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Abstract

Program translation aims to translate source code from one
programming language to another. It is particularly useful in
applications such as multiple-platform adaptation and legacy
code migration. Traditional rule-based program translation
methods usually rely on meticulous manual rule-crafting,
which is costly both in terms of time and effort. Recently,
neural network based methods have been developed to ad-
dress this problem. However, the absence of high-quality par-
allel code data is one of the main bottlenecks which impedes
the development of program translation models. In this pa-
per, we introduce CoST , a new multilingual Code Snippet
Translation dataset that contains parallel data from 7 com-
monly used programming languages. The dataset is parallel
at the level of code snippets, which provides much more fine-
grained alignments between different languages than the ex-
isting translation datasets. We also propose a new program
translation model that leverages multilingual snippet de-
noising auto-encoding and Multilingual Snippet Translation
(MuST) pre-training. Extensive experiments show that the
multilingual snippet training is effective in improving pro-
gram translation performance, especially for low-resource
languages. Moreover, our training method shows good gen-
eralizability and consistently improves the translation perfor-
mance of a number of baseline models. The proposed model
outperforms the baselines on both snippet-level and program-
level translation, and achieves state-of-the-art performance on
CodeXGLUE translation task. The code, data, and appendix
for this paper can be found at https://github.com/reddy-lab-
code-research/MuST-CoST.

Introduction
Program Translation is the problem of converting source
code from one programming language to another. Differ-
ent from computer compilers which translate high-level pro-
gramming languages to lower-level machine code, it mainly
focuses on translation between high-level programming lan-
guages. Efficient and accurate program translation is of
enormous value in a variety of scenarios, such as: 1) Mi-
grating legacy code to another language. For instance, many
industries spend several hundreds of millions of dollars to
convert code written in older programming languages (such
as FORTRAN and COBOL) to newer ones (such as Java
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and C++) (Roziere et al. 2020a). 2) Adapting software to
different operating systems and platforms. For instance, for
an Android application to run on iOS and Web browsers,
it needs to be re-developed in Objective-C and Javascript.
Traditional rule-based program translation usually relies on
meticulous manual rule-crafting, which requires expertise
in both programming languages, and requires an enormous
amount of time and resources.

In recent years, deep learning based methods have
been employed to address this problem. The success of
transformer-based models (Vaswani et al. 2017) in natu-
ral language processing (NLP) has motivated researchers
to utilize them for programming languages. A few recent
works based on neural machine translation (NMT) have
been applied to this task and achieved some impressive re-
sults (Roziere et al. 2020a; Ahmad et al. 2021). One of the
important requirements for NMT models is the availability
of high-quality parallel data for model training. Such data
is even more critical for the program translation problem
since it requires the generated code to be logically precise
as well. However, existing code translation datasets have sig-
nificant limitations. Most of the commonly used datasets (Lu
et al. 2021; Chen, Liu, and Song 2018; Nguyen, Nguyen,
and Nguyen 2015; Karaivanov, Raychev, and Vechev 2014;
Nguyen, Nguyen, and Nguyen 2013) only contain two lan-
guages (Java and C#), and the alignment comes from mining
similar function names from open source projects. Github
has a huge number of open-source repositories in several
languages. However, the data is not parallel and cannot be
used for supervised translation. Project CodeNet (Puri et al.
2021) and Google Code Jam1 datasets contain solutions sub-
mitted to coding problems in multiple programming lan-
guages. However, given that the alignment comes from solu-
tions to the same problems, they are aligned at the task level.
Since programs that solve the same problem can have a high
diversity in terms of variable names, method design and log-
ical flow, these datasets are not ideal to train program trans-
lation models. This especially becomes a bottleneck in case
of low resource languages, since models for those languages
cannot be trained using limited data with high variance in
distribution.

