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Abstract

This paper describes the HHU-UH-G system
submitted to the EMNLP 2016 Second Work-
shop on Computational Approaches to Code
Switching. Our system ranked first place for
Arabic (MSA-Egyptian) with an F1-score of
0.83 and second place for Spanish-English
with an F1-score of 0.90. The HHU-UH-
G system introduces a novel unified neural
network architecture for language identifica-
tion in code-switched tweets for both Spanish-
English and MSA-Egyptian dialect. The sys-
tem makes use of word and character level rep-
resentations to identify code-switching. For
the MSA-Egyptian dialect the system does not
rely on any kind of language-specific knowl-
edge or linguistic resources such as, Part Of
Speech (POS) taggers, morphological analyz-
ers, gazetteers or word lists to obtain state-of-
the-art performance.

1 Introduction

Code-switching can be defined as the act of al-
ternating between elements of two or more lan-
guages or language varieties within the same ut-
terance. The main language is sometimes re-
ferred to as the ‘host language’, and the embed-
ded language as the ‘guest language’ (Yeh et al.,
2013). Code-switching is a wide-spread linguis-
tic phenomenon in modern informal user-generated
data, whether spoken or written. With the advent
of social media, such as Facebook posts, Twitter

tweets, SMS messages, user comments on the ar-
ticles, blogs, etc., this phenomenon is becoming
more pervasive. Code-switching does not only occur
across sentences (inter-sentential) but also within the
same sentence (intra-sentential), adding a substan-
tial complexity dimension to the automatic process-
ing of natural languages (Das and Gambäck, 2014).
This phenomenon is particularly dominant in multi-
lingual societies (Milroy and Muysken, 1995), mi-
grant communities (Papalexakis et al., 2014), and
in other environments due to social changes through
education and globalization (Milroy and Muysken,
1995). There are also some social, pragmatic and
linguistic motivations for code-switching, such as
the the intent to express group solidarity, establish
authority (Chang and Lin, 2014), lend credibility, or
make up for lexical gaps.

It is not necessary for code-switching to oc-
cur only between two different languages like
Spanish-English (Solorio and Liu, 2008), Mandarin-
Taiwanese (Yu et al., ) and Turkish-German (Özlem
Çetinoglu, 2016), but it can also happen between
three languages, e.g. Bengali, English and Hindi
(Barman et al., 2014), and in some extreme cases
between six languages: English, French, German,
Italian, Romansh and Swiss German (Volk and
Clematide, 2014). Moreover, this phenomenon can
occur between two different dialects of the same lan-
guage as between Modern Standard Arabic (MSA)
and Egyptian Dialect (Elfardy and Diab, 2012),
or MSA and Moroccan Arabic (Samih and Maier,
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2016a; Samih and Maier, 2016b). The current
shared task is limited to two scenarios: a) code-
switching between two distinct languages: Spanish-
English, b) and two language varieties: MSA-
Egyptian Dialect.

With the massive increase in code-switched writ-
ings in user-generated content, it has become im-
perative to develop tools and methods to handle and
process this type of data. Identification of languages
used in the sentence is the first step in doing any kind
of text analysis. For example, most data found in so-
cial media produced by bilingual people is a mixture
of two languages. In order to process or translate this
data to some other language, the first step will be to
detect text chunks and identify which language each
chunk belongs to. The other categories like named
entities, mixed, ambiguous and other are also impor-
tant for further language processing.

2 Related Works

Code-switching has attracted considerable attention
in theoretical linguistics and sociolinguistics over
several decades. However, until recently there has
not been much work on the computational pro-
cessing of code-switched data. The first compu-
tational treatment of this linguistic phenomenon
can be found in (Joshi, 1982). He introduces a
grammar-based system for parsing and generating
code-switched data. More recently, the detection of
code-switching has gained traction, starting with the
work of (Solorio and Liu, 2008), and culminating in
the first shared task at the “First Workshop on Com-
putational Approaches to Code Switching” (Solorio
et al., 2014). Moreover, there have been efforts
in creating and annotating code-switching resources
(Özlem Çetinoglu, 2016; Elfardy and Diab, 2012;
Maharjan et al., 2015; Lignos and Marcus, 2013).
Maharjan et al. (2015) used a user-centric approach
to collect code-switched tweets for Nepali-English
and Spanish-English language pairs. They used two
methods, namely a dictionary based approach and
CRF GE and obtained an F1 score of 86% and 87%
for Spanish-English and Nepali-English respectively
at word level language identification task. Lig-
nos and Marcus (2013) collected a large number of
monolingual Spanish and English tweets and used
ratio list method to tag each token with by its dom-

inant language. Their system obtained an accuracy
of 96.9% at word-level language identification task.

