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Abstract: Handwritten signatures have traditionally been used as a common form of recognition
and authentication in tasks such as financial transactions and document authentication. However,
there are few studies on minority languages such as Uyghur and Kazakh used in Xinjiang, China,
and no available public dataset for these scripts, which are widely used in banking and other fields.
Therefore, this paper addresses this problem by constructing a dataset containing Uyghur, Kazakh,
and Han languages and presents an automatic handwritten signature recognition approach based
on Uyghur, Kazakh, Han, and public datasets. In the paper, a handwritten signature recognition
method that combines local maximum occurrence features (LOMO) and histogram of orientated
gradients (HOG) features was proposed. LOMO features use a sliding window to represent the local
features of the signature image. The high-dimensional features formed by the combination of these
methods are dimensionally reduced by principal component analysis (PCA). The classification is
performed using k-nearest neighbors (k-NN), and it is compared with the random forest method. The
proposed method achieved a recognition rate of 98.4% using a diverse signature database compared
with existing methods. It shows that the method was effective and can be applied to large datasets of
mixed, multilingual signatures.

Keywords: local maximal occurrence representation (LOMO); histogram of oriented gradients (HOG);
multilingual offline signature; k-nearest neighbors (k-NN); sliding window

1. Introduction

A handwritten signature is one of the most commonly used authentication techniques
for banks and the judiciary [1]. The handwritten signature belongs to behavioral biometrics,
which refers to the unique behavioral characteristics that can be used for human authen-
tication. User authentication based on behavioral biometrics has characteristics such as
stability and simplicity [2]. Biometric recognition is defined as the automatic identification
and verification of persons. Verification is the mode in which the final result is only yes
or no, and identification means authenticating a person’s identity. The related research on
handwriting recognition can be divided into handwritten text recognition, handwritten
signature recognition, etc. Handwritten text recognition refers to the process of automat-
ically recognizing the text written inside an image of a text line, a paragraph, or even
whole pages [3]. Handwritten signature recognition is the identification of the signer by
the signature. The research in this paper focuses on user identification.

Offline handwritten signature recognition has been a challenging task for computer
vision. Offline signature recognition can be addressed with writer-dependent and writer-
independent approaches. Writer-dependent (WD) means that the classifier is trained
separately for each person’s sample. In other words, when a new user comes in, it needs to
be trained independently for that user. Writer-independent (WI) means that the classifier’s
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training is separate from the testing, which means that the user used for testing can
be untrained. WI [4] is used when there are fewer signature maps available for training,
although this method also has the potential to miss many writer-specific features. Therefore,
the WD method was used in this paper.

Recently, some attempts have been made to solve the problem of failure of feature
selection methods performed on a few features. Sharif M et al. [5] presented a new feature
optimization selection technique employing a genetic algorithm to select the optimal
features directly based on the fitness function of the features. A new extraction method
was also introduced, and good results were obtained.

Hadjadji, B. et al. [6] proposed a system for open handwritten signature recognition
and combined a classifier of curvilinear wave transform and OC-PCA. In a natural envi-
ronment, there will not be many signature images used for training, and the writers have
studied in WI mode. Therefore, they proposed a new multi-individual OHSIS combination
method for density estimation to achieve an efficient system. A design protocol was also
presented to select suitable parameters for the new writer.

Mshir, S. et al. [7] put forward a novel signature verification and recognition technique
using two datasets to train the pattern through a Siamese network. Offline signature
verification uses a convolutional Siamese network, and using the Kaggle dataset, the final
recognition rate was 84%. Tests performed on the cross-domain dataset show that the
network could handle forgeries in several languages and handwriting styles.

There were also some studies that have been validated using different classifiers.
Elssaedi M. M. et al. [8] used five well-known classifiers, such as gradient augmented trees,
extracted dynamic and static features (width, height), and utilized RapidMiner for feature
selection. Experiments show that on the dataset used, the best classifier for recognition
is a neural network, with an accuracy rate of 92.88%. We also validated the dataset in
this study using random forest and KNN classifiers, respectively, to verify the proposed
method’s effectiveness.

Jagtap, A. B. et al. [9] preprocessed the image first and then extracted the upper and
lower envelope features from the preprocessed image. In this, the upper envelope features
were extracted by scanning each column of the image from top to bottom. Finally, the
extracted features were jointly fused and experimented with on the SVC2004 dataset, and
an accuracy of 98.5% was obtained.