The scarcity of high quality parallel data has become a

1https://codingcompetitions.withgoogle.com/codejam/archive
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Figure 1: An example of a program and code snippets in different languages from our CoST dataset. Each column is one
program (truncated) in a specific language. Each cell is one snippet. The snippets are aligned by matching the code comments
in different languages. We show only four languages due to space constraints. All the remaining languages are shown in the
Appendix.

bottleneck in program translation research. In this paper, we
introduce CoST (Code Snippet Translation), a new dataset
that consists of parallel source code snippets from 7 common
programming languages: C++, Java, Python, C#, Javascript,
PHP, and C. It contains parallel data at multiple levels, first
at the snippet level, and then at the program level, for every
pair of languages. To the best of our knowledge, CoST is
the only dataset that provides snippet-level alignment for the
seven commonly used programming languages. This dataset
is not only a great resource to the program translation re-
search community, but also serves as a new benchmark to
evaluate the program translation models for upto 42 (7 by
6) programming language pairs at both snippet-level and
program-level. In addition to supporting pairwise training,
many samples in our dataset contain equivalent code snip-
pets across multiple languages, thus supporting the develop-
ment of multilingual program translation methods. An ex-
ample of a program and its snippets in multiple languages is
shown in Figure 1.

To demonstrate the effectiveness of using finely-grained
alignment from code snippets for program translation, we
propose a multilingual program translation model that lever-
ages the similarity between different programming lan-
guages and the snippet level alignment of the dataset. Our
experimental results show that the proposed model outper-
forms a number of baseline models on most of the 42 lan-
guage pairs, on both snippet-level and program-level transla-
tion. The improvements are especially significant in case of
low resource languages, that greatly benefit from the mul-
tilingual training. We also achieved state-of-the-art perfor-
mance on CodeXGLUE (Lu et al. 2021) translation task.
Moreover, our multilingual snippet translation (MuST) pre-
training also shows good generalizability across different
models. Extensive experiments show that it consistently im-
proves the performance of multiple models on the transla-
tion of all the language pairs. In summary, the contributions
of this paper are listed below:

• We introduce CoST , a new dataset that consists of both
snippet-level and program level parallel data from 7 pro-

gramming languages. Our dataset can be used to train
program translation models for up to 42 programming
language pairs.

• We provide a new benchmark to evaluate program trans-
lation model on 42 programming language pairs. Exten-
sive experiments demonstrate that models which achieve
the best performance on some languages can do much
worse on certain other languages.

• We propose a multilingual program translation model
that leverages the similarity between different program-
ming languages and the snippet level alignment of the
dataset. The proposed model outperforms a number
of baseline models and achieves state-of-the-art perfor-
mance on CodeXGLUE translation task.

• The MuST training method in our model has good gener-
alizability and consistently improves the performance of
several other models on program translation.

Related Work
Methods: One line of work has directly applied recent ad-
vances in natural language processing (NLP) to the program-
ming language domain. Inspired by the success of natural
language pre-training, CodeBERT (Feng et al. 2020) pre-
trained a BERT (Kenton and Toutanova 2019) based encoder
on the source code, and then added a decoder to perform
end-to-end training on program translation. PLBART (Ah-
mad et al. 2021) utilized an existing natural language trans-
lation model, BART (Lewis et al. 2020), and also pre-trained
it with source code. Transcoder (Roziere et al. 2020a) com-
bined cross-lingual masked language modeling (Lample
and Conneau 2019), denoising auto-encoding, and back-
translation, and applied them to a source code setting. An-
other line of work incorporates the intrinsic features of pro-
gramming languages to improve translation performance.
(Chen, Liu, and Song 2018) modeled this problem as trans-
lating a source tree into a target tree. GraphCodeBERT(Guo
et al. 2020) improved upon CodeBERT (Feng et al. 2020) by
adding data-flow graph extracted from source code, improv-
ing the model’s understanding of the code structure. Some
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Dataset Alignment Labeling Size (pairwise) Languages

Google Code Jam Program Solutions to the same problem 2,430,000* 20 programming languages
Project CodeNet Program Solutions to the same problem 13,916,828* 55 programming languages
Tree-to-tree Dataset1 Method Compiler translation 20,000 CoffeeScript, JavaScript
Tree-to-tree Dataset2 Method Matching function names 16,996 Java, C#
Phrase-Based Dataset Method Matching function names 21,821 Java, C#
CodeXGLUE Method Matching function names 13,300 Java, C#

CoST Dataset Snippet Matching code comments 132,046 C++, Java, Python, C#, JS, PHP, C

Table 1: Comparison between our dataset and other existing source code translation datasets. Tree-to-tree Dataset (1 and 2)
are from (Chen, Liu, and Song 2018). Phrase-Based Dataset is from (Karaivanov, Raychev, and Vechev 2014). * The numbers
given in these cases are those of single program samples, and not paired programs.