The task of detecting code-switching points is
generally cast as a sequence labeling problem. Its
difficulty depends largely on the language pair be-
ing processed.

Several projects have treated code-switching be-
tween MSA and Egyptian Arabic. For example, El-
fardy et al. (2013) present a system for the detec-
tion of code-switching between MSA and Egyptian
Arabic which selects a tag based on the sequence
with a maximum marginal probability, considering
5-grams. A later version of the system is named
AIDA2 (Al-Badrashiny et al., 2015) and it is a more
complex hybrid system that incorporates different
classifiers and components such as language mod-
els, a named entity recognizer, and a morphological
analyzer. The classification strategy is built as a cas-
cade voting system, whereby a conditional Random
Field (CRF) classifier tags each word based on the
decisions from four other underlying classifiers.

The participants of the “First Workshop on Com-
putational Approaches to Code Switching” had ap-
plied a wide range of machine learning and sequence
learning algorithms with some using additional
online resources like English dictionary, Hindi-
Nepali wiki, dbpedia, online dumps, LexNorm,
etc. to tackle the problem of language detec-
tion in code-switched tweets on Nepali-English,
Spanish-English, Mandarin-English and MSA Di-
alects (Solorio et al., 2014). For MSA-Dialects,
two CRF-based systems, a system using language-
independent extended Markov models, and a system
using a CRF autoencoder have been presented; the
latter proved to be the most successful.

The majority of the systems dealing with word-
level language identification in code-switching rely
on linguistic resources (such as named entity
gazetteers and word lists) and linguistic informa-
tion (such as POS tags and morphological analysis),
and they use machine learning methods that have
been typically used with sequence labeling prob-
lems, such as support vector machine (SVM), con-
ditional random fields (CRF) and n-gram language
models. Very few, however, have recently turned
to recurrent neural networks (RNN) and word em-
bedding with remarkable success. (Chang and Lin,
2014) used a RNN architecture and combined it
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with pre-trained word2vector skip-gram word em-
beddings, a log bilinear model that allows words
with similar contexts to have similar embeddings.
The word2vec embeddings were trained on a large
Twitter corpus of random samples without filtering
by language, assuming that different languages tend
to share different contexts, allowing embeddings to
provide good separation between languages. They
showed that their system outperforms the best SVM-
based systems reported in the EMNLP’14 Code-
Switching Workshop.

Vu and Schultz (2014) proposed to adapt the re-
current neural network language model to different
code-switching behaviors and even use them to gen-
erate artificial code-switching text data. Adel et
al. (2013) investigated the application of RNN lan-
guage models and factored language models to the
task of identifying code-switching in speech, and re-
ported a significant improvement compared to the
traditional n-gram language model.

Our work is similar to that of Chang and Lin
(2014) in that we use RNNs and word embed-
dings. The difference is that we use long-short-
term memory (LSTM) with the added advantage
of the memory cells that efficiently capture long-
distance dependencies. We also combine word-
level with character-level representation to obtain
morphology-like information on words.

3 Model

In this section, we will provide a brief description
of LSTM, and introduce the different components
of our code-switching detection model. The archi-
tecture of our system, shown in Figure 1, bears re-
semblance to the models introduced by Huang et al.
(2015), Ma and Hovy (2016), and Collobert et al.
(2011).