Several studies have been conducted to address the issues of accuracy improvement
and reduction in the number of required samples. Matsuda K. et al. [10] addressed this
issue by proposing a random forest (RF)-based technique—a joint segmentation verification
method modification using multiple scripts signature authentications. The tactic of this
technique was to perform different fusion methods for multiple signature identifiers.
Gradient features were extracted, and shape features were used to represent the user’s
pencil stress and speed. Finally, experiments were conducted on the SigComp2011 (Chinese,
Dutch) and the SigComp2013 (Japanese) signature datasets. By comparing the three
methods of signature image generation, the martingale distance of grayscale, RGB pipeline
images, and the histogram of grayscale pictures are employed. Finally, the effectiveness of
the presented approach was verified.

Recently, some studies have been conducted on offline signature recognition for
minority scripts. For example, Zhang S. J. et al. [11] proposed a BoVW-based feature option
algorithm MRMR for offline signature verification. Visual word features were extracted,
and the maximum relevance minimum redundancy algorithm (MRMR) was employed for
feature selection. K means clustering method was used to cluster the signature images, and
support vector machine(SVM) was used for classification. Experiments were conducted
on the Uyghur signature dataset in the self-built database and the CEDAR signature
dataset [12], obtaining 93.81% and 95.38% recognition rates, respectively. The paper has
been studied only for Uyghur, while our study was conducted on Kazakh, Han, and Uyghur
datasets. In addition to traditional learning methods, many people have recently explored
the use of deep learning methods to solve the offline handwritten signature problem.
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Tuncer T. et al. [13] studied feature extraction using convolutional neural networks (CNN)
and proposed an iterative minimum redundancy maximum relevance IMRMR [14] method
for the automatic selection of optimal features, and these features are utilized as an input of
the SVM. Some have proposed new deep learning frameworks or models to solve the offline
handwritten signature problem [15–19]. To solve the problem of limited training data, the
network SigNet CNN inspired by (Krizhevsky et al. [20]) and modified (Hafemann, L. G.
et al. [21]) was proposed, in which migration learning was introduced, and the pretrained
model was fine-tuned using a limited number of available feature images (target data) in
between. Finally, a BF-SVM classifier was used for classification, effectively solving the
offline signature identification problem.

In this paper, we adopted the WD method to address the lack of studies on minority
scripts and publicly available datasets. We built a dataset containing Uyghur, Kazakh, and
Han languages, and our study was conducted on these and public datasets. Table 1 shows
the quantity of data in our self-built dataset compared with the publicly available dataset.
We proposed an approach based on the fusion of local maximum occurrence features and a
histogram of oriented gradient features for recognition. We performed feature selection and
used principal component analysis for the extracted feature vectors to improve recognition
efficiency and speed. Finally, random forest and KNN classifiers were used for evaluation,
and the CEDAR public dataset was used for testing to demonstrate the efficiency of the
presented method.

Table 1. Comparison of data volumes for different data sets.

Dataset Signers Genuine
Signature/Signers

Forged
Signatures/Signers

Numbers of Genuine
Signatures

BHSig-B [22] 100 24 30 2400
BHSig-H [22] 160 24 30 3840
CEDAR [12] 55 24 24 1320
GPDS [23] 4000 24 30 96,000

Uyghur (Ours) 160 24 – 3840
Kazakh (Ours) 151 24 – 3624

Han (Ours) 160 24 – 3840

Our signature dataset contains three subsets: the Uyghur dataset, the Kazakh dataset,
and the Han (Chinese) dataset. Uyghur and Han’s datasets contain 160 individual signature
samples, the same number of signers as the BHSig260-Hindi dataset. We have followed
the same protocol as in GPDS to generate these signatures. Hence, 24 genuine signatures
are available for each of the signers. Since we are studying signature recognition, which
requires authentic signatures, only genuine signatures are captured, not forged ones.

In this paper, Section 2 is an introduction to the self-built dataset. Section 3 is an expla-
nation of the proposed methods we used. Section 4 shows the results of the experiments.
Finally, the conclusion is given in Section 5. Figure 1 shows the main flowchart of offline
signature recognition in multiple languages.
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Figure 1. Offline signature authentication system model.

