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Abstract

We show that constituency parsing benefits

from unsupervised pre-training across a vari-

ety of languages and a range of pre-training

conditions. We first compare the benefits of

no pre-training, fastText (Bojanowski et al.,

2017; Mikolov et al., 2018), ELMo (Peters

et al., 2018), and BERT (Devlin et al., 2018a)

for English and find that BERT outperforms

ELMo, in large part due to increased model

capacity, whereas ELMo in turn outperforms

the non-contextual fastText embeddings. We

also find that pre-training is beneficial across

all 11 languages tested; however, large model

sizes (more than 100 million parameters) make

it computationally expensive to train separate

models for each language. To address this

shortcoming, we show that joint multilingual

pre-training and fine-tuning allows sharing all

but a small number of parameters between ten

languages in the final model. The 10x reduc-

tion in model size compared to fine-tuning one

model per language causes only a 3.2% rel-

ative error increase in aggregate. We further

explore the idea of joint fine-tuning and show

that it gives low-resource languages a way to

benefit from the larger datasets of other lan-

guages. Finally, we demonstrate new state-of-

the-art results for 11 languages, including En-

glish (95.8 F1) and Chinese (91.8 F1).

1 Introduction

There has recently been rapid progress in devel-

oping contextual word representations that im-

prove accuracy across a range of natural language

tasks (Peters et al., 2018; Howard and Ruder,

2018; Radford et al., 2018; Devlin et al., 2018a).

While we have shown in previous work (Kitaev

and Klein, 2018) that such representations are ben-

eficial for constituency parsing, our earlier results

only consider the LSTM-based ELMo representa-

tions (Peters et al., 2018), and only for the English

language. In this work, we study a broader range

of pre-training conditions and experiment over a

variety of languages, both jointly and individually.

First, we consider the impact on parsing of us-

ing different methods for pre-training initial net-

work layers on a large collection of un-annotated

text. Here, we see that pre-training provides

benefits for all languages evaluated, and that

BERT (Devlin et al., 2018a) outperforms ELMo,

which in turn outperforms fastText (Bojanowski

et al., 2017; Mikolov et al., 2018), which performs

slightly better than the non pre-trained baselines.

Pre-training with a larger model capacity typically

leads to higher parsing accuracies.

Second, we consider various schemes for the

parser fine-tuning that is required after pre-

training. While BERT itself can be pre-trained

jointly on many languages, successfully applying

it, e.g. to parsing, requires task-specific adaptation

via fine-tuning (Devlin et al., 2018a). Therefore,

the obvious approach to parsing ten languages is

to fine-tune ten times, producing ten variants of

the parameter-heavy BERT layers. In this work,

we compare this naive independent approach to a

joint fine-tuning method where a single copy of

fine-tuned BERT parameters is shared across all

ten languages. Since only a small output-specific

fragment of the network is unique to each task, the

model is 10x smaller while losing an average of

only 0.28 F1.

Although, in general, jointly training multi-

lingual parsers mostly provides a more compact

model, it does in some cases improve accuracy as

well. To investigate when joint training is help-

ful, we also perform paired fine-tuning on all pairs

of languages and examine which pairs lead to the

largest increase in accuracy. We find that larger

treebanks function better as auxiliary tasks and

that only smaller treebanks see a benefit from joint

training. These results suggest that this manner

of joint training can be used to provide support

for many languages in a resource-efficient man-
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ner, but does not exhibit substantial cross-lingual

generalization except when labeled data is limited.

Our parser code and trained models for eleven lan-

guages are publicly available.1

2 Model

Our parsing model is based on the architecture de-

scribed in Kitaev and Klein (2018), which is state

of the art for multiple languages, including En-

glish. A constituency tree T is represented as a

set of labeled spans,

T = {(it, jt, lt) : t = 1, . . . , |T |}

where the tth span begins at position it, ends at

position jt, and has label lt. The parser assigns a

score s(T ) to each tree, which decomposes as

s(T ) =
∑

(i,j,l)∈T

s(i, j, l)

The per-span scores s(i, j, l) are produced by a

neural network. This network accepts as input a

sequence of vectors corresponding to words in a

sentence and transforms these representations us-

ing one or more self-attention layers. For each

span (i, j) in the sentence, a hidden vector vi,j
is constructed by subtracting the representations

associated with the start and end of the span.

