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Multilinear weak type interpolation of # #n-tuples with applications
by
ROBERT SHARPLEY (Columbia, 8- C.)

Abstract. T'wo versions of & muliilinear weak type interpolation theorsm for
rearrangement invariant spaces A.(X) are obtained by exiending the Calderén oper-
ator § from the linear case. Specific applications of each version of the theorem are
given to certain bilineax operators which include integral operators, temsor produots,
convolution, and product operators. '

§ 1. Imtrcduction. Thig paper is a natural extension of the methods
and ideas developed in [3] and [13] to study weak type linear or sublinear
operations. The setting here is multilinear operations satisfying m initial
estimates. Using an appropriate modified Calderén operator and Holder’s
inequality, we are able to obtain a multilinear (multisublinesr) version
of the Stein~Weiss interpolation theorem for rearrangement invariant
gpaces (Theorem (3.4)) and then apply the result to integral operafors
{Corollary (4.3)) and tensor products (Corollary (4.8)). Using the same
techniques with slightly different. estimnates, we dedmnce convolution and
product. operator theorems (Corollaries (4.7) and (4.8)).

Tn his extensive work examining the above operators om Lorentz
I52([97], [11]) and Orliez spaces ([16], [11]), O*Neil systematically attacked
each problem in the following manner.

Utilizing the endpoint estimates, he would derive for each type of
operator a “basie inequality”. Then, using this in conjunetion with a “fun-
damental condition® relating the imtermediate spaces, he was able in
most cages to give necessary and sufficient conditions for the operators
0 be bounded. As a gnide we outline the procedures followed for con-
volution operators. Convolution operators are defined as bilinear oper-
ators € which satisty the conditions [C(f, o)l < Ifliclelly IO(F; Moo
< Nl 9llos a0d O(F; 9o < [1f llollglly, Where [I2]l, is the Lebesgue p-norm
of k. From these initial inequalities O*Neil [9] derived the “bagic in-
equality for convolution”

4]

(1.1) OUf, ™) <M 0+ [ ()" () as
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and then proceeded to show fhat ¢ satisfied

{L.2) 100f; g < 08 [|f llp,1/a 9llg,11

50 long as the indices of the intermediate spaces satisfied the “funda-
mental eondition for convolution”

(1.3) const Y2442, for all ¢
and the secondary index condition for convolution
(1.4) <atb,

where |k, , denotes the Lorentz LP? norm of .

In this paper we show that various operatior estimates of which
relation (1.1) is a special case can be established in a unified manner
using Calderdn’s weak type theory. Ineqgualities of the form (L.1) arve
obtained automatically for each clags of operators by evaluating Cal-
derén’s maximal operator § for the interpolation scheme under con-
sideration and by using the fact that the relation

(L.5) T(f, )™ < 8% 99
holds. The appropriate “fundamental condition” for the class is obtained
by observing minimal conditions the operators must satisfy in order
to be bounded. In short, the main purpose of this paper is to exhibit
an easy way to determine the form of the “bagic inequalities” for varions
classes of operators, establish necessary conditions, and place the existing
theorems in an interpolation theoretic framework.

“r Yy =

£- tllr

a.e.

§2. 4,(X) spaces and Calderdn’s operator. The fpaces .,(X) [13]
are generalizations of the Loremtz L9 gpaces ([5], [3]) which retain
many of their properties. We mention only those properties which are
necessary for the development of the multilinear theory. Fox the proofs
of these facts we refer the reader to [13].

The distribution funetion of a measurable function f is defined by
myy (4 = m{s| |f(s) ]> t}, where m is the measure involved. The deoreas-
ing rearrangement f* of a measurable function iz the non-inereasing,
right continnous inverse on (0, co) of My (1), Two measurable functions
are called equimeasurable if they have the same dwtrlbuhou& The wuomgecl

rearrangement of a funetion f is detined by **(§ = 1t f (s

A rearvangement inwariant Banach funciion space 15 P Bamw'h Hpace
of ‘measurable functions which satisty the following properties:

@) g1 <If] ae., feX implies g X and Il < |ifll

(i) 0<<fpf ae., foeX, and ||, < M, then feX and fif]l <

(i) mE < oo implies there exists €z > 0 so that ffds < Oﬂ,uf\] in-
dependent of f,
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(iv) mB < oo implies |lxg] < oo, and
(v) f and ¢ equimeasurable, feX implies geX and |f| = lgl.
The fundamental funclion of a rearrangement invariant space X,
ox(f) = llygllx, mBE =1, can be shown to be concave and nondecreasing
for ¢ > 0. The associale space X' of a rearrangement invariant space is
the gpace of functions g such that |gix "5&2 I [ 79" ds is finite. Tt is

not difficult to show that px(f)ex(f) = t. Two classes # and £ of thes'e
spaces are particularly important in applications. X belongs to # if
for some M >0 and 6<1,

@ < const (sf)°

pxit
while X e¢% means there is a 0> ¢ and 6> 0 so0 that

when M < sft,

Px(8)

) < const (sff)® when sft<Cd.

Px

We define 4,(X), 0 < a<1, as the space of all ‘measurable func-
tions such that the norm

1 I gz m{ f (7 (sex(s) 8}

is finite. Tt X belongs to # N, it is not hard to see that A3(X) is a re-
arrangement invariant space with a fundamental function equivalent t0 ¢x.
We define

(2.1)

AX) = {f| [flay = [ f*dox < 0}

and

= {f1 Wflazg = sup (" (Dx(t
It is not hard to show [12] that
(2.2) AX) e X c M(X)
with eontinuoﬁs embeddings and that 4(X) and M (X) have fundamental

1< oo}

function gx. I 0<<a< f<1, then A(X) g 4,(X) with continuous
embeddings where At X) = M (X). It X belongs to ¥, then we can show
that A, (X) = A(X) with equivalent norms. If X belongs to #ng, then

the simple functions with compact support form a dense subget of
A (D), 0 < asx 1. If the operators P and ¢ are defined by

i 00 d
@35 PO® =1k [0, N = [ 10T,
0 t

then it can be shown that P and @ are bounded operators on A,(X),
0< a1, when Xe¥n% ([2], [13]). Using these operators, one can
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algo show [13] that

[
b/
(9.4) px(t) ~f¢ﬂx(8)~;—
and
1 Sl ds
@) 73l ”,f o) 3

when Xe#UNZ. .

We assume that the operators are bilinear in order to simplity the
notation even though the proofs are valid for multi-sublinear operators.
We do state the Stein-Weiss theorem, however, in its full form. A weak
type ([X, Y], Z) bilinear operator is one such that

(2.6) W%z, 2p)llarz) < const g (mB)ey (mF),

where the constant is independent of the sets E and F. We congicler bilin-
ear operafors I which are of weak types ([X(j), Y, Z20) for j =1,...
.+., m. For this interpolation scheme the function

(2.7) w0 551 = min (?ﬁ.ﬁ%ﬁdﬂ)

is ured to define a modified CQalderén operator

ar [ds

(2.8) S, 0t = f J g o S
which is maximal in the following sense: .
YemoreM 2.1. If T is a bilinear operator of weak types ([X(j), ¥,
Z(j)) with norm 0, 1< j < m, then
(2.9) T(f, 9™ () < max ¢, 8(f% (1)
<fsm

for all simple fuﬁotio%s S and g with compact support,
Proof. Since T is of weak types ([X(j), X(§)1, Z(4),

1 (XEaXF)”MZ(j) ‘ ml)g ml
T(ym 42)™ (B < 20 < ¢, Pty ‘)"?"“( ), 1 im.
Pz (f) P (¥)
Therefore
T(xmy 2p)™ (1) < max (0)) P(mE, mF; 1)
15j<m
=] [-=]
' dr ds
< max (0) [ [ g5nab) #0590 2L 22,
1<i<m &8 r 8

icm®
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sinee % = ¥ommy 13y = Zommy, 8nd W(r, s3%)/(rs) is & non-increasing
funetion both of r and s. Inequality (2.9) follows for simple f and g with
compact support by applying the sublinearity of T(yg, y»)** in each
variable to covariant decompositions of f and ¢.
Using this result, we are able to extend T in a unique manner:
THEOREM 2.2. Suppose one of X or ¥ is separable. If T is a bilinear
operator of weak types ([X (), ¥ (5)], Z(j)) of morm Qyy § =1, ..., m, and

(2.10) I8(% 0"z < elif iz lglly
Jor all f in X and g in X, then T has a wnique extension to X x ¥ such that
(2.11) IT(f> Dliz < o (max C) If |1xllgliy

i< .