2. Offline Handwritten Signature Recognition
2.1. Signature Datasets

Collecting multilingual offline handwritten signatures is a critical and challenging
task. After collecting the data, a lot of postprocessing work is needed, such as cutting and
labeling. To more comprehensively reflect the characteristics of an individual’s handwritten
signature, we chose three time periods: morning, noon, and afternoon. Each period allowed
the signer to sign eight signatures, for a total of 24. The signature was signed on A4 paper
using a black signature pen, and the signature was finally scanned and cut for all datasets
and saved in BMP format. We built a total of three datasets in Uyghur, Han, and Kazakh.
Among them, 160 individuals with 24 signatures were collected in Uyghur, 151 individuals
with 24 signatures in Kazakh, and 160 individuals with 24 signatures each were collected
in Han. A comparison test was also conducted using the data from CEDAR [12], a publicly
available dataset comprising 55 individuals with 24 genuine signatures each. Figure 2
shows the sample signature image we used, from left to right, for CEDAR, Han, Uyghur,
and Kazakh.
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2.2. Preprocessing

Preprocessing is the work that precedes feature extraction. After data acquisition,
scanning of still images or other processes may incorporate problems such as noise [5].
Therefore, we needed to preprocess the collected dataset to improve accuracy. Because
of the varying size of signature images in the CEDAR dataset, we first normalized the
signature images in this paper to make the training process faster. We considered the
structure and writing style of Uyghur and Kazakh signature data, and the signatures
signed by these texts are longer. So, we chose the size 384 × 96. Second, we gray scaled
signature images and used the weighted average method. The weighted average method
refers to weighting the three channels of the image R, G, and B by different coefficients and
using the weighted values as the grayscale results, with the following expression:

Gray = 0.3× R + 0.59×G + 0.11× B (1)

Next, denoising and smoothing were conducted using a bilateral filter, which can keep
the edges and reduce the noise smoothly, making it possible to eliminate the irrelevant
information in the image and retain the practical information. Finally, we performed the
background removal. The offline signature image has a large amount of blank background,
which is useless information. To make the extraction of features more conducive to extract-
ing effective information, we segmented the signature image using the Otsu algorithm to
obtain a binary image. Figure 3 shows the preprocessed signature image we used.
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3. Proposed Method

In this paper, after the signature images preprocessing, the local maximum occur-
rence (LOMO) [24,25] features were extracted first, followed by the histogram of oriented
gradient (HOG) features. Then, considering the information on the texture, color, and
geometric structure of the signature image, we fused LOMO features and HOG [26] fea-
tures. For a combination of features, we used the concat method, which directly joins
two features. For example, the dimensions of the two input features x and y if p and q, and
the dimension of the output feature z is p + q. Then, feature selection is performed using
principal component analysis. We downscaled the feature vector dimensionality to 100
and 128 dimensions, respectively. The final recognition rate was obtained by feeding the
dimensionality-reduced feature vector into the random forest classifier and the k-nearest
neighbor algorithm classifier. The offline handwritten signature recognition process in-
cluded data acquisition, preprocessing, feature extraction, feature fusion if the features
extracted here are multifeatures, feature dimensionality reduction, and finally, classification.
Figure 4 presents the flowchart of the proposed signature recognition approach.

3.1. Feature Extraction

Feature extraction is the essential stage of offline signature recognition. Good feature
selection represents a high recognition rate, and the quality of feature extraction methods
directly affects the recognition results. In the paper, we firstly presented a handwritten
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signature identification method based on improved LOMO [24,25] features. LOMO features
describe the signature image’s detailed information. We considered that the signature image
has a stable geometric structure, so the HOG gradient direction histogram feature was
used. Then, we proposed another handwritten signature recognition approach based on
the fusion feature. The extraction process of these two features is explained in detail below.
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3.1.1. Local Maximal Occurrence Representation

The LOMO [24,25] feature unites HSV color histogram and SILTP texture feature
descriptors and uses the maximum pooling method to obtain a more stable feature repre-
sentation. It was an efficient feature representation method. In the original LOMO feature,
the Retinex method was used to preprocess the image to produce a color image consistent
with the scene observed by humans. However, we did not use the Retinex method for pre-
processing and instead used the four steps described in Section 2. The HSV color histogram
was used for feature extraction of the preprocessed image. Because the signature image
does not have much color, the features extracted here were grayscale features. Immediately
after that, the scale-invariant ternary mode SILTP [27,28] method was applied to extract the
texture feature of the signature image.