– C++ Java Py C# JS PHP C

C++ – 13929 11930 13326 7596 3165 2188
Java 1497 – 11713 13905 7729 3194 2135
Py 1419 1417 – 11404 7165 3123 1779
C# 1442 1495 1383 – 7601 3192 2123
JS 996 1009 962 994 – 2917 1232
PHP 548 552 545 552 512 – 700
C 267 281 263 273 196 135 –

Table 2: Number of pairwise data in each language-pair. The
upper triangle (in normal font) shows the number of parallel
code snippets, and the lower triangle (in bold font) shows
the number of parallel programs. (Py is short for Python. JS
is short for Javascript.)

other works (Rabinovich, Stern, and Klein 2017; Yin and
Neubig 2017; Brockschmidt et al. 2018) also make use of
abstract syntax tree (AST) derived from the code. DOBF
(Roziere et al. 2021) added a de-obfuscation objective to the
masked language model pre-training to leverage the struc-
tural aspect of programming languages.

Datasets: Many preceding works (Lu et al. 2021; Chen,
Liu, and Song 2018; Nguyen, Nguyen, and Nguyen 2015;
Karaivanov, Raychev, and Vechev 2014; Nguyen, Nguyen,
and Nguyen 2013) consist of parallel Java-C# code from
various open source projects. CodeNet (Puri et al. 2021) and
Google CodeJam (GCJ) datasets contain code samples from
multiple languages that are aligned at the program level.

The Code Snippets Translation(CoST ) Dataset
The Code Snippets Translation (CoST ) dataset consists of
programs from 7 different languages: C, C++, C#, Python,
Java, Javascript, and PHP, spanning across 1625 program-
ming problems. The detailed statistics about the CoST
dataset are highlighted in Table 2. We define certain terms
used in the context of this paper as follows:

• Programs: These refer to the complete code solution in a
specific language to a particular problem or task.

• Snippet/Code snippet: Each program may consist of one
or more snippets which are in parallel to appropriate code
snippets in other languages.

Data Collection and Processing
Our data was collected from the GeeksForGeeks website.
The platform has a plethora of problem statements and
solutions to those problems in up to 7 programming lan-
guages (C, C++, C#, Python, Java, Javascript, PHP). The
platform also ensures that its contributors stick to a tem-
plate in terms of the comments used in their programs and
the code corresponding to those comments. By using the
template, we could obtain a one-to-one correspondence be-
tween the code snippets in one language to those in other
languages. In effect, this gives us a good number of paral-
lel instances of code which can then be effectively used for
code-to-code translation. However, there were a number of
cases where this template did not work as anticipated. These
cases include missing snippets, differences in functionality
among languages resulting in vastly different program struc-
tures, and misaligned cells. To remedy this issue, we manu-
ally verified the code to identify different instances of non-
compliance, and either modify the alignment or discard the
example in extreme cases. Few of the URLs scraped from
different pages sometimes pointed to the same program, thus
resulting in duplicate files. A duplication detection program
was used to identify these duplicates and remove them.

Dataset Comparisons and Characteristics
As shown in Table 1, many of the existing source code
translation datasets such as (Lu et al. 2021; Chen, Liu, and
Song 2018) consisting of pairwise samples at the method
level collect their samples from very similar publicly avail-
able repositories. However, they only have parallel data in
two languages; Java and C#. Moreover, their mapping is at
the method level, and there are relatively fewer number of
method pairs available. Other datasets such as Google Code
Jam (GCJ) and CodeNet (Puri et al. 2021) have an abun-
dance of problem statements along with their solutions and
span a wide range of languages. However, these datasets suf-
fer from quality issues. For instance, in CodeNet, only about
half of the problems are rated by the online judges to be an
accepted solution to the problem. This makes less than half
the dataset to be wrong solutions and deems these erroneous
samples unusable for the translation task. In contrast, our
dataset contains programs which have been manually ver-
ified to ensure correctness at program and snippet levels,
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thereby resulting in higher quality and less noise.
A major drawback of the existing datasets is that the sam-