3.1 Long Short-term Memory

A recurrent neural network (RNN) belongs to a fam-
ily of neural networks suited for modeling sequential
data. Given an input sequence x = (x1, ..., xn), an
RNN computes the output vector yt of each word xt

by iterating the following equations from t = 1 to n:

ht = f(Wxhxt + Whhht−1
+ bh)

yt = Whyht + by

Figure 1: System Architecture.

where ht is the hidden states vector, W denotes
weight matrix, b denotes bias vector and f is the ac-
tivation function of the hidden layer. Theoretically
RNN can learn long distance dependencies, still in
practice they fail due the vanishing/exploding gra-
dient (Bengio et al., 1994). To solve this problem ,
Hochreiter and Schmidhuber (1997) introduced the
long short-term memory RNN (LSTM). The idea
consists in augmenting the RNN with memory cells
to overcome difficulties with training and efficiently
cope with long distance dependencies. The output
of the LSTM hidden layer ht given input xt is com-
puted via the following intermediate calculations:
(Graves, 2013):

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf )

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)

ht = ot tanh(ct)
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where σ is the logistic sigmoid function, and i,
f , o and c are respectively the input gate, forget
gate, output gate and cell activation vectors. More
interpretation about this architecture can be found
in (Lipton et al., 2015). Figure 2 illustrates a sin-
gle LSTM memory cell (Graves and Schmidhuber,
2005)

Figure 2: A Long Short-Term Memory Cell.

3.2 Word- and Character-level Embeddings

Character embeddings A very important ele-
ment of the recent success of many NLP applica-
tions, is the use of character-level representations
in deep neural networks. This has shown to be ef-
fective for numerous NLP tasks (Collobert et al.,
2011; dos Santos et al., 2015) as it can capture word
morphology and reduce out-of-vocabulary. This ap-
proach has also been especially useful for handling
languages with rich morphology and large charac-
ter sets (Kim et al., 2016). We also find this impor-
tant for our code-switching detection model partic-
ularly for the Spanish-English data as the two lan-
guages have different orthographic sequences that
are learned during the training phase.

Word pre-trained embeddings Another crucial
component of our model is the use of pre-trained
vectors. The basic assumption is that words from
different languages (or language varieties) may ap-
pear in different contexts, so word embeddings
learned from a large multilingual corpus, should
provide an accurate separation between the lan-
guages at hand. Following Collobert et al. (2011),
we use pre-trained word embeddings for Arabic,
Spanish and English to initialize our look-up table.

Words with no pre-trained embeddings are randomly
initialized with uniformly sampled embeddings. To
use these embeddings in our model, we simply re-
place the one hot encoding word representation with
its corresponding 300-dimensional vector. For more
details about the data we use to train our word em-
beddings for Arabic and Spanish-English, see Sec-
tion 4.

3.3 Conditional Random Fields (CRF)

When using LSTM RNN for sequence classification,
the resulting probability distribution of each step is
supposed to be independent from each other. Still
we assume that code-switching tags are highly re-
lated to each other. To exploit these kind of labeling
constraints, we resort to Conditional Random Fields
(CRF) (Lafferty et al., 2001). CRF, a sequence
labeling algorithm, predicts labels for a whole se-
quence rather than for the parts in isolation as shown
in Equation 1. Here, s1 to sm represent the labels of
tokens x1 to xm respectively, where m is the num-
ber of tokens in a given sequence. After we have this
probability value for every possible combination of
labels, the actual sequence of labels for this set of
tokens will be the one with the highest probability.

p(s1...sm|x1...xm) (1)

p(~s|~x; ~w) =
exp(~w.~Φ(~x,~s))

∑
~s′ǫSm

exp(~w.~Φ(~x,~s′))
(2)

Equation 2 shows the formula for calculating the
probability value from Equation 1. Here, S is the
set of labels. In our case S ={lang1, lang2, am-

biguous, ne, mixed, other, fw, unk }. ~w is the weight
vector for weighting the feature vector ~Φ.