We used a sliding window to describe the local details of the signature images. First,
the input signature image was horizontally segmented into five horizontal bars, the sliding
window size used was 10 × 10, and the step size was smaller than the sliding window
size so that each subwindow scan overlaps somewhat. Therefore, the set step size was five
pixels, and in every child window, we extracted two scales of SILTP histogram (SILTP0.3

4,3,
SILTP0.3

4,5) and an 8× 8× 8− bin joint HSV histogram. Immediately after, two 2× 2 local
mean pooling operations were performed and cascaded all features. The final descriptor
has 26,960 dimensions.

The extraction method of SILTP features is described in detail below.
SILTP is a scale-invariant local three-valued pattern derived from LBP texture features

and LTP features [28]. LBP feature extraction method and its improved algorithm have
achieved remarkable results in texture analysis and pattern recognition applications. SILTP
adds a point to LBP to describe the image with only one comparison but is robust to
illumination and retains the background texture information of soft shadows, making it
more robust. SILTP introduces the LTP tolerance range, thus making it robust. Figure 5
demonstrates the encoding process of LBP.
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The SILTP [27,28] algorithm introduces a threshold factor that adaptively generates
a comparison range, which reduces the probability of false positives and makes it better
to cope with noise and illumination variations. The algorithm compares two values: a
threshold value on the central pixel point value and all neighboring pixel points with radius
r of the central pixel point. The results are divided into the following three, whose SILTP is
encoded as presented in Equation (2).

SILTPt
Q,r(xc, yc) =

Q−1
⊕

d=0
St(Pc, Pd) (2)

St(Pc, Pd) =


01→ Pd 〉 (1 + t)Pc
10→ Pd 〈 (1− t)Pc
00→ others

 (3)

In the above equation, four Pc is the central pixel gray value, Pd is the corresponding
pixel gray value of the Q domain with r as the radius, ⊕ which means the binary values
of all domains are concatenated into a string, and t denotes the threshold range. Figure 6
shows the encoding procedure of the SILTP operator, where the obtained binary result
is encoded in the counterclockwise direction according to the formula, and the result is
0001011010000000.
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When there is noise in the image, the encoding value of SILTP does not change, and the
operator has good robustness. The local three-value model (SILTP) with scale invariance
increment the conclusion complexity of the histogram. For example, in a SILTP operator, a
certain domain has 38 features and eight domain LBP features are 28 eigenvalues. Therefore,
PCA is needed for dimensionality reduction to obtain the best features.

3.1.2. Histogram of Oriented Gradients

HOG [26] features, also known as a histogram of oriented gradient features, extract
the gradient information of image edges. Implement the edge gradient information in the
form of a histogram of gradients, and finally extract the edge features of the detection target
by comprehensive merging. Figure 7 shows the extraction process of HOG features.
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To reduce the influence of lighting factors, the whole image needs to be normalized
first. The local surface exposure contributes a large proportion of the image texture intensity,
so this correction process effectively reduces local shadows and lighting variations in the
image. Because color information plays a minor role, it is usually first converted into a
grayscale map.

The Gamma correction equation is below:

I(x, y) = I(x, y)gamma (4)

For example, one can take Gamma = 1/2. For extraction, the image is first divided into
small blocks of 10 × 10, then each small pixel’s horizontal gradient and vertical gradient
are found. Each pixel point will have two values of gradient direction and intensity. Then,
the gradient of every block in the histogram is counted. The HOG feature vector can
be obtained by iteratively computing each block immediately after the loop. A person’s
different signature images will be slightly different, not identical, but HOG is suitable for
such images, and the slight variations will not affect the results.

3.2. Classification

User identification is to identify who this tester is, so classification for offline hand-
written signature recognition is a vital stage. Regardless of the classifier chosen, we have to
use the training data for training, and after training the optimal model, we can use it for
our task. This paper chose a random forest classifier and k-nearest neighbor algorithm for
classification.

3.2.1. Principal Component Analysis

After extracting the 26,960-dimensional LOMO features and 3780-dimensional HOG
features, the two methods were fused in parallel. Since there would be much redundant
information, the principal component analysis method was used for the feature option.
The PCA algorithm was used to reduce the feature vectors to 100 and 128 dimensions,
respectively, and the best feature vector dimension was derived by comparing experiments.