An MLP span classifier, consisting of two fully-

connected layers with one ReLU nonlinearity, as-

signs labeling scores s(i, j, ·) to the span. Finally,

the the highest scoring valid tree

T̂ = argmax
T

s(T )

can be found efficiently using a variant of the CKY

algorithm. For more details, see Kitaev and Klein

(2018).

We incorporate BERT by computing token rep-

resentations from the last layer of a BERT model,

applying a learned projection matrix, and then

passing them as input to the parser. BERT asso-

ciates vectors to sub-word units based on Word-

Piece tokenization (Wu et al., 2016), from which

we extract word-aligned representations by only

retaining the BERT vectors corresponding to the

last sub-word unit for each word in the sentence.

We briefly experimented with other alternatives,

such as using only the first sub-word instead, but

did not find that this choice had a substantial effect

on English parsing accuracy.

1https://github.com/nikitakit/self-attentive-parser

Method Pre-trained on Params F1

No pre-training – 26M 93.61a

FastText English 626M 93.72

ELMo English 107M 95.21a

BERTBASE (uncased) Chinese 110M 93.57

BERTBASE (cased) 104 languages 185M 94.97

BERTBASE (uncased) English 117M 95.32

BERTBASE (cased) English 116M 95.24

BERTLARGE (uncased) English 343M 95.66

BERTLARGE (cased) English 341M 95.70

Ensemble (final 4 models above) 916M 95.87

Table 1: Comparison of parsing accuracy on the WSJ

development set when using different word representa-

tions. aKitaev and Klein (2018)

The fact that additional layers are applied to

the output of BERT – which itself uses a self-

attentive architecture – may at first seem redun-

dant, but there are important differences between

these two portions of the architecture. The extra

layers on top of BERT use word-based tokeniza-

tion instead of sub-words, apply the factored ver-

sion of self-attention proposed in Kitaev and Klein

(2018), and are randomly-initialized instead of be-

ing pre-trained. We found that passing the (pro-

jected) BERT vectors directly to the MLP span

classifier hurts parsing accuracies.

We train our parser with a learning rate of

5× 10−5 and batch size 32, where BERT parame-

ters are fine-tuned as part of training. We use two

additional self-attention layers following BERT.

All other hyperparameters are unchanged from Ki-

taev and Klein (2018) and Devlin et al. (2018a).

3 Comparison of Pre-Training Methods

In this section, we compare using BERT, ELMo,

fastText, and training a parser from scratch on

treebank data alone. Our comparison of the dif-

ferent methods for English is shown in Table 1.

BERTBASE (∼115M parameters) performs compa-

rably or slightly better than ELMo (∼107M pa-

rameters; 95.32 vs. 95.21 F1), while BERTLARGE

(∼340M parameters) leads to better parsing accu-

racy (95.70 F1). Furthermore, both pre-trained

contextual embeddings significantly outperform

fastText, which performs slightly better than no

pre-training (93.72 vs. 93.61 F1). These results

show that both the LSTM-based architecture of

ELMo and the self-attentive architecture of BERT

are viable for parsing, and that pre-training bene-

fits from having a high model capacity. We did not

https://github.com/nikitakit/self-attentive-parser
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Figure 1: The architecture of the multilingual model, with components labeled by the number of parameters.

observe a sizable difference between an “uncased”

version of BERT that converts all text to lowercase

and a “cased” version of that retains case informa-

tion.

We also evaluate an ensemble of four English

BERT-based parsers, where the models are com-

bined by averaging their span label scores:

sensemble(i, j, l) =
1

4

4∑

n=1

sn(i, j, l)

The resulting accuracy increase with respect to

the best single model (95.87 F1 vs. 95.66 F1)

reflects not only randomness during fine-tuning,

but also variations between different versions of

BERT. When combined with the observation that

BERTLARGE outperforms BERTBASE, the ensem-

ble results suggest that empirical gains from pre-

training have not yet plateaued as a function of

computational resources and model size.