3.3.1 Feature Templates

The feature templates extract feature values based
on the current position of the token, current token’s
label and previous token’s label and the entire tweet.
These functions normally output binary values (0 or
1). These feature functions can be represented math-
ematically as Φ(~x, j, sj−1, sj). We use the following
feature templates.
Morphological Features: In order to capture the in-
formation contained in the morphology of tokens,
we used features like, all upper case, title case, be-
gins with punctuation, @, is digit, is alphanumeric,
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contains apostrophe, ends with a vowel, consonant
vowel ratio, has accented characters, prefixes and
suffixes of the current token and of its previous or
next token.
Character n-gram Features: character bigrams
and trigrams.
Word Features: This feature uses token in its low-
ercase (hash-tag is removed from the token). Also,
it tries to capture the context surrounding the token
using the previous and next two tokens as features.
Shape Features: Collins (2002) defined a mapping
from each character to its type. The type function
blinds all characters but preserves the case informa-
tion. The digits are replaced by # and all other punc-
tuation characters are copied as they are. For ex-
ample: "London" is transformed to "Xxxxxx", "PG-
500’ is transformed to "XX-###’. Another variation
of the same function maps each character to its type
but the repeated characters and not repeated in the
mapping. So "London" is transformed to "Xx*". We
use both of these variations in our system. These
features are designed to capture the named entity.
Word Character Representations: The final repre-
sentations from the char-word LSTM model before
feeding to softmax layers for each token are used as
features to the CRF.

3.4 LSTM-CRF for Code-switching Detection

Our neural network architecture consists of the fol-
lowing three layers:

• Input layer: comprises both character and word
embeddings.

• Hidden layer: two LSTMs map both words and
character representations to hidden sequences.

• Output layer: a Softmax or a CRF computes the
probability distribution over all labels.

At the input layer a look-up table is randomly
initialized mapping each word in the input to d-
dimensional vectors for sequences of characters and
sequences of words. At the hidden layer, the out-
put from the character and word embeddings is
used as the input to two LSTM layers to obtain
fixed-dimensional representations for characters and
words. At the output layer, a softmax or a CRF is
applied over the hidden representation of the two

LSTMs to obtain the probability distribution over all
labels. Training is performed using stochastic gradi-
ent descent with momentum, optimizing the cross
entropy objective function.

3.5 Optimization

Due to the relatively small size the training data
set and development data set in both Arabic and
Spanish-English, overfitting poses a considerable
challenge for our code-switching detection system.
To make sure that our model learns significant repre-
sentations, we resort to dropout (Hinton et al., 2012)
to mitigate overfitting. The basic idea of dropout
consists in randomly omitting a certain percentage
of the neurons in each hidden layer for each presen-
tation of the samples during training. This encour-
ages each neuron to depend less on other neurons
to detect code-switching patterns. We apply dropout
masks to both embedding layers before inputting to
the two LSTMs and to their output vectors as shown
in Fig. 1. In our experiments we find that dropout
decreases overfitting and improves the overall per-
formance of the system.

4 Dataset

The shared task organizers made available the
tagged dataset for Spanish-English and Arabic
(MSA-Egyptian) code-switched language pairs. The
Spanish-English dataset consists of 8,733 tweets
(139,539 tokens) as training set, 1,587 tweets
(33,276 tokens) as development set and 10,716
tweets (121,446 tokens) as final test set. Simi-
larly, the Arabic (MSA-Egyptian) dataset consists of
8,862 tweets (185,928 tokens) as training set, 1,117
tweets (20,688 tokens) as development set and 1,262
tweets (20,713 tokens) as final test set.

For Arabic we trained different word embeddings
using word2vec (Mikolov et al., 2013) from a cor-
pus of total size of 383,261,475 words, consisting of
dialectal texts of Facebook posts (8,241,244), Twit-
ter tweets (2,813,016), user comments on the news
(95,241,480), and MSA texts of news articles of
276,965,735 words. Likewise, for Spanish-English,
we combined English gigaword corpus (Graff et al.,
2003) and Spanish gigaword corpus (Graff, 2006)
before we trained different word embeddings on the
final corpus.
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Labels
CRF

(feats)

CRF

(emb)

CRF

(feats+

emb)

word

LSTM

char

LSTM

char-

word

LSTM

ambiguous 0.00 0.02 0.00 0.00 0.00 0.00
fw 0.00 0.00 0.00 0.00 0.00 0.00
lang1 0.97 0.97 0.97 0.93 0.94 0.96
lang2 0.96 0.95 0.96 0.91 0.89 0.93
mixed 0.00 0.00 0.00 0.00 0.00 0.00
ne 0.52 0.51 0.57 0.34 0.13 0.32
other 1.00 1.00 1.00 0.85 1.00 1.00
unk 0.04 0.08 0.10 0.00 0.00 0.04

Accuracy 0.961 0.960 0.963 0.896 0.923 0.954

Table 1: F1 score results on Spanish-English development

dataset. (feats = hand-crafted features, emb = representations

for each token) The last three columns use softmax.