ples are aligned at program level, which implies less super-
vised alignment. Since program level alignment is based on
programs doing similar tasks and achieving similar results
on test cases, there is a significant amount of variation be-
tween the programs in multiple languages, due to differences
in terms of method and variable names, as well as the logic
flow. The granularity in our case is at the snippet level, which
provides more supervision in contrast to the method level
or program level mapping that exists in previous datasets.
Moreover, the code snippets in our dataset are consistent in
terms of variable and method names, and the programs in
each language follow similar logic flow.

The Proposed Method
Problem Formulation
Consider L = {l1, .., lk} as the set of all languages, where
li denotes a programming language. Given a program X in
language li, the objective of program translation is to gen-
erate a program Y in the target language lj . We represent
a program consisting of m snippets as X = {x1, ...,xm},
where xi = (x1, ..., xn) denotes a snippet with n tokens. We
further denote the monolingual snippet dataset in language
li as Dmono

li
, and the bilingual snippet dataset for languages

li and lj as Dbi
li,lj

.

Model Architecture
Given the sequence-to-sequence nature of the program
translation problem, our model draws inspiration from the
Transformer model (Vaswani et al. 2017), which has been
shown to have state-of-the-art performance on many lan-
guage generation tasks. The encoder-decoder based trans-
former model serves as the base model for our translation
task. The model consists of an encoder E and a decoder G
with parameters θE and θG, respectively, that are augmented
to support code from multiple languages. This is done by us-
ing a unique identifier αli for each language. Given the input
token embeddings x = (x1, ..., xn), we add the language
identifier to each token, such that (x1 + αli , ..., xn + αli)
serves as the input to the encoder. The encoder representa-
tions z = E(x, αli) are then fed to the decoder along with
the target language identifier αlj to generate output snippet
tokens y = G(z, αlj ).

Model Initialization
We initialize the model parameters with the pre-trained
weights of the DOBF model (Roziere et al. 2021). DOBF
is a Transformer-based model trained with masked language
modeling (MLM) and code deobfusctation objectives on
Python and Java files from GitHub public dataset available
on Google BigQuery. The MLM objective helps the model
to learn representations by leveraging the left and right con-
texts. The deobfusctation objective guides the model to re-
cover the original class, function, and variable names from
obfuscated code, which is a more difficult task and requires a
deeper understanding of the code, thereby providing a better
learning signal to the model. By initializing our model with

the weights of a sequence-to-sequence model pre-trained on
source code, we can leverage its knowledge about the syntax
and structure of the specific programming languages.

Multilingual Snippet Denoising Auto-Encoding
To train the model to perform translation on different lan-
guage pairs, we first need to familiarize the model with
all the 7 languages. Although the model is initialized with
pre-trained weights from DOBF, the weights were learned
from only two languages, Python and Java. Therefore, the
model has no knowledge about other languages (C++, C#,
Javascript, PHP, C). To address this issue, we first train
the model with Denoising Auto-Encoding (DAE) objective
(Lample et al. 2018) on snippets from all the languages.
There are several advantages of doing this pre-training task.
First, the sequence-to-sequence nature of DAE enables the
model to decode all the languages, which is necessary for
the translation task. Second, by sharing the same encoder
and decoder across all the languages, all the languages are
mapped into the same latent space. This helps the model to
learn the similarities between different languages, which can
be useful in the translation of low-resource languages. Third,
the DAE only requires monolingual data, which is much
more accessible than pairwise data. We use the same set of
noise functions as TransCoder (Roziere et al. 2020a), which
includes random word shuffle, random word dropout, and
random span masking. Considering C as the noise model
(non-learnable in this case), and x as the input sampled from
Dmono

li
, the DAE objective can be written as:

LDAE(θE , θG) =∑
li∈L

Ex∼Dmono
li

,x̃∼C(x)[− log pG(x|E(x̃, αli), αli)]
(1)