Next, we compare pre-training on monolin-

gual data to pre-training on data that includes a

variety of languages. We find that pre-training

on only English outperforms multilingual pre-

training given the same model capacity, but the

decrease in accuracy is less than 0.3 F1 (95.24 vs.

94.97 F1). This is a promising result because it

supports the idea of parameter sharing as a way to

provide support for many languages in a resource-

efficient manner, which we examine further in

Section 4.

To further examine the effects of pre-training

on disparate languages, we consider the extreme

case of training an English parser using a ver-

sion of BERT that was pre-trained on the Chinese

Wikipedia. Neither the pre-training data nor the

subword vocabulary used are a good fit for the

target task. However, English words (e.g. proper

names) occur in the Chinese Wikipedia data with

sufficient frequency that the model can losslessly

represent English text: all English letters are in-

cluded in its subword vocabulary, so in the worst

case it will decompose an English word into its in-

dividual letters. We found that this model achieves

performance comparable to our earlier parser (Ki-

taev and Klein, 2018) trained on treebank data

alone (93.57 vs. 93.61 F1). These results suggest

that even when the pre-training data is a highly

imperfect fit for the target application, fine-tuning

can still produce results better than or compara-

ble to purely supervised training with randomly-

initialized parameters.2

4 Multilingual Model

We next evaluate how well self-attention and pre-

training work cross-linguistically; for this purpose

we consider ten languages: English and the nine

languages represented in the SPMRL 2013/2014

shared tasks (Seddah et al., 2013).

Our findings from the previous section show

that pre-training continues to benefit from larger

model sizes when data is abundant. However, as

models grow, it is not scalable to conduct sepa-

rate pre-training and fine-tuning for all languages.

This shortcoming can be partially overcome by

pre-training BERT on multiple languages, as sug-

gested by the effectiveness of the English parser

fine-tuned from multilingual BERT (see Table 1).

Nevertheless, this straightforward approach also

faces scalability challenges because it requires

training an independent parser for each language,

which results in over 1.8 billion parameters for ten

languages. Therefore, we consider a single parser

with parameters shared across languages and fine-

tuned jointly. The joint parser uses the same BERT

model and self-attention layers for all ten lan-

guages but contains one MLP span classifier per

language to accommodate the different tree labels

(see Figure 1). The MLP layers contain 250K-

850K parameters, depending on the type of syn-

tactic annotation adopted for the language, which

2We also attempted to use a randomly-initialized BERT
model, but the resulting parser did not train effectively within
the range of hyperparameters we tried. Note that the original
BERT models were trained on significantly more powerful
hardware and for a longer period of time than any of the ex-
periments we report in this paper.
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Arabic Basque English French German Hebrew Hungarian Korean Polish Swedish Avg Params

No pre-traininga 85.61 89.71 93.55 84.06 87.69 90.35 92.69 86.59 93.69 84.45 88.32 355M

One model per language (this work) 87.97 91.63 94.91 87.42 90.20 92.99 94.90 88.80 96.36 88.86 91.40 1,851M

Joint multilingual model (this work) 87.44 90.70 94.63 87.35 88.40 92.95 94.60 88.96 96.26 89.94 91.12 189M

Relative ∆Error vs. monolingual +4.2%* +10.0%* +5.2%* +0.6% +15.5%* +0.6% +5.6%* -1.5% +2.7% -10.7%* +3.2%*

Table 2: Results of monolingual and multilingual training on the SPMRL and WSJ test splits using the version of

BERT pre-trained on 104 languages. In the last row, starred differences are significant at the p < 0.05 level using

a bootstrap test; see Berg-Kirkpatrick et al. (2012). aKitaev and Klein (2018)

Auxiliary Language Arabic Basque English French German Hebrew Hungarian Korean Polish Swedish Average Best Best Aux.