Proof. Suppose that X is separable. If we let % be & measurable
set with finite measure, then by (2.10) & (£, ¢%) belongs to Z for each g
in ¥ and must be finite almost everywhere, By slightly modifying the
proof of Corollary 4.4 and Theorem 4.5 of [13], T’ has » unique extension
to. the pair (xg,g) such that

T (2m )™ (8) < O8 (5, g°){1)

where ¢ = max 0;. Taking an arbitrary simple function f with compact
1<i<m

support, we may write f in covariant form

I3
F(&) = X awgnf(s) z (),

i=1
where a; 2> 0 and B; 2 #,,,. Since the averaged rearrangement is sub-
linear, we have

& k
T(f, (0 < D) 0 (mpy 9 () < O X 08 (i g (0) = OS(F*, g%} (1)
i=1 ==l

&
by noticing f* = ¥ ”'z'l;:,- But this together with inequality (2.10) shows
1

=]
that {2.11) holds for all ¢ in ¥ and simple functions f with. compact sup-
port. But the simple functions with compact support are dense in X,
80 I'(-, g) has a unique extension to X for each ¢ in Y so that (2.11) holds
for all f in X. Xt it not hard to see that the extension remains bilinear.

Remark 2.3. Tf in Theorem 2.2 we can assuine both X and ¥ are
separable, then we can relax the definition of weak type ([X W, ¥YhHi,
Z() to

SI}P (T(f, Uj*(t)‘ﬂz(j)(t)) <G !|f]|.4(xm) !!9‘“4(1/(]1)

for all simple functions f and ¢ with compact support.

Remark 2.4. If all the endpoint spaces X (3}, Y(j), and Z(j) belong
to % .2, then it is possible to show that § is a bilinear operator of weak
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types ([X (5, Y1, 2, 7 =1, ..., m. Therefore in the “non-extreme”
cases of weak mterpolamon a necessary and sufficient condition for each
bilinear operstor of weak types ([X(j), Y()1, Z(f) 1<j< m to map
X %Y into Z is that S(f* ¢*) belong to Z Whenevel f belongs to X and g
belongs to Y. As we shall see, however, the most important applications
gtart with the “extreme” estimates.

It would be interesfing to find the proper deflinition of § xo that
necessary and sufficient conditions can be easily formulated in these
cases a8 ig the case for linear operators [13]. This would. rimplity con-
giderably the extension process and allow further applications for non-
separable spaces such as the M(X) spaces. M

Remark 2.5. We should mention that the spaces A(X) and. M (X)
appear in [11] as K, and M,, where X is the Orlicz ypace determined
by the Young’s function 4.

§ 3. Multilinear Stein~Weiss theory. In this section we derive some
elementary intermediate results and use thege to obtain the multilinear
Stein—-Weiss theorem with m mltxal conditions for the spaces A,(X).
The function

?z{?) .
(3.1) Fr,s;t) RS Wir,s;t)
will be 1mportant in our considerations as we will be making I esti-
mates on T(f, ) (t)pz{?) and

3 dr d
(G2 T(f, g™ <0 [ f [ (ex()]l6 ()pe (1T (r, 559 = =
0 0

holds by inequality (2.9). We shail call the initial m triples of spaces
([X(j), Y(j)];Z(j)), L<j< m, an interpolation segment o, and say that
a triple of spaces ([X, X, Z) belong to # (o) if the operator § for o waps
X xY into Z. Having established this notation, we can now ecatalogue
several intermediate results of an elementary nature:
TaeoreM 3.1. If X, Y, and Z belong to N, then
@ ([M(X), (X)), M(Z)e W (a) iff

(3.3) M, m%ttp(f Biry ;) )< o003
(@) (X, M(X)], M(Z))e ¥ (o) iff
(3.4) M, ﬁsup(f F(r, 80 )%4 003