Multilingual Snippet Translation (MuST)
In many language generation tasks, the performance goes
down significantly as the length of input sequences in-
creases. This is a common problem in sequence-to-sequence
models due to the difficulty of capturing long-distance de-
pendencies. Since source code programs usually contain at
least tens of lines, achieving acceptable performance from
translation models can be challenging. In order to allevi-
ate this problem, we use code snippets translation as a pre-
training method to improve the accuracy of program trans-
lation. Since the code snippets are much shorter than pro-
grams, they provide a fine-grained supervision to the trans-
lation model, and thus can help to address the problem of
reduced performance for longer inputs.

Another problem encountered by many existing models is
that program translation datasets are usually not balanced in
size for all the languages. Some languages may have much
less parallel data than others. For example, inCoST dataset,
there are 13K snippet pairs for Java and C++, but only 700
pairs for C and PHP. Less parallel training data can signif-
icantly affect the translation performance on low-resource
languages. Therefore, in addition to snippet translation, we
propose to leverage the multilingual training to improve the
performance on low-resource languages. In CoST dataset,
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Figure 2: The training paradigm of the proposed MuST-PT model. We first train the model with multilingual snippet denoising
auto-encoding, which helps the model to learn the similarity between different languages. Then we apply multilingual snip-
pet translation (MuST) training to leverage the snippet-level alignment to increase the accuracy of program-level translation.
Finally, we fine-tune the model on program translation task to bridge the distribution gap between snippet and program data.
Lang s and Lang t refers to source and target language, respectively. At each step of the training, the model takes both the code
and the programming language as inputs.

one code snippet may have corresponding snippets in multi-
ple languages. Moreover, some languages are naturally simi-
lar in syntax, such as C++-C, Java-C, and Java-C#. This mo-
tivates us to use other languages to improve the translation
of low resource languages, e.g. using C++-PHP and Java-
PHP data to improve the translation of C-PHP. For a snippet
pair (x, y) ∈ Dbi

li,lj
, the objective function for this task can

be written as:

LM (θE , θG) =
∑

li,lj∈L

E(x,y)∼Dbi
li,lj

[− log pG(y|E(x, αli), αlj )]

(2)

L = LM + λLDAE (3)
The overall training objective of our model is given above.

Here, λ is a hyperparameter that represents the weight of
DAE loss. After the multilingual snippet DAE and MuST
pre-training, the model is capable of translating code snip-
pets across all the 42 language pairs. However, because of
the difference in length between code snippets and pro-
grams, the model cannot directly be used for program trans-
lation. Therefore, we further fine-tune the model on the pro-
gram pairs from our dataset. We adopt similar multilingual
training strategy on the program-level pairwise data. The
overall training process is illustrated in Fig. 2. We refer to
the model as MuST-PT, which is short for the Multilingual
Snippet Training for Program Translation model.

Implementation Details
In our model, the encoder and decoder consist of 12 and 6
transformer layers, respectively. The transformer units have

a model dimension of 768, and 12 attention heads. The
weight of the multilingual snippet DAE objective λ was set
to 1.0 in the beginning, and decayed to 0.1 linearly in 30K
steps, and then to 0 in 100K steps. The DOBF model we
used for initializing our model is dobf plus denoising.pth,
which can be found on their GitHub repository. Most of the
settings during training were the same as DOBF (Roziere
et al. 2021). Float 16 operations were used to speed up
the training. The model was trained using Adam optimizer
(Kingma and Ba 2014) with a learning rate of 0.0001, and
the same learning rate scheduler was used from the Trans-
former (Vaswani et al. 2017). We used a batch size of 128 on
all the 42 language pairs. The batches of different languages
pairs were sent to the model alternatively during training.
The model was trained with 4 RTX 8000 GPUs with 48GB
memory on each GPU.

Experiments
Datasets
The datasets used for the experimental evaluation are below:

• CoST Snippets Dataset We used the monolingual snip-
pets to do the multilingual snippet DAE training, and the
pairwise snippets to do the multilingual snippet translation
(MuST) training. The train-validation-test data is split at
the problem level, to ensure no overlapping snippets be-
tween the splits in any of the languages. The statistics of
the split in each language can be found in the Appendix.