# train sentences 15,762 7,577 39,831 14,759 40,472 5,000 8,146 23,010 6,578 5,000

Language Tested

Arabic 0 -0.38 -0.20 -0.27 -0.26 -0.14 -0.29 -0.13 -0.31 -0.33 -0.23 +0 None

Basque -0.47 0 -0.06 -0.26 0.04 -0.22 -0.27 -0.41 -0.49 -0.34 -0.25 +0.04 German

English -0.18 -0.04 0 -0.02 -0.03 -0.07 -0.09 0.05 0.10 -0.05 -0.03 +0.10 Polish

French 0.42 0.01 0.28 0 0.40 -0.14 0.04 0.27 0.29 -0.10 0.15 +0.42* Arabic

German -0.38 -0.20 0.03 -0.45 0 -0.13 -0.15 -0.13 -0.21 -0.26 -0.19 +0.03 English

Hebrew 0.13 0.05 -0.27 -0.17 -0.11 0 -0.09 -0.19 -0.30 -0.35 -0.13 +0.13 Arabic

Hungarian -0.14 -0.43 -0.29 -0.38 -0.11 -0.39 0 -0.17 -0.28 -0.32 -0.25 +0 None

Korean -0.24 -0.25 0.16 -0.27 -0.11 -0.01 0 0 -0.07 -0.17 -0.10 +0.16 English

Polish 0.25 0.15 0.20 0.24 0.24 0.21 0.14 0.20 0 0.12 0.18 +0.25* Arabic

Swedish 0.17 -0.08 0.38 0.54 0.53 -0.11 0.59 0.78 -0.17 0 0.26 +0.78* Korean

Average -0.04 -0.12 0.02 -0.10 0.06 -0.10 -0.01 0.03 -0.14 -0.18

Table 3: Change in development set F1 score due to paired vs. individual fine-tuning. In the “Best” column,

starred results are significant at the p < 0.05 level. On average, the three largest treebanks (German, English,

Korean) function the best as auxiliaries. Also, the three languages benefitting most from paired training (Swedish,

French, Polish) function poorly as auxiliaries.

is less than 0.5% of the total parameters. There-

fore, this joint training entails a 10x reduction in

model size.

During joint fine-tuning, each batch contains

sentences from every language. Each sentence

passes through the shared layers and then through

the MLP span classifier corresponding to its lan-

guage. To reduce over-representation of languages

with large training sets, we follow Devlin et al.

(2018b) and determine the sampling proportions

through exponential smoothing: if a language is

some fraction f of the joint training set, the prob-

ability of sampling examples from that language

is proportional to fa for some a. We use the same

hyperparameters as in monolingual training but in-

crease the batch size to 256 to account for the in-

crease in the number of languages, and we use

a = 0.7 as in Devlin et al. (2018b). The individu-

ally fine-tuned parsers also use the same hyperpa-

rameters, but without the increase in batch size.

Table 2 presents a comparison of different pars-

ing approaches across a set of ten languages. Our

joint multilingual model outperforms treebank-

only models (Kitaev and Klein, 2018) for each of

the languages (88.32 vs 91.12 average F1). We

also compare joint and individual fine-tuning. The

multilingual model on average degrades perfor-

mance only slightly (91.12 vs. 91.40 F1) despite

the sharp model size reduction, and in fact per-

forms better for Swedish.

We hypothesize that the gains/losses in accu-

racy for different languages stem from two com-

peting effects: the multilingual model has access

to more data, but there are now multiple objec-

tive functions competing over the same parame-

ters. To examine language compatibility, we also

train a bilingual model for each language pair

and compare it to the corresponding monolingual

model (see Table 3). From this experiment, we

see that the best language pairs often do not cor-

respond to any known linguistic groupings, sug-

gesting that compatibility of objective functions is

influenced more by other factors such as treebank

labeling convention. In addition, we see that on

average, the three languages with the largest train-

ing sets (English, German, Korean) function well

as auxiliaries. Furthermore, the three languages

that gain the most from paired training (Swedish,

French, Polish) have smaller datasets and function

poorly as auxiliaries. These results suggest that

joint training not only drastically reduces model

size, but also gives languages with small datasets

a way to benefit from the large datasets of other

languages.
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Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg

Björkelund et al. (2014) 81.32a 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.12

Coavoux and Crabbé (2017) 82.92b 88.81 82.49 85.34 89.87 92.34 86.04 93.64 84.0 87.27

Kitaev and Klein (2018) 85.61c 89.71c 84.06 87.69 90.35 92.69 86.59c 93.69c 84.45 88.32