() The author has since obtained a proof of Theorem 2.2, which does mot

require the separability of X or ¥, This allows to drop the condmon max (o, §) > 0
in Corollaries 4.7 and 4.8 below.

icm®
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(i) ([4(X), A( (2))e W (a) 3ff |

(8.5) qup( Fir, 1) )<oo; /
(1v) ([A(X), (X)), A(Z))e w (o) iff

(3.8 Ny w= sup(ffr(r,s,t)ﬁ»i—t)< o0

v) ([MX), A(X)), AZ))eW'(o) iff

(3.4) ¥, --sup((jo fml?‘ (r, 85 z)_—'zi)< 203
(vi) ([M(X), M(X)], M(Z)e W (o) iff

(3.5") aup(f fli"r 8 td—ﬁi)< 0o
(vi) ([20(T), M), AB)e# (o) i [ [ [P, 50 L2 Lo,
(viti) ([A(X), A(X)], M(Z))e W (o) iff sup Pr,s, )< oo,

?‘8
Proof. It is clear that at the expense of brevity of notation, we
could shorten. the statement of this theorem vsing mixed norms. We only
prove (i), sinee it is typical of the estimates used. Suppose f belongs to
M(X) and g belongs to A(Y); then

I8 (Fy Dllaazy < IS (F*, 9 lasezy

‘d fdsi
<sup (£*(r)gxlr )supjfy )z (o) F(r, 531 =
Whem the first inequality follows from the fact that | [his)k(s)ds|
f B (s)k*(s)ds applied to ¥(r, s; ) J(v8) which iz decreasing in both »
zm(l ¢, and the second inequality comes trom (3.1) and the definition of
8. Hince ¢ belongs to A(Y), we have
’ ds dr
18U, Diaay < [F gz [ 9*9)p(6) = 5up [ Bir, 055"
' 83 gt r

& ¢ || Fllazcey 191 agey M-

Using these estimates, we can now formulate
TEROREM 3.2. Suppose T is a bilinear operator of weak types ([X(j),
Y(5)1,2(), 1<5< m, and the rearrangement invariant spaces X, ¥, and
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Z have fundamental functions so thet the corresponding function I7 sotisfies
(3.3Y, (3.4), and (3.8), then T has o unifuc extension so that

(3.6) 1T, Alllam < CME MY M | f g l91lagez)

where O = max G, Oy the weak type ([X(j), X ()], Z()} norm of T, a8
l<ism

Spdl, o =l—a, f =1—F, and 0< o <L

Proof. By the embedding A,(X) s 4,(X) when a=b, we wmay
assume o+ A= y-+1. We may also assume y >0 even though the follow-
ing proof is still valid in thiy case with simplified estimates at each
stage. From ¢ +f = y-+1 and y > 0, then « and £ will both be positive.
Now we let @ =yfa and b =y, s0 0 <g, <1 Tetting 4" =1-—a
= f'Ja and b =1—b = o'[f (with the standard modifications if o or
§' is zero), we have

8" 6 (Des(t)

= [ [ (Pe et er i o oNig e O T, 5505
o0 el Iy -k ﬁl‘

<([ [ wornre 0T =
L 0

<([ [orenroaermwme,snE ) x
o 0 ’

8
ar * d d o
X (of 6{ (g ‘PY)llﬂ(tg)F(r,s;t)%_ls_)

&

by applying Holder’s inequality with A'-+y-+e =1 and weight
F(r, 83 t)[(rs), s0

8(f*, g (thea(t) <

60 0

- A dr as ]’ w0
My uﬂgm[ [] (J‘*wx)”“(y*wy)‘”’l”T—-;] M gl
0 .

