
Multilingual Dependency Parsing using Bayes Point Machines

Simon Corston-Oliver
Microsoft Research
One Microsoft Way

Redmond, WA 98052
simonco@microsoft.com

Anthony Aue
Microsoft Research
One Microsoft Way

Redmond, WA 98052
anthaue@microsoft.com

Kevin Duh
Dept. of Electrical Eng.

Univ. of Washington
Seattle, WA 98195

duh@ee.washington.edu

Eric Ringger
Computer Science Dept.

Brigham Young Univ.
Provo, UT 84602

ringger@cs.byu.edu

Abstract

We develop dependency parsers for Ara-
bic, English, Chinese, and Czech using
Bayes Point Machines, a training algo-
rithm which is as easy to implement as
the perceptron yet competitive with large
margin methods. We achieve results com-
parable to state-of-the-art in English and
Czech, and report the first directed depen-
dency parsing accuracies for Arabic and
Chinese. Given the multilingual nature of
our experiments, we discuss some issues
regarding the comparison of dependency
parsers for different languages.

1 Introduction

Dependency parsing is an alternative to constituency
analysis with a venerable tradition going back at
least two millenia. The last century has seen at-
tempts to formalize dependency parsing, particu-
larly in the Prague School approach to linguistics
(Tesnière, 1959; Melčuk, 1988).

In a dependency analysis of syntax, words directly
modify other words. Unlike constituency analysis,
there are no intervening non-lexical nodes. We use
the terms child and parent to denote the dependent
term and the governing term respectively.

Parsing has many potential applications, rang-
ing from question answering and information re-
trieval to grammar checking. Our intended ap-
plication is machine translation in the Microsoft
Research Treelet Translation System (Quirk et al.,

2005; Menezes and Quirk, 2005). This system ex-
pects an analysis of the source language in which
words are related by directed, unlabeled dependen-
cies. For the purposes of developing machine trans-
lation for several language pairs, we are interested in
dependency analyses for multiple languages.

The contributions of this paper are two-fold: First,
we present a training algorithm called Bayes Point
Machines (Herbrich et al., 2001; Harrington et al.,
2003), which is as easy to implement as the per-
ceptron, yet competitive with large margin meth-
ods. This algorithm has implications for anyone
interested in implementing discriminative training
methods for any application. Second, we develop
parsers for English, Chinese, Czech, and Arabic and
probe some linguistic questions regarding depen-
dency analyses in different languages. To the best of
our knowledge, the Arabic and Chinese results are
the first reported results to date for directed depen-
dencies. In the following, we first describe the data
(Section 2) and the basic parser architecture (Section
3). Section 4 introduces the Bayes Point Machine
while Section 5 describes the features for each lan-
guage. We conclude with experimental results and
discussions in Sections 6 and 7.

2 Data

We utilize publicly available resources in Arabic,
Chinese, Czech, and English for training our depen-
dency parsers.

For Czech we used the Prague Dependency Tree-
bank version 1.0 (LDC2001T10). This is a corpus
of approximately 1.6 million words. We divided
the data into the standard splits for training, devel-

opment test and blind test. The Prague Czech De-
pendency Treebank is provided with human-edited
and automatically-assigned morphological informa-
tion, including part-of-speech labels. Training and
evaluation was performed using the automatically-
assigned labels.

For Arabic we used the Prague Arabic De-
pendency Treebank version 1.0 (LDC2004T23).
Since there is no standard split of the data into
training and test sections, we made an approxi-
mate 70%/15%/15% split for training/development
test/blind test by sampling whole files. The Ara-
bic Dependency Treebank is considerably smaller
than that used for the other languages, with approx-
imately 117,000 tokens annotated for morphologi-
cal and syntactic relations. The relatively small size
of this corpus, combined with the morphological
complexity of Arabic and the heterogeneity of the
corpus (it is drawn from five different newspapers
across a three-year time period) is reflected in the
relatively low dependency accuracy reported below.
As with the Czech data, we trained and evaluated us-
ing the automatically-assigned part-of-speech labels
provided with the data.