Labels
CRF

(feats)

CRF

(emb)

CRF

(feats+

emb)

word

LSTM

char

LSTM

char-

word

LSTM

ambiguous 0.00 0.00 0.00 0.00 0.00 0.00
lang1 0.80 0.88 0.88 0.86 0.57 0.88
lang2 0.83 0.91 0.91 0.92 0.23 0.92
mixed 0.00 0.00 0.00 0.00 0.00 0.00
ne 0.83 0.84 0.86 0.84 0.66 0.84
other 0.97 0.97 0.97 0.92 0.97 0.97

Accuracy 0.829 0.894 0.896 0.896 0.530 0.900

Table 2: F1 score results on MSA-Egyptian development

dataset. (feats = hand-crafted features, emb = representations

for each token) The last three columns use softmax.

Data preprocessing: We transformed Arabic scripts
to SafeBuckwalter (Roth et al., 2008), a character-
to-character mapping that replaces Arabic UTF al-
phabet with Latin characters to reduce size and
streamline processing. Also in order to reduce data
sparsity, we converted all Persian numbers (e.g.
2 ,1) to Arabic numbers (e.g. 1, 2), Arabic punc-

tuation (e.g. ‘,’ and ‘;’) to Latin punctuation (e.g. ‘,’

and ‘;’), removed kashida (elongation character) and
vowel marks, and separated punctuation marks from
words.

5 Experiments and Results

We explored different combinations of hand-crafted
features (Section 3.3.1), word LSTM and char-word
LSTM models with CRF and softmax classifier to
identify the best system. Table 1 and 2 show the re-
sults for different settings for Spanish-English and
MSA-Egyptian on the development dataset respec-
tively. For the Spanish-English dataset, we find
that combining the character and word representa-
tions learned with a char-word LSTM system with
hand-crafted features and then using CRF as a se-
quence classifier gives the highest overall accuracy

Scores Es-En MSA

Monolingual F1 0.92 0.890
Code-switched F1 0.88 0.500
Weighted F1 0.90 0.830

Table 3: Tweet level results the test dataset.

Label Recall Precision F-score

ambiguous 0.000 0.000 0.000
fw 0.000 0.000 0.000
lang1 0.922 0.939 0.930
lang2 0.978 0.982 0.980
mixed 0.000 0.000 0.000
ne 0.639 0.484 0.551
other 0.992 0.998 0.995
unk 0.120 0.019 0.034

Accuracy 0.967

Table 4: Token level results on Spanish-English test dataset.

of 0.963. Also, we notice that the addition of charac-
ter and word representations improves the F1-score
for named entity and unknown tokens. For the MSA-
Egyptian dataset, we find that a char-word LSTM
model with softmax classifier is better than the CRF
as this setting gives us the highest overall accuracy
of 0.90. Moreover, the addition of character and
word representations to hand-crafted features im-
proves the F1 score for named entity. Based on
these results, our final system for Spanish-English
uses CRF with hand-crafted features and character
and word representations learned with a char-word
LSTM model and the MSA-Egyptian uses char-
word LSTM model with softmax as classifier. We
do not use any kind of hand-crafted features for the
MSA-Egyptian dataset.

Our final system outperformed all other partic-
ipants’ systems for the MSA-Egyptian dialects in
terms of tweet level and token level performance.

