € C°, r € [M]. By the proof of (¢ = b) in Lemma 6.6,
7o = Lo p(T2) () satisfy (6.7), 50 A(x) C (Bu)x.

Finally we show that Definition 5.2(iii) holds. If x lies on Y, but not on any proper
subvariety Yj, then every (7.)ecr € (%a)y satisfies (6.7) and no additional equations. Thus
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there exist tensors 7T, with L, p(7,) = 7. for e € E, and 7 € A(x), by Lemma 6.6. Hence,
A(x) = (Ba)x- O

7. The top Chern class of the singular vector bundle

In this section we compute the top Chern class of the singular vector bundle Z(R), gen-
eralizing [20, Lemma 3|. Combining this computation with Theorem 5.3 and Proposition 6.7
finds the degree of the singular vector variety, completing the proof of Theorem 3.1.

PROPOSITION 7.1. Let R = (d,T) be a hyperquiver representation and HB(R) be the
singular vector bundle over X =[]}, IP’(C ). Then the top Chern class of B(R) is

di(e) - (e
k—17 di(e)—
H E h © hs(e ,  where  hy E B (e)
ecE k=1

in the Chow ring A*(X) =2 Z[hy, ... hy]/(hS, ... hin).

PROOF. We seek the Chern polynomial C(t, Z(R)). The coefficient of its highest power
of t is the top Chern class. The Chern polynomial is multiplicative over short exact sequences,
see Definition A.5(iii). Hence

C(t, Z(d)) = C(t, 7(d))C(t, 2(d)), (7.1)

by (4.1). We compute C(t,7(d)). Let h € A*(P(C%) = Z[h]/(h?) be the class of a
hyperplane in P(C%). By Definition A.5(i)-(ii), h is the first Chern class ¢;(#(d)) and the
Chern polynomial of J#(d) is C(t, #(d)) = 1 + ht. Thus C(t, 7 (d)) = C(—t,H(d)") =
1 — ht, by Proposition A.8(b).

Next we compute C(t, 2(d)). We have C(t,.#(d)) = 1, by Proposition A.8(a). The
Chern polynomial of 2(d) is the inverse of (1 — ht), by (7.1). Using the formal factorization
1—a" =[[i_,(1 = ¢%x) over A*(X) ® C, we therefore have

d—1 d—1

L= ()t TTe(1 = ¢hht) "
— (1 — Ckht)
ll i

ﬂ 1 ht L ht

.

where (4 € C is a d-th root of unity.

We have ¢y (n}(d;)) = mfey(H(d;)) = mih; = h; € A*(X), by Definition A.5(iv) and
Definition A.2(ii). Thus the Chern polynomials of 7} (d;), 7.7 (d;), and 77 2(d;) equal
those of 7 (d), .7 (d), and 2(d) respectively but with h replaced by h; € A*(X), by (4.2).

We have found the Chern roots of 7} (d ) and 7 2(d;), so we obtain Chern characters
ch(mr.2(d;)) = exp(h;) and ch(n2(d;)) = S0 exp(— C§ hi). By Propositions 4.2(c) and
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A.8(c), the Chern character ch(Z(e)) equals

1(e) 1(e)
ch | Q)7L () (dsy(0) @ Ty 2(die)) | = ch e 0 (dsy(0) | (i 2(dye)))
j=1 J=1
m(e) dy(e)—1
= exp(fs;(e)) Z eXp(_Cdt(e) hie))
j=1 k=1
di(e)—1 1u(e)
k
= 2 P | 2 heo = Gi huto
k=1 j=1
Switching to Chern polynomial form, we obtain
di(e)—1 p(e)
Ct.Be)= I |1+ | D oo =G uo | t
k=1 j=1
This product has degree (dy) — 1) in ¢, with top coefficient
dye)=1 f ple)
k
H Z hsj(e) - Ct(e)ht(e)
k=1 \ j=1

It follows from Definition A.5(iii) that C(t, Z(R)) = [, C(t,%(e)). The product has
degree (3 .cpdie) — |E|) in t, with top coefficient (i.e., top Chern class of Z(R)) equal to

dy(ey—1

p(e)
H H Z hsj(e) — Ctk(e)ht(e)
j=1

ecE k=1

Finally, the formal identity 2™ — y™ = [[}_,(x — (%y) gives

dt(e)_l M(e) l"(e) h . dt(e)_l _ hdt(e)—l
H H Z 3 Ck i o H 7j=1 sj(e) t(e)
sj(e) = St(e)lt(e) | — (©)
e€E k=1 j=1 ecE 25:1 th(e) - ht(e)

dugey -1 dy(e)—1—k

p(e)
= H Z Zth(e) iy € A"(M). O

eeE k=0 j=1
To conclude the paper, we now prove our main theorem.