Both the Czech and the Arabic corpora are anno-
tated in terms of syntactic dependencies. For En-
glish and Chinese, however, no corpus is available
that is annotated in terms of dependencies. We there-
fore applied head-finding rules to treebanks that
were annotated in terms of constituency.

For English, we used the Penn Treebank version
3.0 (Marcus et al., 1993) and extracted dependency
relations by applying the head-finding rules of (Ya-
mada and Matsumoto, 2003). These rules are a
simplification of the head-finding rules of (Collins,
1999). We trained on sections 02-21, used section
24 for development test and evaluated on section
23. The English Penn Treebank contains approxi-
mately one million tokens. Training and evaluation
against the development test set was performed us-
ing human-annotated part-of-speech labels. Evalu-
ation against the blind test set was performed us-
ing part-of-speech labels assigned by the tagger de-
scribed in (Toutanova et al., 2003).

For Chinese, we used the Chinese Treebank ver-
sion 5.0 (Xue et al., 2005). This corpus contains
approximately 500,000 tokens. We made an approx-
imate 70%/15%/15% split for training/development

test/blind test by sampling whole files. As with the
English Treebank, training and evaluation against
the development test set was performed using
human-annotated part-of-speech labels. For evalu-
ation against the blind test section, we used an im-
plementation of the tagger described in (Toutanova
et al., 2003). Trained on the same training section
as that used for training the parser and evaluated on
the development test set, this tagger achieved a to-
ken accuracy of 92.2% and a sentence accuracy of
63.8%.

The corpora used vary in homogeneity from the
extreme case of the English Penn Treebank (a large
corpus drawn from a single source, the Wall Street
Journal) to the case of Arabic (a relatively small
corpus–approximately 2,000 sentences–drawn from
multiple sources). Furthermore, each language
presents unique problems for computational analy-
sis. Direct comparison of the dependency parsing
results for one language to the results for another
language is therefore difficult, although we do at-
tempt in the discussion below to provide some basis
for a more direct comparison. A common question
when considering the deployment of a new language
for machine translation is whether the natural lan-
guage components available are of sufficient quality
to warrant the effort to integrate them into the ma-
chine translation system. It is not feasible in every
instance to do the integration work first and then to
evaluate the output.

Table 1 summarizes the data used to train the
parsers, giving the number of tokens (excluding
traces and other empty elements) and counts of sen-
tences.1

3 Parser Architecture

We take as our starting point a re-implementation
of McDonald’s state-of-the-art dependency parser
(McDonald et al., 2005a). Given a sentence x, the
goal of the parser is to find the highest-scoring parse
ŷ among all possible parses y ∈ Y :

ŷ = arg max
y∈Y

s(x, y) (1)

1The files in each partition of the Chinese and Arabic data
are given at http://research.microsoft.com/˜simonco/
HLTNAACL2006.

Language Total Training Development Blind
Tokens Sentences Sentences Sentences

Arabic 116,695 2,100 446 449
Chinese 527,242 14,735 1,961 2,080
Czech 1,595,247 73,088 7,319 7,507
English 1,083,159 39,832 1,346 2,416

Table 1: Summary of data used to train parsers.

For a given parse y, its score is the sum of the scores
of all its dependency links (i, j) ∈ y:

s(x, y) =
∑

(i,j)∈y

d(i, j) =
∑

(i,j)∈y

w · f(i, j) (2)

where the link (i, j) indicates a head-child depen-
dency between the token at position i and the token
at position j. The score d(i, j) of each dependency
link (i, j) is further decomposed as the weighted
sum of its features f(i, j).