Label Recall Precision F-score

ambiguous 0.000 0.000 0.000
fw 0.000 0.000 0.000
lang1 0.877 0.832 0.854
lang2 0.913 0.896 0.904
mixed 0.000 0.000 0.000
ne 0.729 0.829 0.777
other 0.938 0.975 0.957
unk 0.000 0.000 0.000

Accuracy 0.879

Table 5: Token level results on MSA-DA test dataset.
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For the Spanish-English dataset, our system ranks
second in terms of tweet level performance and
third in terms of token level accuracy. Table 3,
4 and 5 show the final results for tweet and to-
ken level performance for the Spanish-English and
MSA-Egyptian datasets. For the MSA dataset, the
difference between our system and the second high-
est scoring system is 8% and 2.7% in terms of tweet
level weighted F1 score and token level accuracy.
Similarly for the Spanish-English dataset, the dif-
ference between our system and the highest scoring
system is 1.3% and 0.6% in terms of tweet level
weighted F1 score and token level accuracy. Our
system consistently ranks first for language identi-
fication for the MSA-Egyptian dataset (5% and 4%
above the second highest system for lang1 and lang2

respectively). For the Spanish-English dataset, our
system ranks third (0.8% below the highest scor-
ing system) and third (0.4% below the highest scor-
ing system) for lang1 and lang2 respectively. How-
ever, our system has consistently shown weaker
performance in identifying nes. Nonetheless, the
overall results show that our system outperforms
other systems with relatively high margin for the
MSA-Egyptian dataset and lags behind other sys-
tems with relatively low margin for the Spanish-
English dataset.

6 Analysis

6.1 What is being captured in char-word

representations?

In order to investigate what the char-word LSTM
model is learning, we feed the tweets from the
Spanish-English and MSA-Egyptian development
datasets to the system and take the vectors formed
by concatenation of character representation and
word representation before feeding them into soft-
max layer. We then project them into 2D space by
reducing the dimension of the vectors to 2 using
Principle Component Analysis (PCA). We see, in
Figure 3, that the trained neural network has learned
to cluster the tokens according to their label type.
Moreover, the position of tokens in 2D space also
revels that ambiguous and mixed tokens are in be-
tween lang1 and lang2 clusters.

Figure 3(a) for Spanish-English shows that the
char-word LSTM model has learned to separate the

(a) Spanish-English

(b) MSA-Egyptian Dialects

Figure 3: Projection of char-word LSTM representation into

2D using PCA. The tokens belonging to different categories are

mapped as ambiguous: purple, ne: blue, mixed: black, other:

orange, lang1: red, lang2: green

other tokens from rest of the tokens. These tokens
are well separated and are situated at the bottom of
the figure. Moreover, the unknown token are closer
to the other tokens. The nes as spread between lang1

and lang2 clusters. Named entities like ELLEN,

beyounce, friday, March, Betty are closer to lang1

cluster whereas, other named entities like Mexico,

Santino, gustavo, Norte are closer to lang2 cluster.
Not only the named entities, the mixed, ambiguous

tokens also exhibit the similar phenomena.

Similarly, Figure 3(b) for MSA-Egyptian gen-
erally shows successful separation of tokens, with
lang1 in red on the right, lang2 in green on the left
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Most likely Score Most unlikely Score

unk ⇒ unk 1.789 lang1 ⇒ mixed -0.172
ne ⇒ ne 1.224 mixed ⇒ lang1 -0.196
fw ⇒ fw 1.180 amb ⇒ other -0.244
lang1 ⇒ lang1 1.153 ne ⇒ mixed -0.246
lang2 ⇒ lang2 1.099 mixed ⇒ other -0.254
other ⇒ other 0.827 fw ⇒ lang1 -0.282
lang1 ⇒ ne 0.316 ne ⇒ lang2 -0.334
other ⇒ lang1 0.222 unk ⇒ ne -0.383
lang2 ⇒ mixed 0.216 lang2 ⇒ lang1 -0.980
lang1 ⇒ other 0.191 lang1 ⇒ lang2 -0.993

Table 6: Most likely and unlikely transitions learned by CRF

model for the Spanish-English dataset.

and ne in blue on the top. The other token occupies
the space between the clusters for lang1, lang2 and
ne with more inclination toward lang1. We also no-
tice that other in Arabic contains a large amount of
hashtags, due to their particular annotation scheme.