0

Taking the L'” norm, we have by (2.8)

B.1) T Dy < CHMEMTNFIY ) 9wy %

ro8 %

icm®
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But by Fubini’s theorem,

dr ds dit

w W \ ] . )
{J‘ 0[ Gf (f f])x)lf (7’)(57 (pl’)l/ﬂ(S)F(“ 3;”7?7} < Ufﬂ?ln(x)llgﬂﬂﬁ(y]ﬂ”;

put this together with (3.7) implies

(s !1)”.47(2:) < C-ME{-M-.'?IM:J sz |\£IHA;;(1’)'

Tt whould be noted here that thiz proof is just a modified version
of a proot given by O'Neil (Lemma (10.1) of [11]) for integral operators
on LP¢ spaces,

Remark 3.3. Tf for the classicial interpolation scheme of L spaces

we congider
1Py 1/,
wHPINY
G(u, v;1) = minC;—pg——
( ! 7) it £ tll"f

instead of the funcion ¥(u, v; 1), we'can obtain the following refinement
of the intermediate operator bound

(3.8) L, Dlleary

0o ( DiPe )a‘( G14s )ﬁ’( T17s )y
< G0 \pamsr) Viamal] Vramrag) Mmmteliznse

where (i,—]l,i) == (1—9)(-:£-,—1—,i) —|~0(i,—1—,-}-) and C; iz the '
poagr o h N P G2 Ta
weak type operator bound. Therefore, by evaluating the modified
M,, My, and M of Theorem 3.1, we are able to obtain the full power of
the classical theorem. ’
Tn order to state the general multilinear theorem we need to develop
gome notation. A multilinear operator is called weak type [[X (3,0, ...

ey X1, Y1, Z(3)) with norm Oy H
n
(3.9) T (gmyr+eer 2, D ean( <0 [ #z6.0(mB)
sl

and @ is the smallest constant for which (3.9) holds independent of the
sets B, and £ We define '

( ﬁ Pt (83) )
)

Pz (t)

Y(s;t) = min
Ledam

whete 8 == (8;, ..., 8,). L we let

Fs;1) = 950 ws; )

n

}_Yl P (8)
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and then set
o . o
ds;
M, = sup B(s;t)
oy (bt 5 8

we can prove the following theorem using the same techniques as above,
T TemorEM 3.4. If T is ¢ muliilincar operator of weak types ([X(1, ), ...

e X0y )1, Z(), 1< J<m, then T has o unigue ewtension so that
e ’
W (Fasees Fallagmy < 27 [T (M Ltgypxay)
fam ]
n
whenever 3] a3z n-=1 4y,
=1
Remark 8.5. M. Zafran [19] has generalized the multilinear Stein—
Weiss theorem in another direction using the Feetre K-theory and has
obtained very mice applications of a different nature. Woak type inter-
polation with m initial estimates was established in [14] for linear op-
erators. Strong type interpolation of m pairs was camied out for Peetre’s

theory in [16] and [18]. Tt appears that this paper is the first attemps
at mixing these ideas.

Remark 8.6. It is not hard to see that o necessary condition for
([X(), ..., X(MT,Z) to be weak intermediate for the interpolation

segment .of L” spaces with indices ([p(1, §), e p(m, 1 aG), §=1,2,
is that the X’s and Z must satisfy

7 n n

(nslf)") ¢z(ﬂ8¥"") < °n¢x(¢)(3f) all g,

{ml =1 i=1

‘where ‘m,.=w, -:1"
1 . BBy . p(%,5)

i = o D= Leum §=1,2. For the case of linear operators this

. 2
reduces to

b= a(i, 1) —my By, a(i,j) = and

Lpz(s™) < opx(s)  all 8
ct ;”, b = a;—mp,. Using these conditions one can easily
1772
give sufficient conditions for weak interpolation ([4], [17]).

One can obtain slightly more general theorems if the endpoint Epaces
have fundamental functions which are compatible in the sense that they
behave like powers [17]. Although the weak type reyults proved in [17]
follow as special cases of the results Presented here (actually of the results
in [13]), Torchinsky considers mixec weak type and strong type theorems,
as well ag strong type theorems, which generalize the classical results
in a direction that allows recovery of endpoint estimates.

where m =

@ ©
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Next we state n multilinear interpolation theorem of a cliffer_ent
charactor than Theorem 3.2 which will prove usefl%l 1'.11‘ the next sgc.tmn.
The proof of the following theorem and its generalization for multﬂ}nea.r
operators (which we leave to the interested reader to forl.nula,te) is a simple
exercise in multiple applications of Holder's inequality.