3.2.2. Random Forest

Random forests are composed of many decision trees, so decision trees are introduced
first. Decision trees are supervised learning algorithms with if-then-else rules that are
more in line with intuitive human thinking. The logic diagram of the decision tree is
demonstrated in Figure 8.
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A random forest [29] is composed of many decision trees, such as the one shown
above, and each decision tree is not associated with the other. The steps of random forest
construction are as follows:

(1) First, generate a random sample of the training subset;



Information 2022, 13, 496 9 of 18

(2) Select attributes in the original signature dataset for node splitting;
(3) Repeat step (2) until no more splitting is possible, and find the optimal solution

among the selected feature values as the classification criteria;
(4) Build n decision trees to derive the classification results. The highest result is

obtained as the final classification result. Figure 9 demonstrates the flowchart of random
forest construction.
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3.2.3. K Nearest Neighbors

The k-nearest neighbor algorithm is usually used for classification and is a nonpara-
metric statistical method [30]. Its main idea is that the tested sample is similar to the
neighboring Q data, and the class of the tested sample is the same as the class of Q samples.
Therefore, the value of k is also extremely important, and the KNN method reclassifies
decisions with only a minimal number of neighboring samples. This paper also used
different k values to test the KNN model that is most suitable for our datasets.

4. Experimental Results

A total of four language datasets were used in this experiment. Among them, there
were 160 signers with 24 signature images each for Uyghur and Han languages. In
other words,320 signers provided 7680 offline handwritten signature images. Kazakh
had 151 signers with 24 signature images each. In order to verify the effectiveness of
the experiment, this paper also uses the open Latin offline handwritten signature dataset
CEDAR [12]. Since the main purpose of this study was to determine which signers the
signature to be tested belongs to, only all genuine signature samples in CEDAR (55 signers
with 24 signature images each) were used in this paper, for a total of 1320 signature im-
ages. In this paper, S (=6, 9, 12, 15, and 18) denotes the S signature images of each signer as
training data; the remaining were used as test data, and the signature images have no order.
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4.1. Evaluation Criteria

The performance of this presented approach was assessed using the average accuracy
(ACC), as demonstrated in Equation (3).

ACC =
1
m ∑m

i=1
R
D

(5)

where D is the quantity of all figures involved in the test, R denotes the number of correct
predictions of all data in the test, and m = 10. In this paper, each experiment was conducted
ten times, and the ACC was obtained by taking the average value.

4.2. Analysis of Experimental Results
4.2.1. Experimental Results Based on the LOMO Method

The datasets used for the experiments in this paper were four languages (Kazakh,
Han, Uyghur, CEDAR) with a total of 526 signers. The experiments on the offline signature
recognition method based on the local maximum occurrence (LOMO) feature were con-
ducted first. KNN and RF classifiers were used, respectively. Among them, the recognition
rates of Han, Kazakh, Uyghur, public dataset CEDAR, and multilingual mixed languages
based on Lomo features are shown in Figure 10 below.
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In Figure 10, we found that the most significant identification results were obtained
when the extraction method based on local maximum occurrence features was used and
the training set S was set to 16. When using the RF classifier, the recognition rate of a single
language was 92.83%. when using the KNN classifier, the recognition rate can reach 94.15%.
The recognition results of RF and KNN classifiers were compared, and we can conclude
that the identification rate of the LOMO feature-based recognition approach using the KNN
classifier was slightly higher than the recognition rate used in RF classifier.

The previous set of experiments concluded that the LOMO feature-based extraction
method has the best recognition when using the KNN classifier. Therefore, we have
conducted a set of experiments based on the KNN classifier recognition method. Table 2
demonstrates the results of the LOMO feature-based recognition method using a KNN
classifier with 100 and 128-dimensional feature vectors, respectively. This set of experiments
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was performed to validate the most suitable feature vector dimension of Lomo features
based on our datasets. It was finally concluded that when the extracted feature vectors are
downscaled to 100 dimensions, it can make our dataset achieves a better recognition rate.

Table 2. Recognition results of Lomo features of different dimensions.