• CoST Programs Dataset We used the pairwise program
data to fine-tune the model for program translation.

• CodeXGLUE Translation Dataset CodeXGLUE stands
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Java-C# C#-Java
Method BLEU CodeBLEU BLEU CodeBLEU

Naive copy 18.54 - 18.69 -
PBSMT 43.53 42.71 40.06 43.48

Transformer 55.84 63.74 50.47 61.59
RoBERTa(code) 77.46 83.07 71.99 80.18

CodeBERT 79.92 85.1 72.14 79.41
GraphCodeBERT 80.58 - 72.64 -

PLBART 83.02 87.92 78.35 85.27
MuST-PT 87.37 86.82 85.25 86.09

Table 3: Results on the CodeXGLUE translation task. Our
model achieves state-of-the-art performance on BLEU score
of C#-Java and both BLEU and CodeBLEU on Java-C#.

for General Language Understanding Evaluation bench-
mark for code. It has 10 source code related tasks, and
code to code translation is one of them. We used the trans-
lation dataset (Java-C#) from CodeXGLUE for evaluation.

Evaluation Metrics
• BLEU Given an input code sample, we use BLEU (Pa-

pineni et al. 2002) score to evaluate the n-gram overlap
between the generated and the ground-truth target code.

• CodeBLEU CodeBLEU (Ren et al. 2020) is for automatic
evaluation of code synthesis. Besides n-gram match as in
BLEU, it also evaluates the code syntax via abstract syntax
trees (AST) and code semantics via data-flow.

Baseline Methods
• Naive Copy Naive Copy (Lu et al. 2021) directly copies

the input source code as the translation output. This base-
line shows how similar two programming languages are.

• Transformer The sequence-to-sequence transformer
model (Vaswani et al. 2017) was originally designed
for translation problem. We use it as a baseline to see
how well a transformer model performs without any pre-
training on source code corpus.

• CodeBERT CodeBERT (Feng et al. 2020) uses the BERT
architecture pre-trained on source code corpus.

• DOBF DOBF (Roziere et al. 2021) is the model from
which the weights are used to initialize our model. It is
pre-trained on Java and Python.

• TransCoder TransCoder (Roziere et al. 2020b) is an un-
supervised program translation model pre-trained on Java,
Python, and C++. We did not include TransCoder in Table
4 because it does not support input languages other than
the ones it was pre-trained on (performance not increasing
through training).

Due to space limitations, we did not include some base-
lines (PLBART, GraphCodeBERT, RoBERTa(code) (Liu
et al. 2019), PBSMT (Zens, Och, and Ney 2002)) from
CodeXGLUE translation task in other experiments.

Results Analysis
Translation Performance on Snippets Table 4 shows the
translation performance of our model and the baseline mod-
els on all the 42 language pairs. Every model is evaluated

on both the snippets dataset and the program dataset. The
left part of the Table shows BLEU score of each model on
the snippets dataset. We can see that our model outperforms
the baseline models, with significant performance gains on
low resource languages like PHP and C. This shows that the
multilingual training in both DAE and MuST is helpful in
improving low-resource language translation.
Translation Performance on Programs The right part of
the Table 4 shows BLEU score of each model on the pro-
gram dataset. We can see that almost all the baseline mod-
els have much worse performance on program than snip-
pets. This can be attributed to the more challenging na-
ture of program-level translation due to longer sequence
length compared to snippets, and less training data than snip-
pet level. However, our model’s performance does not drop
by much on program-level compared to snippet level. This
shows that the MuST pre-training improves the program
translation performance.
Translation Performance on CodeXGLUE We also eval-
uated our model on the CodeXGLUE translation task. Table
3 shows the BLEU and CodeBLEU of our model compared
to the models on the CodeXGLUE translation task leader-
board. Our model achieved state-of-the-art performance on
BLEU score of both Java-C# and C#-Java, and high Code-
BLEU score on C#-Java conversion. This indicates that the
DAE and MuST training in our model is effective on other
program translation datasets.
Generalizability of MuST Training We combine some of
the baselines with MuST training to see if the method is gen-
eralizable to more models. Table 5 shows the results of each
baseline before and after MuST training. We can see that all
the three baselines got significant improvement after MuST
training, indicating that MuST is not only effective in our
model setting, but also benefits other models. This demon-
strates that MuST has good generalizability and can poten-
tially benefit other program translation models.