Tramorey 3.7. Suppose T s a bilinear operator of weak types ([_X {j),
y(]‘)],Z(j)), 1< j=m, and the spaces X, I{_“, tmd. Z have _‘f@_mdamem,al
fumetions so that the oorresponding funelion .lf’.smmsfws condttions (8.3%),
(8.4"), and (3.5), then T has o unigue emiension so that

S, )y < ONENTNY1F 0 gy

if oy and max (o, §) > 0, where 0 = 321?;‘ C; amd C; is the weak
wpe ([X (), XG)), Z(5)) operaior morm.

§ 4. Applications. In this section we apply the results of Seefion 3
40 specific bilinear operators: integral operators, tensor product fcq;;x:«-
atoré, convolution, and produet operators. Most, of. the results o . flS,
rection have been obtained for I spaces by O'Neil .([9], [11]) an kor
A, (X) spaces in [T} and [8]. The general approach. of interpolation taken

i erators HeeIms new. . o
here ioxi)ifﬁlfﬁr Ot}_){(:e:?ator I is called an integral operator if it satmﬁe?s the
estimaates: [([I(f, ¢)ls % f lllglee a0E (Fs Do S 1S leolghy. The f’“mfy
example of an integral operator ix given by I j,.g)(t) = S .i(s,gf(s)an::i
The interpolation scheme for these operators is (LF, ‘LB]’ T}:)L e
(L™, I'], I™) and so in this case Wy(r, #;1) = min (r/:,s): ¥ The
(2.1), we have the basic inequality for integral operators:

Luvyma 41, If T 8 on infegral operalor, then

@1)  I(f 90 < S ) = [ (PO st (8)ds.
0
This shvould b6 compared with the basic inequality derived in [117
I(f, g™ (1) & [ f*(st)g" (+)ds.

TammA 4.2, A necessary condition that integral operators 'nt’aq) X X,Y
into % 44 thot the “fundaemental condition for integral operators
(4.2) wpg (D) & conwt px(abpy(a) all b

hold. .
Proof. Tt we consider the integral operator I( f s §) (t)if=1f 1{1(:: , :) _sgz)(t:i;
WIED 7. (8, 8) = Zo,(8) %o (¥) 804 4 (8) = %0, (3], then P a

-
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into Z, we have

M{@) I e
fﬁfﬁy(k‘f}p Flsitle | S il < comst:

But I{f, s, 7a)" = aX(ﬂ.be:,b = Z0,aty, a0d o = g, 80

) apz(b)
it (‘Px(“b)‘)’r(“)

It ix not hard to show that condition (4.2) is necessary and subficient
in order for relations (8.3), (3.4), and (3.5) to hold. Typical is relation (3.3),

5 st -
NN AT gl 7 _ﬂ@Lﬂ)
SEP(J Fulr, 539 r)“sﬁ?(J Px)Pr) T 7 +,,f Pxror(s) 7

ak o0
CTRN S
<S§?{¢y(s>(stof"”x'm | w

8t

) < conyti.

But by relations (2.4) and (2.5), we have

o ar spg(t
sup f Fr(r, s;0) " < const sup 9z(1) < const.
a,i_

st Px(8t)pr(s)
Relations (3.4) and (3.5) follow similarly, so by Theoren 3.2 we have

COROLLARY 4.3. If X, ¥, and Z bdong to A% and I is an integral
operaior, then I has & unique extension so thai

. W (f, g)”A?(Z) < eonst |f |4 cn ||9[1Aﬂ(1"7
if a+B> v+l end condition (4.2) holds.

Closely connected with integral operators are lensor product operators,
i.e., bilinear operators which satisfy :

IT(f, oo < il lglke  amet 2> 900 < Ul gl -

An example of such an operator is, of course, T, 9)(r,8) = (f®g)(r, 8)

= f(r)g(s). In this scheme we have Wy (r, 8;1) = min (re/¢, 1) and hence

the “basic inequality for tensor products” by Theorem 2.1 is computed to be
Lmsoaa (4.4). If T is o tensor product operator, then

o

(4.3 260" 0< [ 1eariesen L,

0
LrymA (4.5). The “fundamental condition for lensor products”
(4.4) Pz (ab) < const gx(@)pr(d)  all a, b
i8 necessary in order that T map X %Y into Z.