Dataset Dimension Train Numbers

100 128 S = 14 S = 15 S = 16 S = 18

CEDAR
√

97.2 97.6 97.8 98.3√
97 97.3 97.2 97.7

Han (Chinese)
√

88.64 88.83 88.85 89.96√
88.01 88.1 88.22 88.91

Uyghur
√

90.49 91.1 91.7 92.24√
90.4 91.1 91.95 92.45

Kazakh
√

92.38 92.57 92.3 94.15√
92.85 92.94 92.72 94.59

Uyghur + Kazakh
√

86.33 86.68 87.37 87.83√
86.94 87.66 88.55 89.04

Han (Chinese) + Uyghur
√

82.49 83.23 83.13 83.91√
83.07 83.8 83.39 83.89

4.2.2. Recognition Results Based on HOG Feature Extraction

Figure 11 shows the results of the identification method based on gradient histogram
HOG features. In order to have a more visual representation, the results we have not only
shown in tabular form but also used histograms. When using this recognition method,
to obtain a better recognition model, we tried to input two feature vectors of different
dimensions into the classifier separately and compared the better combination. It was clear
from the above figure that when the KNN classifier was used, the recognition rate of the
100-dimensional HOG feature vector was slightly higher than that of the 128-dimensional
HOG features. It can be seen from the comparison that when the dimension was reduced
to 100 dimensions, the recognition rate on the CEDAR dataset reached 94.62%. Combined
with the histogram, one can see that the recognition method has better recognition results
on our self-built dataset, reaching 97.48% on the Kazakh signature dataset.
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Tables 3 and 4 show the results of extracting HOG features from signature images and
recognizing offline signatures of a single language and offline signatures of two languages
mixed. Table 3 shows the results of experiments in which 100-dimensional HOG features
are fed into two classifiers separately. It can be seen that when the KNN classifier is
used, the recognition rate on the single-language data set can reach 97.09%, while the
recognition rate is 96.77% when the RF classifier is used. Finally, it can be concluded
that the identification approach based on the KNN classifier was better. Therefore, on
the mixed, multilingual dataset, we have performed a set of recognition experiments that
send 100-dimensional and 128-dimensional feature vectors only to the KNN classifier.
Table 4 shows the results of the experiments we made. It can be seen that when S = 18,
the recognition rate of mixed multilingual (Uyghur + Kazakh) reaches 96.49% when using
100-dimensional feature vectors and 95.83% when using 128-dimensional feature vectors.
Through comparison, we can conclude that the recognition rate of 100-dimensional feature
vectors is higher than that of 128-dimensional feature vectors. Finally, it is concluded that
the proposed method is also applicable to mixed, multilingual datasets.

Table 3. Single language recognition results are based on HOG features.

Dataset Classifier

S = 14 S = 15 S = 16

KNN RF KNN RF KNN RF
Han(Chinese) 93.47 91.5 93.53 91.75 94.49 96.46

CEDAR 98.32 95.19 94.65 95.99 94.21 93.48
Uyghur 95.78 94.17 96.44 92.38 95.97 95.35
Kazakh 97.09 95.18 97 92.38 96.74 94.88

Table 4. Multilingual Mixed Signature Recognition Results Based on HOG Features.

Dataset Dimension Train Numbers

100 128 S = 14 S = 15 S = 16 S = 18

Han + Uyghur
√

93.86 93.83 94.36 94.46√
93.42 93.52 93.92 93.83

Uyghur + Kazakh
√

95.02 95.5 95.72 96.49√
94.13 94.68 94.8 95.83

4.2.3. Results of a Handwriting Signature Recognition Approach Based on Fused Features

Tables 5 and 6 show the result of the recognition approach based on fused local maxi-
mum occurrence features and gradient histogram features. Table 5 shows the recognition
results based on the RF classifier, while Table 6 demonstrates the recognition results using
the KNN classifier. It can be seen from Table 5 that when S = 18, the recognition rate of
a single language can reach 96.65%, while the recognition rate of a mixed multilanguage
is about 92%. Similarly, it can be seen from Table 6 that the recognition rate of a single
language is 96.76%, while the result of a mixed multilanguage can reach 96.38%. By com-
paring the two tables, it can be seen that the recognition rate using the KNN classifier is
higher by 1–3% than that using the RF classifier.

Figure 12 and Table 7 compare the experimental results of the recognition method
based on the local maximum LOMO feature, the recognition method based on the HOG
feature, and the recognition method based on the fusion feature of the public dataset
CEDAR. From the comparison, we can see the advantages of the Lomo algorithm, whether
using a 100-dimensional LOMO feature vector or a 128-dimensional LOMO feature vector
for handwritten signature recognition. Whether founded on the KNN classifier or RF
classifier, its recognition rate for the public dataset CEDAR was much higher than the
results of the gradient histogram-based recognition method. When the training set S is
set to 18, the recognition rate based on local maximum occurrence features reached 98.4%,
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which was higher than the recognition rate of HOG features alone by 1%. Figure 12 shows
the effectiveness of the LOMO feature in handwritten signature recognition.