Conclusion and Future Work
Scarcity of high quality parallel data has become the bottle-
neck of program translation research. In this paper, we in-
troduced a new multilingual code translation dataset CoST ,
with snippet-level parallel data across 7 programming lan-
guages. Our dataset provides fine-grained supervision for
the translation of 42 language pairs. We also propose a new
program translation model that leverages multilingual snip-
pet denoising auto-encoding (DAE) and multilingual snippet
translation (MuST) pre-training. Our extensive set of exper-
iments show that DAE and MuST are effective in improv-
ing program translation performance, especially for low-
resource languages. We also achived state-of-the-art perfor-
mance on CodeXGLUE translation task. The MuST training
also shows good generalizability and improves the transla-
tion performance of a number of baseline models. The new
dataset we present can potentially be used for tasks other
than translation, such as code summarization, comment gen-
eration, and text-to-code generation. The MuST can also po-
tentially improve the performance on these new tasks. We
will leave them for future work.
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Snippet-level Program-level
Lang Model C++ Java Python C# JS PHP C C++ Java Python C# JS PHP C
C++ Naive Copy – 68.87 35.03 69.54 57.71 37.7 87.73 – 66.57 36.58 67.22 55.24 36.27 84.86

Transformer – 68.74 57.17 70.61 63.26 60.94 68.57 – 43.93 33.9 45.32 39.02 35.93 25.06
CodeBERT – 71.61 60.28 72.31 72.4 70.42 61.29 – 53.47 38.37 63.01 46.6 46.18 22.25

DOBF – 79.83 68.61 81.74 79.24 77.91 68.09 – 29.06 18.5 29.14 22.25 27.47 27.05
MuST-PT – 80.27 71.2 82.98 81.01 83.29 87.55 – 79.15 64.1 81.15 68.85 71.18 84.2

Java Naive Copy 68.75 – 33.8 77.9 58.58 33.6 70.22 66.53 – 34.56 77.15 56.52 32.14 67.54
Transformer 74.42 – 53.98 84.27 69.16 58.5 46.18 44.38 – 31.22 47.34 39.06 38.26 25.36
CodeBERT 73.19 – 59.04 85.12 76.79 7.24 50.33 65.48 – 38.7 85.46 55.92 47.12 32.98

DOBF 80.83 – 64.75 89.73 79.89 66.94 59.32 28.34 – 18.08 27.6 20.2 27.05 26.12
MuST-PT 85.23 – 70.06 90.13 81.87 80.39 81.16 84.28 – 61.12 89.93 69.53 69.83 78.71

Python Naive Copy 35.02 33.53 – 35.11 41.71 23.57 35.29 36.58 34.27 – 35.69 40.85 22.48 36.53
Transformer 60.5 58.13 – 60.9 55.59 55.07 39.37 37.42 38.15 – 36.91 38.39 39.01 19.99
CodeBERT 65.04 61.79 – 63.84 62.43 62.6 45.09 43.96 41.35 – 46.4 47.28 44.38 46.4

DOBF 68.73 67.91 – 69.46 68.07 67.8 34.21 21.49 23.45 – 21.82 20.32 26.53 13.02
MuST-PT 75.37 70.89 – 72.35 70.46 75.49 70.64 66.16 64.57 – 63.23 66.47 70.9 58.7

C# Naive Copy 69.5 78.05 35.16 – 60.23 35.43 70.65 67.16 77.23 35.76 – 58.4 33.57 67.9
Transformer 75.68 84.19 58.64 – 66.97 60.57 45.18 42.65 45.6 32.64 – 39.66 38.47 25.01
CodeBERT 74.73 82.16 59.74 – 77.12 67.48 49.64 67.17 82.45 41.1 – 51.09 48.62 34.33