icm®

Mullilinear weal type intorpolaiion of m n-tuples 191

. Proof It T(f, 0) =f@g and we let f, = y4.,0 = x0z, then
T(far ) = Xy 304 We obtain

_oglab) T(f,, g)* (st
b @B T @er () )
Iyl

= rexger (1 lzlglly

As before we can show that condition (4.4) is necessary and suf-
; ) ,
ficient for Fy(r, s; ) = ozt min {reft, 1) to satisty (3.8) through
) Px("her(8)
(3.5}, and so by Theorem 3.2 we have
CoROLLARY 4.6, If X, Y, and Z belong to %% and satisfy the “fun-
domental condition for tensor producits” (4.4), and T is a lensor product
operator, then T has a wunigue emlension so that

1S, Q)HA,,(Z) < const “.f”Aﬂ(X)Hg”A‘B(Y)

if a8 = p-+-1.

A bilinear operator ¢ which satisfies the three estimates [0(f, g)ll
L[ Flalollay WOy Do < 1 loellglhy  and 1C(F, @)lo < 17 hllgll is called a
convolution operator ([97, [11], [71). O(f, g){8) = (F*xq) () = ff(t—ws)g(s)ds
is the common example of a convolution operator. Here the appro-
priate ¥ iz Wo(r,s;%) = min(r, s, vs/t). As before we can compute
the “basic inequality for convolution”

(&8) O, g™ (1) < Bo(f*, g*)8) = g™ (P +Q) ()] +

J’f [(P+@)f*1(s)g"(s)ds.
Oompare this with the inequaﬁﬁy in [9]
(4.6) Olf, 9™ () < ™ B () + f F(5)g* ().
Ax before, the inoquality (4.5) suffices to estima,tq convolution operators
on. the interior of an interpolation segment.

Hince (x(‘,,,,v)akx(ola))*(t) w5 (6-4/2) 20 (1), We see by letting f=g
= fo.q that in order fov

fag)* (Bipg (4
sup (H up M) = consd
rexaer o Ifllxlely
o s w(]iz(a) -
it is nmecessary that su < const, i.e.
v o rx(@)gr(a) 7
(4.7) apy(0) < const prl{a)pp(a) . all a.

6 — Studla Mathematics 60.2
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The “fundamental condition for convolution” (4.7) is necessary and
sufficient in order for eonditions (3.3') through (3.5') to hold for F' == ¥,.
In fact, we now have, by Theorem 3.7,

COROLLARY 4.7. Suppose X, ¥, and Z belong to #n¥. If C is a con-
volution operator and condition (4.7) holds, then C has o wnique emtension
80 that

WC(F, 9llayz < const Ifllaen 19140

if a+8>=y ond max (a, ) > 0. .
Intimately related to convolution opérators are the produei operators.
These are bilinear operators which satisty the conditions [F(f, )l

< | f oo 19llo0r 12 (F5 D)ia < [F 1010 80 1P (F, g}l < If Illglly (se [92). The
common example of a product operator is P(f, g) = fg. The ¥ in this

. r 8
case is Wa(r, ;1) = ‘“m(?? 1).

By letting f, = xp,9 = 9. and P(f,q) = fg, we may easily show
that 2 necessary condition for P to map X x ¥ into % is the “fundamentat
condition for product operators”

{4.8) pz(a) < const px(a)pp(a)  all a.

By computing Sp(f*, ¢%)(t), we can der've the “basic inequality for
product operators”

. ; 3
P(f, 070 < [ [01QF)+ £ (Qe1d+ @) @g") -

It is not difficult to show that (4.8) is necessary and sufficient for con-
ditions (3.3') through (3.5') to hold for Fp. Proceeding exactly as in
the ease of convolution operators, we apply Theorem 3.7 to get

COROLLARY 4.8. Suppose X, T, and Z belong to % NY and P 18 a prod-
uct operator, then P has a unique extension so that