Table 5. Used the RF classifier to identify the result after the fusion of the two features.

Dataset Train Numbers

S = 14 S = 15 S = 16 S = 18

CEDAR 94.35 95.54 95.44 95.74
Han(Chinese) 91.95 92.38 92.86 93.1

Uyghur 93 94.55 94.47 96.65
Kazakh 95.02 95.93 94.88 95.54

Han + Uyghur 90.73 91.23 91.58 92.87
Han + Uyghur + Kazakh 88.33 89.57 90.21 91.21

Uyghur + Kazakh 90.37 91.23 91.58 92.87
Han + Kazakh 91.13 91.2 91.63 92.48

Table 6. Used the KNN classifier to identify the result after the fusion of the two features.

S = 14 S = 15 S = 16 S = 18

CEDAR 94.22 94.08 94.33 93.99
Han (Chinese) 93.74 93.95 95.11 94.98

Uyghur 95.81 96.23 96.65 96.05
Kazakh 96.9 96.28 96.8 96.76

Han + Uyghur 94.74 95.34 95.46 96.38
Han + Uyghur + Kazakh 93.62 94.4 94.89 95.11

Uyghur + Kazakh 94.74 95.34 95.46 96.38
Han + Kazakh 94.53 94.37 94.66 95.92
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Table 7. Comparison of recognition results of CEDAR datasets based on different features.

Method Dimension Train Numbers

100 128 S = 15 S = 16 S = 18

RF KNN RF KNN RF KNN

HOG
√

95.99 94.65 96.46 94.21 96.77 94.62√
96.26 92.78 96.14 92.28 97.85 91.4

LomoHOG
√

95.54 94.33 95.44 94.08 95.74 94.22√
95.55 91.3 94.76 91.34 96.66 90.58

LOMO
√

97.3 97.6 96.5 97.8 98.4 98.3√
97 97.3 97.1 97.2 97.8 97.7

Table 8 shows the ablation experiments we performed to compare the results for the
three recognition methods applied to the mixed multilanguage dataset (Han (Chinese)+
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Uyghur) separately. The table shows that the recognition method based on fused local
maximum occurrence and histogram of oriented gradient features performs better than the
other two recognition methods. Although the authentication approach based on LOMO
features has achieved good results on the public dataset CEDAR, the recognition results
on the dataset we collected were not very satisfactory. In order to solve this problem, we
introduced the gradient histogram feature and improved the recognition rate by fusing the
two features. When S = 16, the recognition rate of the recognition method based on the
fusion feature is higher than that of the Lomo feature alone by 13.77% and higher than that
of the HOG feature alone by 2.07%. This shows that the proposed method was effective not
only for single-language datasets but also for multilingual datasets.

Table 8. Mixed multilanguage signature recognition results were based on different features.

Dataset Method Train Numbers

Han (Chinese) + Uyghur

S = 14 S = 15 S = 16

LomoHOG 90.73 91.23 91.58
Lomo 76.35 76.7 77.81
HOG 88.8 89.5 90.72

Table 9 demonstrates the experimental results of the recognition approach based on
fusion features of single-language and mixed, multilanguage datasets. We found that when
fused with LOMO features and HOG features, the recognition rate can reach 97.67% for a
single language dataset, 96.38% for two languages mixed, and 95.32% for three languages
mixed when using the KNN classifier in WD mode. When using the RF classifier for
recognition, the recognition rate was 96.66% for a single language dataset, 93.42% for a
mixture of two languages, and 91.06% for a combination of three languages.

Table 9. Results of different language recognition based on LomoHOG features.