This parser architecture naturally consists of three
modules: (1) a decoder that enumerates all possi-
ble parses y and computes the argmax; (2) a train-
ing algorithm for adjusting the weights w given the
training data; and (3) a feature representation f(i, j).
Two decoders will be discussed here; the training al-
gorithm and feature representation are discussed in
the following sections.

A good decoder should satisfy several proper-
ties: ideally, it should be able to search through all
valid parses of a sentence and compute the parse
scores efficiently. Efficiency is a significant issue
since there are usually an exponential number of
parses for any given sentence, and the discrimina-
tive training methods we will describe later require
repeated decoding at each training iteration. We re-
implemented Eisner’s decoder (Eisner, 1996), which
searches among all projective parse trees, and the
Chu-Liu-Edmonds’ decoder (Chu and Liu, 1965;
Edmonds, 1967), which searches in the space of
both projective and non-projective parses. (A pro-
jective tree is a parse with no crossing dependency
links.) For the English and Chinese data, the head-
finding rules for converting from Penn Treebank
analyses to dependency analyses creates trees that
are guaranteed to be projective, so Eisner’s algo-
rithm suffices. For the Czech and Arabic corpora,
a non-projective decoder is necessary. Both algo-
rithms are O(N3), where N is the number of words

in a sentence.2 Refer to (McDonald et al., 2005b)
for a detailed treatment of both algorithms.

4 Training: The Bayes Point Machine

In this section, we describe an online learning al-
gorithm for training the weights w. First, we ar-
gue why an online learner is more suitable than a
batch learner like a Support Vector Machine (SVM)
for this task. We then review some standard on-
line learners (e.g. perceptron) before presenting the
Bayes Point Machine (BPM) (Herbrich et al., 2001;
Harrington et al., 2003).

4.1 Online Learning

An online learner differs from a batch learner in that
it adjusts w incrementally as each input sample is
revealed. Although the training data for our pars-
ing problem exists as a batch (i.e. all input sam-
ples are available during training), we can apply
online learning by presenting the input samples in
some sequential order. For large training set sizes,
a batch learner may face computational difficulties
since there already exists an exponential number of
parses per input sentence. Online learning is more
tractable since it works with one input at a time.

A popular online learner is the perceptron. It ad-
justs w by updating it with the feature vector when-
ever a misclassification on the current input sample
occurs. It has been shown that such updates con-
verge in a finite number of iterations if the data is lin-
early separable. The averaged perceptron (Collins,
2002) is a variant which averages the w across all
iterations; it has demonstrated good generalization
especially with data that is not linearly separable,
as in many natural language processing problems.

2The Chu-Liu-Edmonds’ decoder, which is based on a maxi-
mal spanning tree algorithm, can run in O(N2), but our simpler
implementation of O(N3) was sufficient.

Recently, the good generalization properties of Sup-
port Vector Machines have prompted researchers to
develop large margin methods for the online set-
ting. Examples include the margin perceptron (Duda
et al., 2001), ALMA (Gentile, 2001), and MIRA
(which is used to train the parser in (McDonald et al.,
2005a)). Conceptually, all these methods attempt to
achieve a large margin and approximate the maxi-
mum margin solution of SVMs.

4.2 Bayes Point Machines
The Bayes Point Machine (BPM) achieves good
generalization similar to that of large margin meth-
ods, but is motivated by a very different philoso-
phy of Bayesian learning or model averaging. In
the Bayesian learning framework, we assume a prior
distribution over w. Observations of the training
data revise our belief of w and produce a poste-
rior distribution. The posterior distribution is used
to create the final wBPM for classification:

wBPM = Ep(w|D)[w] =
|V (D)|∑

i=1

p(wi|D) wi (3)

where p(w|D) is the posterior distribution of the
weights given the data D and Ep(w|D) is the expec-
tation taken with respect to this distribution. The
term |V (D)| is the size of the version space V (D),
which is the set of weights wi that is consistent with
the training data (i.e. the set of wi that classifies the
training data with zero error). This solution achieves
the so-called Bayes Point, which is the best approx-
imation to the Bayes optimal solution given finite
training data.