6.2 CRF Model

Table 6 shows the most likely and unlikely transi-
tions learned by the CRF model for the Spanish-
English dataset. It is interesting to see that the transi-
tion from lang1 to lang1 and from lang2 to lang2 are
much likely than lang1 to lang2 or lang2 to lang1.
This suggests that people especially in Twitter do
not normally switch from one language to another
while tweeting. Even, if they switch, there are very
few code-switch points in the tweets. However, peo-
ple tweeting in Spanish have more tendency to use
mixed tokens than people tweeting in English. We
also dumped the top features for the task and found
that word.hasaps is the top feature to identify token
as English. Moreover, features like word.startpunt,

word.lower:number are top features to identify to-
kens as other. The features like char bigram, tri-

gram, words, suffix and prefix are the top features to
distinguish between English and Spanish tokens.

6.3 Error Analysis for Arabic

When we conducted an error analysis on the output
of the Arabic development set for our system, we
found the following mistagging types:

• Punctuation marks, user names starting with
‘@’ and emoticons are not tagged as other.

• Bad segmentation in the text affects the de-
cision, e.g. ú
æ�ñÓðQÔ

« EamormuwsaY “Amr

Musa”.

• Abbreviations:

@ ’A’ “Mr.” and Ð ’m’ “eng.” are

not consistently treated across the dataset.

• There are cases of true ambiguity, e.g. Õç'
Q»
’kariym’, which can be an adjective “generous”
or a person’s name “Kareem”.

• Clitic attachment can obscure tokens, e.g.
ø
 ðA¢

	J£ð waTanoTAwiy “and-Tantawy”.

• Spelling errors can increase data sparsity, e.g.�éK
Q
	�º�@ Asokanoriy~ap “Alexandria”.

Based on this error analysis we developed a post-
processor to handle deterministic annotation deci-
sion. The post-processor applies the tag other in the
following cases:

• Non-alphabetic characters, e.g. punctuation
marks and emoticons.

• Numbers already receiving ne tag, e.g. QK
A 	JK
 25
“25 January”.

• Strings with Latin script.

• Words starting with a @ character that usually
represents user names.

6.4 Error Analysis for Spanish-English

From Table 1, it is clear that the most difficult cat-
egories are ambiguous and mixed. These are rare
tokens and hence the system could not learn to dis-
tinguish them. During analyzing the mistakes on the
development set, we found that the annotation of fre-
quent tokens like jaja, haha with their spelling vari-
ations were inconsistent. Hence, even though the
system was correctly predicting the labels, they were
marked as incorrect. In addition, we also found that
some lang2 tokens like que, amor, etc were wrongly
annotated as lang1.

In most cases, the system predicted either lang1

or lang2 for names of series, games, actor, day, apps
(friday, skype, sheyla, beyounce, walking dead, end-

less love, flappy bird, dollar tree). We noticed that
all these tokens were in lowercase. Similarly, the
system mis-predicted all uppercase tokens as ne. For
eg. RT, DM, JK, GO, BOY were annotated as lang1
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but, the system predicted them as ne. Moreover, we
found that the tokens like lol, lmao, yolo, jk were
incorrectly annotated as ne.

The system predicted the interjections like aww,

uhh, muah, eeeahh, ughh as either lang1 or lang2

but they were annotated as unk.
In order to improve the performance for ne,

we tagged each token with Ark-Tweet NLP tag-
ger (Owoputi et al., 2013). We then changed the
label for the tokens tagged as proper nouns with con-
fidence score greater than 0.98 to ne. This improved
the F1-score for ne from 0.53 to 0.57.

7 Conclusion

In this paper we present our system for identify-
ing and classifying code-switched data for Spanish-
English and MSA-Egyptian. The system uses a neu-
ral network architecture that relies on word-level
and character-level representations, and the output is
fine-tuned (only in the Spanish-English data) with a
CRF classifier for capturing sequence and contextual
information. Our system is language independent
in the sense that we have not used any language-
specific knowledge or linguistic resources such as,
POS taggers, morphological analyzers, gazetteers or
word lists, and the main architecture is applied to
both language sets. Our system considerably out-
performs other systems participating in the shared
task for Arabic, and is ranked second place for the
Spanish-English at tweet-level performance.
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