Dataset Train Numbers

S = 15 S = 16 S = 18

RF KNN RF KNN RF KNN
CEDAR 95.55 91.3 94.76 91.34 96.66 90.58

Han (Chinese) 90.92 93.01 91.98 93.86 92.47 94.77
Uyghur 95.71 96.65 94.84 96.23 96.23 95.18
Kazakh 95.54 97.29 96.16 96.98 95.54 97.67

Han + Uyghur 91.01 95.39 91.12 95.46 91.22 94.46
Han + Uyghur + Kazakh 89.18 94.75 90.43 95.06 91.06 95.32

Uyghur + Kazakh 91.01 95.39 91.12 95.46 93.42 96.38
Han + Kazakh 90.67 94.31 91.44 94.47 92.8 95.27

In this study, we presented a recognition approach based on local maximum occur-
rence features, an authentication approach founded on the histogram of gradient direction
features, and a recognition method fusing LOMO features and HOG features for multilin-
gual offline handwritten signature recognition, respectively. Through ablation experiments,
it can be concluded that the recognition method combining LOMO features and HOG
features proposed by us is better than the first two methods, both for single-language and
mixed multilanguage recognition. From the above recognition results, it may be noted that
whether the RF classifier or KNN classifier was chosen for classification, regarded 14, 15,
and 16 signatures per person were optioned as the training set and the rest as the test set,
where the higher the number of training sets, the higher the correct recognition results. The
recognition results of the KNN classifier outperformed the recognition results of the RF
classifier when different features were extracted from the same training set, which proved
the advantage of the KNN classifier.
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4.3. Comparison of Experimental Results

With the aim of showing the effectiveness of the presented approach, we compared
our experimental results with the existing experimental results. Tables 10 and 11 show
the comparison results. It has been observed that both our presented offline signature
recognition method based on local maximum occurrence features and the recognition
method based on fusion features are better than some existing results on the public dataset
CEDAR. Our approach put forward was optimal for the recognition of offline multilingual
signature datasets. The above comparative analysis shows that the approach put forward
in this study has some general utility in offline handwritten signature recognition, which
provided a reference for the research of multilingual handwritten signature recognition.

Table 10. Results of Uyghur datasets and comparative experiments.

Reference Database Dataset Size/Training
Data Feature Classifier ACC

Aini, Z. et al. [31] Uyghur 600 samplestrain
300 samples Orientation feature Euclidean distance 92.58%

Shu-Jing, Z.,
et al. [11] Uyghur train 480 samples MRMR SVM 93.81%

Ubul, K., et al. [32] Uyghur 2500 samples, train
2000 samples

4MCLF-48 and
LCDC

weighted Manhattan
distance 94.60%

Xamxidin, N. [33] Uyghur 4000 sample,
train 2900 samples - IDN 94.32%

Ours Uyghur 3355 samples train
2240 samples LomoHOG KNN 96.41%

Ours Uyghur + Kazakh 6397 samples train
4269 samples LomoHOG KNN 94.74%

Table 11. Comparison of other research results on CEDAR datasets.

Reference Database Dataset Size/Training
Data Feature Classifier ACC

Batool, F. E.,
et al. [34] CEDAR 1320 samples

Train 840 samples GLCM SVM 96.45%

Souza, V. L. F.
et al. [35] CEDAR – – DCNN 96.73%

Kumari, K.
et al. [36] CEDAR - - SVM 94.9%

Culqui-Culqui, G.
et al. [37] CEDAR - - CNN-HDR 93.92%

Ours CEDAR 1320 samples train
825 samples LomoHOG RF 96.66%

Ours CEDAR 1320 samples train
825 samples Lomo RF 98.4%

5. Conclusions

This paper handled the problem of the lack of studies on offline signature recognition
of minority languages and no publicly available dataset. First, a dataset including three
languages (Han, Uyghur, and Kazakh) was built. Next, a handwritten signature recognition
method based on local maximum occurrence features (LOMO) was proposed. This method
achieved a recognition rate of 98.4% on the public dataset CEDAR. Then, considering
the great differences in writing style and font structure between the public data set and
the self-built data set, an offline signature recognition method based on fusing the local
maximum occurrence feature and histogram of oriented gradient features was proposed.
This method achieved a recognition rate of 96.8% for single-language signatures on the
self-built dataset and 96.41% for the mixed, multilingual signature dataset. Meanwhile,
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by setting the number of training data, the dimensionality of the feature vector, and the
classifier as independent variables, the best offline recognition model was found. In order
to reflect the robustness of the method in this paper, recognition was performed not only
on the KNN classifier but also on the RF classifier. By comparing and analyzing the final
recognition rate of the two classifiers on the dataset, it was concluded that the recognition
result of the KNN classifier was slightly higher than that of the RF classifier. It can be seen
that the research of this paper fills the blank of signature recognition of minority languages
in China. In the future, we want to extend the dataset and collect other languages, such as
Kirghiz. Moreover, different algorithms are considered to improve the accuracy further
and combine with our method.
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