In practice, the version space may be large, so we
approximate it with a finite sample of size I . Further,
assuming a uniform prior over weights, we get the
following equation:

wBPM = Ep(w|D)[w] ≈
I∑

i=1

1
I
wi (4)

Equation 4 can be computed by a very simple al-
gorithm: (1) Train separate perceptrons on different
random shuffles of the entire training data, obtaining
a set of wi. (2) Take the average (arithmetic mean)
of the weights wi. It is well-known that perceptron
training results in different weight vector solutions

Input: Training set D = ((x1, y1), (x2, y2), . . . , (xT , yT))
Output: wBPM

Initialize: wBPM = 0
for i = 1 to I; do

Randomly shuffle the sequential order of samples in D
Initialize: wi = 0
for t = 1 to T; do

ŷt = wi · xt

if (ŷt 6= yt) then wi = wi + ytxt

done
wBPM = wBPM + 1

I
wi

done

Figure 1: Bayes Point Machine pseudo-code.

if the data samples are presented sequentially in dif-
ferent orders. Therefore, random shuffles of the data
and training a perceptron on each shuffle is effec-
tively equivalent to sampling different models (wi)
in the version space. Note that this averaging op-
eration should not be confused with ensemble tech-
niques such as Bagging or Boosting–ensemble tech-
niques average the output hypotheses, whereas BPM
averages the weights (models).

The BPM pseudocode is given in Figure 1. The
inner loop is simply a perceptron algorithm, so the
BPM is very simple and fast to implement. The
outer loop is easily parallelizable, allowing speed-
ups in training the BPM. In our specific implemen-
tation for dependency parsing, the line of the pseu-
docode corresponding to [ŷt = wi · xt] is replaced
by Eq. 1 and updates are performed for each in-
correct dependency link. Also, we chose to average
each individual perceptron (Collins, 2002) prior to
Bayesian averaging.

Finally, it is important to note that the definition of
the version space can be extended to include weights
with non-zero training error, so the BPM can handle
data that is not linearly separable. Also, although we
only presented an algorithm for linear classifiers (pa-
rameterized by the weights), arbitrary kernels can be
applied to BPM to allow non-linear decision bound-
aries. Refer to (Herbrich et al., 2001) for a compre-
hensive treatment of BPMs.

5 Features

Dependency parsers for all four languages were
trained using the same set of feature types. The
feature types are essentially those described in (Mc-
Donald et al., 2005a). For a given pair of tokens,

where one is hypothesized to be the parent and the
other to be the child, we extract the word of the par-
ent token, the part of speech of the parent token, the
word of the child token, the part of speech of the
child token and the part of speech of certain adjacent
and intervening tokens. Some of these atomic fea-
tures are combined in feature conjunctions up to four
long, with the result that the linear classifiers de-
scribed below approximate polynomial kernels. For
example, in addition to the atomic features extracted
from the parent and child tokens, the feature [Par-
entWord, ParentPOS, ChildWord, ChildPOS] is also
added to the feature vector representing the depen-
dency between the two tokens. Additional features
are created by conjoining each of these features with
the direction of the dependency (i.e. is the parent to
the left or right of the child) and a quantized measure
of the distance between the two tokens. Every token
has exactly one parent. The root of the sentence has
a special synthetic token as its parent.

Like McDonald et al, we add features that con-
sider the first five characters of words longer than
five characters. This truncated word crudely approx-
imates stemming. For Czech and English the addi-
tion of these features improves accuracy. For Chi-
nese and Arabic, however, it is clear that we need a
different backoff strategy.

For Chinese, we truncate words longer than a sin-
gle character to the first character.3 Experimental
results on the development test set suggested that an
alternative strategy, truncation of words longer than
two characters to the first two characters, yielded
slightly worse results.