PrROOF OF THEOREM 3.1. The zero locus of a generic global section of Z := #(R, F)
is the singular vector variety S(R), with zero singular values along the edges in F', by Propo-
sitions 4.3 and 6.3. The singular vector bundle & from Definition 6.1 is almost generated, by
Proposition 6.7. Hence our Bertini-type theorem Theorem 5.3 applies to it, to characterise
the zeros of a generic section. It remains to derive the polynomial (3.1), prove the emptiness
statement for S(R) as well as its dimension and degree, and prove the statement regarding
finitely many singular vector tuples.

We first consider the case F' = &. The top Chern class ¢,.(%) is given by Proposition 7.1.
If N=d—r =0, then S(R) has the claimed number of points by Theorem 5.3(b). Suppose
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r < d. Let s : X — PP be the Segre embedding and let [I] € A*(P”) be the class of a
hyperplane. Continuing (5.1), we have

v (ﬂ}L) [p] = [L]c,(B) = [L]s.(c.(B)) = [1]Vs.(c,(B))  (definition of pushforward)
= 5.(s* (M) e (B)) = s*([1V)er(B) (projection formula)
=s"([[NNe (B) = (O, hi) Ve (B) ([21, Example 8.4.3])  (7.2)
where A*(X) = Z[hy, ..., hy]/ (A", ... ki), giving us the polynomial (3.1).

We prove the emptiness statement by showing that v (%‘ L) = 0 if and only if ¢,.(#) = 0.
By the proof of Theorem 5.3, ¢,(#) = 0 if and only if S(R) = @. If ¢.(#) = 0, then
v (,%"L) = 0 by (7.2). Conversely, if ¢,(#) # 0, then there exists a monomial A" ... A% in
¢ () such that a; < d; and Y, a; = r. There exists a monomial hfl_l_all I S T
(2" hy)*" such that S7, af = r. Thus, these monomials pair in the product [L]c,(2)
to form the monomial [p] = h{*~'... k=1, The coefficient of this monomial is v/ (%"L),

which is non-zero. Therefore if v (2| L) # 0, S(R) has the claimed dimension and degree
by Theorem 5.3.

It remains to prove the last sentence of the theorem, which pertains to the case N = 0.
Fix @ # a C [n] and define 4, as in the proof of Proposition 6.7. Then rank %, = rank % —
(la|—1) > rank B— || = dim(X) — || = dim(Y,) as the fibers of A, are vector subspaces of
the fibers of Z cut down by |a|—1 linearly independent equations (6.7). Thus, every singular
vector has multiplicity 1 and is non-isotropic by Theorem 5.3(b). Finally, if F' # & then
rank # > dim(X) by (6.2), so R has no singular values equal to 0, by Theorem 5.3(a). O
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Appendix A. The Chow ring and Chern classes

We recall the definitions of the Chow groups and Chow ring of a projective variety,
following [16, 21].

DEFINITION A.1. Let X be a smooth projective variety of dimension n.

(i) [16, Section 1.2.1] The group of i-cycles of X is the free abelian group Z;(X)
generated by the irreducible i-dimensional subvarieties of X. An element of Z;(X),
called an i-cycle, is a finite, formal sum ) . n;V; of i-dimensional subvarieties V; of
X, where n; € Z.

(ii) [21, Proposition 1.6] An i-cycle Z € Z;(X) is rationally equivalent to zero if there
exist irreducible subvarieties V; C P! x X of dimension i1 with dominant projection
maps V; — P! such that Z = Y, V;(0) — Vi(0o), where V;(t) = V; N ({t} x X). The
i-cycles rationally equivalent to zero form a subgroup Rat;(X) of Z;(X).

(iii) [21, Section 1.2.2-1.2.3] The i-th Chow group of X is the quotient group A;(X) =
Z;(X)/Rat;(X). The class of an i-cycle C' € Z;(X) in A;(X) is denoted by [C]. The
Chow group of X is the direct sum A.(X) = & ,A4;(X). The Chow ring of X is
the direct sum A*(X) = @ A" (X), where AY(X) = A, _;(X).