This work (joint multilingual model) 87.44 90.70 87.35 88.40 92.95 94.60 88.96 96.26 89.94 90.73

∆ vs. best previous +1.83 +0.99 +3.29 +0.71 +2.60 +1.91 +2.37 +2.57 +4.44

This work (one model per language) 87.97 91.63 87.42 90.20 92.99 94.90 88.80 96.36 88.86 91.01

∆ vs. best previous +2.36 +1.92 +3.36 +2.51 +2.64 +2.21 +2.21 +2.67 +3.36

Table 4: Results on the testing splits of the SPMRL dataset. All values are F1 scores calculated using the version

of evalb distributed with the shared task. aBjörkelund et al. (2013) bUses character LSTM, whereas other results

from Coavoux and Crabbé (2017) use predicted part-of-speech tags. cDoes not use word embeddings, unlike other

results from Kitaev and Klein (2018).

LR LP F1

Dyer et al. (2016) – – 93.3

Choe and Charniak (2016) – – 93.8

Liu and Zhang (2017) – – 94.2

Fried et al. (2017) – – 94.66

Joshi et al. (2018) 93.8 94.8 94.3

Kitaev and Klein (2018) 94.85 95.40 95.13

This work (single model) 95.46 95.73 95.59

This work (ensemble of 4) 95.51 96.03 95.77

Table 5: Comparison of F1 scores on the WSJ test set.

LR LP F1

Fried and Klein (2018) – – 87.0

Teng and Zhang (2018) 87.1 87.5 87.3

This work 91.55 91.96 91.75

Table 6: Comparison of F1 scores on the Chinese Tree-

bank 5.1 test set.

5 Results

We train and evaluate our parsers on treebanks for

eleven languages: the nine languages represented

in the SPMRL 2013/2014 shared tasks (Seddah

et al., 2013) (see Table 4), English (see Table 5),

and Chinese (see Table 6). The English and Chi-

nese parsers use fully monolingual training, while

the remaining parsers incorporate a version of

BERT pre-trained jointly on 104 languages. For

each of these languages, we obtain a higher F1

score than any past systems we are aware of.

In the case of SPRML, both our single multilin-

gual model and our individual monolingual mod-

els achieve higher parsing accuracies than pre-

vious systems (none of which made use of pre-

trained contextual word representations). This

result shows that pre-training is beneficial even

when model parameters are shared heavily across

languages.

6 Conclusion

The remarkable effectiveness of unsupervised pre-

training of vector representations of language sug-

gests that future advances in this area can continue

improving the ability of machine learning meth-

ods to model syntax (as well as other aspects of

language). As pre-trained models become increas-

ingly higher-capacity, joint multilingual training is

a promising approach to scalably providing NLP

systems for a large set of languages.
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lingual lexicalized constituency parsing with word-
level auxiliary tasks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, pages 331–336. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018a. BERT: Pre-training
of deep bidirectional transformers for language
understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee,
and Kristina Toutanova. 2018b. BERT:
Pre-training of deep bidirectional transform-
ers for language understanding. https:

//github.com/google-research/bert/

blob/master/multilingual.md.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 199–209. Association for
Computational Linguistics.

Daniel Fried and Dan Klein. 2018. Policy gradient as
a proxy for dynamic oracles in constituency parsing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 469–476. Association for
Computational Linguistics.

Daniel Fried, Mitchell Stern, and Dan Klein. 2017. Im-
proving neural parsing by disentangling model com-
bination and reranking effects. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
161–166. Association for Computational Linguis-
tics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339. Association for Com-
putational Linguistics.

Vidur Joshi, Matthew Peters, and Mark Hopkins. 2018.
Extending a parser to distant domains using a few
dozen partially annotated examples. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1190–1199. Association for Computa-
tional Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2676–2686. Association for Computa-
tional Linguistics.

Jiangming Liu and Yue Zhang. 2017. In-order
transition-based constituent parsing. Transactions
of the Association for Computational Linguistics,
5:413–424.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word represen-
tations. In Proceedings of the 11th Language
Resources and Evaluation Conference, Miyazaki,
Japan. European Language Resource Association.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.
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