P (f, g)HAT(Z) < oonst [|flLs, 00 1914w

whenever a-+f >y, wax (a, ) > 0, and X, ¥, and Z satisfy condition (4.8}

§ 5. Final remarks. In this section we brietly remark how the tech-
nigues used in this paper and [13] may be used in the case of linear oper-
ators. T is well-known that the Calderén theory of wealk interpolation
may be applied to many of the standard linear and sublinear operators
of Fourier analysis such as the Hilbert transform [2], Hardy—Littlewood
maximal funetion [2], Fourier transform [1], Laplace transform [6], and
fractional integrals [15]. We illustrate the power of the these technigues

icm®
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by concentrating on the real Laplace franstorm given by
2f(t) = [ fs)e~"ds, - t> 0.
0

It is easy o see that ¢ mmst be a bounded operator from I* to L and

I® to I'. In this case ¥(s,!) = min (s, 1/t), and thetefore the basic

inequality (from. [13]) is ‘ o ‘
1

(51) 21t <2 317 (5),

Binee 2 (xp,q)" (1) = (L—e *)/t, then a necessary condition for % to
mep X to ¥ iy that the “fundamental condition?”
(5.2) apy(l/a) < const gyx(a), all a
holds. In fact, .
1/a)a’ 16" gp(f)|
1 ......g"l) sup M < sup (gup_f..__ .99_17(.2_)
[ Px(a) @ ¢ t ox(a)
< s 2 20,0 2202
a - lxeale
< sup 1
rex |flx

< const.

Condition (5.2) implies that both sup f s, t)—?— and sup f F(s,t)T
¢y LI
are finite, 8o ¥ hag a unique extengion so that

12 (FHa ) < const [fla ez O0<ea<g1

This theorem generalizes Corollary (10.12) of [11] and was first obtained
in [6].

Finally, the author would like to express hig thanks to Proffesor
Alberto Torchinsky for conversations relating his work [17] to earlier
work of the author which motivated this article.
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Equivalence of Haar and Franklin bases in I, spaces”
by
7, CIESIELSEX (Sopot), P, SIMON (Budapest) and P. SJTOLIN (Stockholm)

Absteact. The main regult of this paper siates that the Haar and Franklin
orthonormal sebs do form equivalent bases in Ly<0, 1> for each p, 1 < p < oo, ie.
the spaeos of cocificionts for the two bases are identical. The proof depends on the
unconditionality of Haar and Franklin bases. The original proot of §. V. Bockariey
of the uneondifionality of the Franklin basis is rather complicated and a simplified
version is presented in this paper. As a comgequence of our main Tesult we obtain
the Iy, version of the maximal inequality for the Fourier partial sums of the uni-
formly bounded orthomormal mystem of polygonals introdusced earlier by one of the
authors. :

1. Introduction. In hig recent paper §. V. Bockariev [1] {see also [21)
proved that the Franklin system is an unconditional basis in I,(I),
I=1{0,1> 1<p< oo. His ingenious proof reguites only, appart
from the properties of the Franklin functiony established by %. Ciesielski
in [4], & modification of the' A. Zygmund lemma on decomyposition of
funetions and. the weak type L, estimate for the Hardy-Littlewood. maxi-
mal function. It appears that.with the help of some.technies known in
the theory of singular integrals the original proof of Bockariev can be
modified eonsiderably. Such a simplified version of the proof of uncon-
ditionality of the Franklin basis i presented below, and the additional
tools used in it are the Whitney’s decomposition lemma of open sets
jnto dyadic cubes, the Marcinkiewicz integral and divtance funetion.

The uneconditionality of the Franklin basis (8. V. Bockariev) and of
the Haar bagis (J. Marcinkiewicz) in L, 1 < p< oo, is the starting
point in the proof of our main retult, ie. the equivalence -of the Haar
and Franklin bases in L,, 1< p < co. The eszential step leading to the
desired. result in an application of the Fefferman-Stein inequality (Theo-
rem B) to both Haar and Franklin systems. To do this, it is necessary
to compare maximal functions of the function belonging to one system
with the corresponding functions from the other system. However, this
can be done on the basis of the estimate for Franklin functions obtained
by Z. Ciesielski im [4].

* It has beon proved recently by P. Sjdlin that the Haar and Franklin
Lefds are not equivalent in Iy,
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