The Chow ring A*(X) has the structure of a commutative ring, with a product A*(X) x
AV(X) — A™I(X) called the intersection product. We say that C' and D intersect trans-
versely if on each component of C'N D at a generic point p, the sum of the tangent spaces of
C and D is the tangent space of X: T,,C +T,D = T, X. The intersection product takes any
codimension-i and codimension-j irreducible subvarieties C, D C X, replaces C' and D by
rationally equivalent subvarieties C’, D" C X (if necessary) in order for C' and D’ to inter-
sect transversely, and defines [C][D] = [C' N D] € A" (X). The existence of a well-defined
intersection product is due to Fulton [21]; see [16, Appendix A].

DEFINITION A.2 ([16, Section 1.3.6]). Let X and Y be smooth projective varieties of
dimensions m and n, and f: X — Y a morphism.

(i) Let V' C X be an irreducible subvariety of dimension i. Define a group homomor-
phism f, : A;(X) — A;(Y) by

d-[f(V)] dimf(V)=1
V)= {o dim f(V) < i,

where d := [R(V') : R(f(V))] is the degree of the field extension between the function
fields R(V') of V and R(f(V)) of f(V). The map f, extends to a group homomor-
phism f, : A, (X) — A.(Y), called the pushforward of f.
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(i) There is a unique group homomorphism f* : AYY) — A% X) such that for all
W C Y a smooth subvariety with ¢ = codimy W = codimy (f~'(W)), we have
f*([W]) = [f~"(W)]. This extends to a ring homomorphism f*: A*(Y) — A*(X)
called the pullback of f.

REMARK A.3. The degree of the field extension in the definition of f, is the degree of the
covering of f(V') by V. In particular, if i : X — Y is a closed immersion, then i, ([X]) = [X].

PROPOSITION A.4 (Projection Formula, [16, Theorem 1.23(b)]). If X and Y are smooth
projective varieties, f : X — Y is a morphism, and [C] € A;(X) and [D] € AJ(Y) are cycle
classes, then

[DIfAC]) = L(FH(PDIC]) € Ay (V).

DEFINITION A.5 (|16, Theorem 5.3]). Let X be a smooth projective variety of dimension
n and let # be an almost generated vector bundle over X, see Definiton 5.2. There exist
unique classes ¢;(%) € Ai(X) for i € [n] called the Chern classes of %, depending only on
the isomorphism class of %, satisfying the following axioms:
(i) If r is the rank of A, then ¢;(#) =0 for all i > r.
(ii) If o, ..., 00—; € I'(A) are global sections and their degeneracy locus Z(oy, ..., 0,—;) C
X has codimension ¢ in X, then ¢;(A8) = [Z(0g, ..., 0r—;)]-
(iii) The Chern polynomial of B is C(t,B) = 1+ > ci(B)¢t'. If 0 - B — B —
A" — 0 is an exact sequence of vector bundles over X, then

Cit,#)=Ct,B)C(t, B").
(iv) If Y is a smooth projective variety and f : Y — X amorphism, ¢;(f*%#) = f*(c;(A)).

If r = n, then ¢,(#) € A"(X) so c,(#) = v(A)[p| for some integer v(HA) called the top
Chern number of A, where [p| € A"(X) is the class of a point p € X.

REMARK A.6. [16, Theorem 5.3] gives a definition of Chern classes for any vector bundle
A over X, not just those that are almost generated. However, when & is almost generated,
then part (a) of that result is redundant since in this case it is already covered by part (b),

due to [16, Lemma 5.2(b)]. We replace [16, Theorem 5.3(a)] with our Definition A.5(a),
which is also a redundant axiom but helps clarify the properties of Chern classes.

DEFINITION A.7 ([21, Remark 3.2.3, Example 3.2.3]). The Chern roots of % are the
formal variables &; () in the formal factorization of the Chern polynomial:

Ct,B) =[]0+ &(B)w).
i=1
The Chern character of A is ch(%B) = Y., exp(&;(A)), where exp(a) = > 7o Lok is a

formal sum in the formal variable a.
From Definitions A.5 and A.7, one can obtain the following properties.

PropoSITION A.8 ([21, Remark 3.2.3, Example 3.2.3]). Let X be a smooth projective
variety and B and %' be vector bundles over X.
(a) If A is the trivial bundle, then C(t, %) = 1.
(b) The Chern polynomial of 2 and its dual are related by C(t, BY) = C(—t, B).
(¢) The Chern character satisfies ch(# @ B') = ch(A) ch(A#').
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