The Arabic data is annotated with gold-standard
morphological information, including information
about stems. It is also annotated with the output
of an automatic morphological analyzer, so that re-
searchers can experiment with Arabic without first
needing to build these components. For Arabic, we
truncate words to the stem, using the value of the
lemma attribute.

All tokens are converted to lowercase, and num-
bers are normalized. In the case of English, Czech
and Arabic, all numbers are normalized to a sin-

3There is a near 1:1 correspondence between characters
and morphemes in contemporary Mandarin Chinese. However,
most content words consist of more than one morpheme, typi-
cally two.

gle token. In Chinese, months are normalized to a
MONTH token, dates to a DATE token, years to a
YEAR token. All other numbers are normalized to a
single NUMBER token.

The feature types were instantiated using all or-
acle combinations of child and parent tokens from
the training data. It should be noted that when the
feature types are instantiated, we have considerably
more features than McDonald et al. For example,
for English we have 8,684,328 whereas they report
6,998,447 features. We suspect that this is mostly
due to differences in implementation of the features
that backoff to stems.

The averaged perceptrons were trained on the
one-best parse, updating the perceptron for every
edge and averaging the accumulated perceptrons af-
ter every sentence. Experiments in which we up-
dated the perceptron based on k-best parses tended
to produce worse results. The Chu-Liu-Edmonds al-
gorithm was used for Czech. Experiments with the
development test set suggested that the Eisner de-
coder gave better results for Arabic than the Chu-
Liu-Edmonds decoder. We therefore used the Eisner
decoder for Arabic, Chinese and English.

6 Results

Table 2 presents the accuracy of the dependency
parsers. Dependency accuracy indicates for how
many tokens we identified the correct head. Root ac-
curacy, i.e. for how many sentences did we identify
the correct root or roots, is reported as F1 measure,
since sentences in the Czech and Arabic corpora can
have multiple roots and since the parsing algorithms
can identify multiple roots. Complete match indi-
cates how many sentences were a complete match
with the oracle dependency parse.

A convention appears to have arisen when report-
ing dependency accuracy to give results for English
excluding punctuation (i.e, ignoring punctuation to-
kens in the output of the parser) and to report results
for Czech including punctuation. In order to facil-
itate comparison of the present results with previ-
ously published results, we present measures includ-
ing and excluding punctuation for all four languages.
We hope that by presenting both sets of measure-
ments, we also simplify one dimension along which
published results of parse accuracy differ. A direct

Including punctuation Excluding punctuation
Language Dependency Root Complete Dependency Root Complete

Accuracy Accuracy Match Accuracy Accuracy Match
Arabic 79.9 90.0 9.80 79.8 87.8 10.2
Chinese 71.2 66.2 17.5 73.3 66.2 18.2
Czech 84.0 88.8 30.9 84.3 76.2 32.2
English 90.0 93.7 35.1 90.8 93.7 37.6

Table 2: Bayes Point Machine accuracy measured on blind test set.

comparison of parse results across languages is still
difficult for reasons to do with the different nature
of the languages, the corpora and the differing stan-
dards of linguistic detail annotated, but a compar-
ison of parsers for two different languages where
both results include punctuation is at least preferable
to a comparison of results including punctuation to
results excluding punctuation.

The results reported here for English and Czech
are comparable to the previous best published num-
bers in (McDonald et al., 2005a), as Table 3 shows.
This table compares McDonald et al.’s results for an
averaged perceptron trained for ten iterations with
no check for convergence (Ryan McDonald, pers.
comm.), MIRA, a large margin classifier, and the
current Bayes Point Machine results. To determine
statistical significance we used confidence intervals
for p=0.95. For the comparison of English depen-
dency accuracy excluding punctuation, MIRA and
BPM are both statistically significantly better than
the averaged perceptron result reported in (McDon-
ald et al., 2005a). MIRA is significantly better
than BPM when measuring dependency accuracy
and root accuracy, but BPM is significantly better
when measuring sentences that match completely.
From the fact that neither MIRA nor BPM clearly
outperforms the other, we conclude that we have
successfully replicated the results reported in (Mc-
Donald et al., 2005a) for English.