DOBF 81.77 86.73 67.96 – 80.26 15.94 28.35 26.97 29.17 19.71 – 19.34 27.05 19.11
MuST-PT 85.34 85.8 71.11 – 82.74 81.64 81.12 84.72 87.76 62.03 – 70 70.66 78.78

JS Naive Copy 57.67 57.99 41.73 60.04 – 32.56 57.6 55.11 55.74 40.9 58.1 – 29.77 53.89
Transformer 65.06 65.31 56.92 64.55 – 61.87 37.34 39.8 39.6 34.3 41.72 – 37.65 19.78
CodeBERT 68.76 71.66 58.13 72.87 – 66.35 37.08 49.51 48.91 46.27 51.55 – 47.95 24.37

DOBF 78.56 76.94 64.92 75.5 – 75.53 52.32 26.47 25.93 21.77 21.43 – 26.73 18.68
MuST-PT 78.95 78.03 66.47 78.91 – 78.69 78.54 73.01 73.39 63.88 73.32 – 76.44 70.2

PHP Naive Copy 37.66 33.65 23.6 35.41 32.66 – 37.46 36.24 32.17 22.54 33.56 29.97 – 35.73
Transformer 58.47 56.06 51.45 56.27 56.43 – 29.29 33.78 35.67 31.52 37.54 37.07 – 20.11
CodeBERT 65.08 60.84 54.59 63.77 63.92 – 29.75 40.43 37.64 33.01 41.33 41.31 – 18.63

DOBF 68.18 65.84 63.45 70.14 63.21 – 23.78 26.69 26.28 19.91 23.52 20.63 – 18.31
MuST-PT 79.41 76.42 69.34 77.96 77.64 – 76.67 70.04 67.3 63.97 70.34 73.54 – 67.88

C Naive Copy 87.63 70.29 35.37 70.62 57.74 37.45 – 84.75 67.56 36.61 67.88 54.17 35.75 –
Transformer 68.63 45.42 36.4 44.38 35.37 31.03 – 29.54 30.73 24.62 31.28 24.55 24.83 –
CodeBERT 64.18 51.1 36.48 49.81 33.75 28.85 – 27.96 35.29 22.05 32.82 21.73 25.19 –

DOBF 76.85 64.73 53.1 45.11 30.87 22.22 – 16.84 23.23 17.64 23.96 20.38 25.7 –
MuST-PT 88.58 79.24 66.49 80.68 80.35 82.94 – 84.92 76.84 55.71 78.39 66.13 70.62 –

Table 4: BLEU scores of baseline and the proposed MuST-PT model on all the 42 language pairs on both CoST snippet and
program datasets. Note that only multilingual DAE and MuST were applied for snippet-level translation. We did program-level
fine-tuning for MuST-PT only for program-level translation.

Model Java-Py Py-Java Java-C++ C++-Java Java-C# C#-Java Py-C++ C++-Py Py-C# C#-Py C++-C# C#-C++

Naive Copy 34.56 34.27 66.53 66.57 77.15 77.23 36.58 36.58 35.69 35.76 67.22 67.16

Transformer 31.22 38.15 44.38 43.93 47.34 45.6 37.42 33.9 36.91 32.64 45.32 42.65
Transformer+MuST 40.9 43.97 58.35 54.61 73.7 71.68 42.86 39.06 43.42 42.34 57.84 57.49

CodeBERT 38.7 41.35 65.48 53.47 85.46 82.45 43.96 38.37 46.4 41.1 63.01 67.17
CodeBERT+MuST 55.5 57.66 81.09 78.69 90.47 86.76 58.91 55.98 59.13 55.45 79.05 81.54

TransCoder 24.98 21.98 30.09 30.42 44.85 29.4 23.03 23.52 40.4 18.81 41.91 25.3
TransCoder+MuST 60.73 65.53 87.09 81.64 91.74 27.7 68.7 62.92 66.52 16.88 82.4 29.44

Table 5: Multilingual Snippet Translation (MuST) training consistently improves the performance (measured by BLEU scores)
of the baseline models on the CoST program translation dataset. This shows that MuST pre-training method can be generalized
to other models and benefit their translation performance.
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