For Czech we also determined significance using
confidence intervals for p=0.95 and compared re-
sults including punctuation. For both dependency
accuracy and root accuracy, MIRA is statisticallty
significantly better than averaged perceptron, and
BPM is statistically significantly better than MIRA.
Measuring the number of sentences that match com-
pletely, BPM is statistically significantly better than

averaged perceptron, but MIRA is significantly bet-
ter than BPM. Again, since neither MIRA nor BPM
outperforms the other on all measures, we conclude
that the results constitute a valiation of the results
reported in (McDonald et al., 2005a).

For every language, the dependency accuracy of
the Bayes Point Machine was greater than the ac-
curacy of the best individual perceptron that con-
tributed to that Bayes Point Machine, as Table 4
shows. As previously noted, when measuring
against the development test set, we used human-
annotated part-of-speech labels for English and Chi-
nese.

Although the Prague Czech Dependency Tree-
bank is much larger than the English Penn Treebank,
all measurements are lower than the corresponding
measurements for English. This reflects the fact that
Czech has considerably more inflectional morphol-
ogy than English, leading to data sparsity for the lex-
ical features.

The results reported here for Arabic are, to our
knowledge, the first published numbers for depen-
dency parsing of Arabic. Similarly, the results for
Chinese are the first published results for the depen-
dency parsing of the Chinese Treebank 5.0.4 Since
the Arabic and Chinese numbers are well short of
the numbers for Czech and English, we attempted
to determine what impact the smaller corpora used
for training the Arabic and Chinese parsers might
have. We performed data reduction experiments,
training the parsers on five random samples at each
size smaller than the entire training set. Figure 2
shows the dependency accuracy measured on the
complete development test set when training with
samples of the data. The graph shows the average

4(Wang et al., 2005) report numbers for undirected depen-
dencies on the Chinese Treebank 3.0. We cannot meaningfully
compare those numbers to the numbers here.

Language Algorithm DA RA CM
English Avg. Perceptron 90.6 94.0 36.5
(exc punc) MIRA 90.9 94.2 37.5

Bayes Point Machine 90.8 93.7 37.6
Czech Avg. Perceptron 82.9 88.0 30.3
(inc punc) MIRA 83.3 88.6 31.3

Bayes Point Machine 84.0 88.8 30.9

Table 3: Comparison to previous best published results reported in (McDonald et al., 2005a).

Arabic Chinese Czech English
Bayes Point Machine 78.4 83.8 84.5 91.2
Best averaged perceptron 77.9 83.1 83.5 90.8
Worst averaged perceptron 77.4 82.6 83.3 90.5

Table 4: Bayes Point Machine accuracy vs. averaged perceptrons, measured on development test set, ex-
cluding punctuation.

dependency accuracy for five runs at each sample
size up to 5,000 sentences. English and Chinese
accuracies in this graph use oracle part-of-speech
tags. At all sample sizes, the dependency accu-
racy for English exceeds the dependency accuracy
of the other languages. This difference is perhaps
partly attributable to the use of oracle part-of-speech
tags. However, we suspect that the major contribu-
tor to this difference is the part-of-speech tag set.
The tags used in the English Penn Treebank encode
traditional lexical categories such as noun, prepo-
sition, and verb. They also encode morphological
information such as person (the VBZ tag for exam-
ple is used for verbs that are third person, present
tense–typically with the suffix -s), tense, number
and degree of comparison. The part-of-speech tag
sets used for the other languages encode lexical cat-
egories, but do not encode morphological informa-
tion.5 With small amounts of data, the perceptrons
do not encounter sufficient instances of each lexical
item to calculate reliable weights. The perceptrons
are therefore forced to rely on the part-of-speech in-
formation.

It is surprising that the results for Arabic and Chi-
nese should be so close as we vary the size of the

5For Czech and Arabic we followed the convention estab-
lished in previous parsing work on the Prague Czech Depen-
dency Treebank of using the major and minor part-of-speech
tags but ignoring other morphological information annotated on
each node.

training data (Figure 2) given that Arabic has rich
morphology and Chinese very little. One possible
explanation for the similarity in accuracy is that the
rather poor root accuracy in Chinese indicates parses
that have gone awry. Anecdotal inspection of parses
suggests that when the root is not correctly identi-
fied, there are usually cascading related errors.

Czech, a morphologically complex language in
which root identification is far from straightfor-
ward, exhibits the worst performance at small sam-
ple sizes. But (not shown) as the sample size in-
creases, the accuracy of Czech and Chinese con-
verge.

7 Conclusions

We have successfully replicated the state-of-the-art
results for dependency parsing (McDonald et al.,
2005a) for both Czech and English, using Bayes
Point Machines. Bayes Point Machines have the ap-
pealing property of simplicity, yet are competitive
with online wide margin methods.

We have also presented first results for depen-
dency parsing of Arabic and Chinese, together with
some analysis of the performance on those lan-
guages.

In future work we intend to explore the discrim-
inative reranking of n-best lists produced by these
parsers and the incorporation of morphological fea-
tures.

60

65

70

75

80

85

90

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Sample size

De
pe

nd
en

cy
 A

cc
ur

ac
y

English
Chinese
Arabic
Czech

Figure 2: Dependency accuracy at various sample
sizes. Graph shows average of five samples at each
size and measures accuracy against the development
test set.

Acknowledgements

We would like to thank Ryan McDonald, Otakar
Smrž and Hiroyasu Yamada for help in various
stages of the project.

References
Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-

cence of a directed graph. Science Sinica, 14:1396–
1400.

Michael John Collins. 1999. Head-Driven Statistical
Models for Natural Language Processing. Ph.D. the-
sis, University of Pennsylvania.

M. Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. In Proceedings of EMNLP.

R. O. Duda, P. E. Hart, and D. G. Stork. 2001. Pattern
Classification. John Wiley & Sons, Inc.: New York.

J. Edmonds. 1967. Optimum branchings. Journal of Re-
search of the National Bureau of Standards, 71B:233–
240.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proceed-
ings of COLING 1996, pages 340–345.

Claudio Gentile. 2001. A new approximate maximal
margin classification algorithm. Journal of Machine
Learning Research, 2:213–242.

Edward Harrington, Ralf Herbrich, Jyrki Kivinen,
John C. Platt, and Robert C. Williamson. 2003. On-
line bayes point machines. In Proc. 7th Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing, pages 241–252.

Ralf Herbrich, Thore Graepel, and Colin Campbell.
2001. Bayes point machines. Journal of Machine
Learning Research, pages 245–278.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of english: The Penn
Treebank. Computational Linguistics, 19(2):313–330.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005a. Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual Meeting of
the Assocation for Computational Linguistics.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005b. Online large-margin training of dependency
parsers. Technical Report MS-CIS-05-11, Dept. of
Computer and Information Science, Univ. of Pennsyl-
vania.

Igor A. Melčuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Arul Menezes and Chris Quirk. 2005. Microsoft re-
search treelet translation system: IWSLT evaluation.
In Proceedings of the International Workshop on Spo-
ken Language Translation.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal SMT. In Proceedings of the 43rd annual meet-
ing of the Association for Computational Linguistics.

Lucien Tesnière. 1959. Éléments de syntaxe structurale.
Librairie C. Klincksieck.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of HLT-NAACL 2003, pages 252–259.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin. 2005.
Strictly lexical dependency parsing. In Proceedings
of the Ninth International Workshop on Parsing Tech-
nologies, pages 152–159.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering, 11(2).

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proceedings of IWPT, pages 195–206.

