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Abstract

We demonstrate the effectiveness of multilingual learning for unsupervised part-of-speech tag-

ging. The central assumption of our work is that by combining cues from multiple languages, the

structure of each becomes more apparent. We consider two ways of applying this intuition to the

problem of unsupervised part-of-speech tagging: a model that directly merges tag structures for

a pair of languages into a single sequence and a second model which instead incorporates mul-

tilingual context using latent variables. Both approaches are formulated as hierarchical Bayesian

models, using Markov Chain Monte Carlo sampling techniques for inference. Our results demon-

strate that by incorporating multilingual evidence we can achieve impressive performance gains

across a range of scenarios. We also found that performance improves steadily as the number of

available languages increases.

1. Introduction

In this paper, we explore the application of multilingual learning to part-of-speech tagging when no

annotation is available.1 The fundamental idea upon which our work is based is that the patterns of

ambiguity inherent in part-of-speech tag assignments differ across languages. At the lexical level, a

word with part-of-speech tag ambiguity in one language may correspond to an unambiguous word

in the other language. For example, the word “can” in English may function as an auxiliary verb,

a noun, or a regular verb. However, many other languages are likely to express these different

senses with three distinct lexemes. Languages also differ in their patterns of structural ambiguity.

For example, the presence of an article in English greatly reduces the ambiguity of the succeeding

tag. In languages without articles, however, this constraint is obviously absent. The key idea of

multilingual learning is that by combining natural cues from multiple languages, the structure of

each becomes more apparent.

Even in expressing the same meaning, languages take different syntactic routes, leading to

cross-lingual variation in part-of-speech patterns. Therefore, an effective multilingual model must

accurately represent common linguistic structure, yet remain flexible to the idiosyncrasies of each

language. This tension only becomes stronger as additional languages are added to the mix. Thus,

a key challenge of multilingual learning is to capture cross-lingual correlations while preserving

individual language tagsets, tag selections, and tag orderings.

1. Code, data sets, and the raw outputs of our experiments are available at

http://groups.csail.mit.edu/rbg/code/multiling pos.

c©2009 AI Access Foundation. All rights reserved.
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In this paper, we explore two different approaches for modeling cross-lingual correlations. The

first approach directly merges pairs of tag sequences into a single bilingual sequence, employing

joint distributions over aligned tag-pairs; for unaligned tags, language-specific distributions are still

used. The second approach models multilingual context using latent variables instead of explicit

node merging. For a group of aligned words, the multilingual context is encapsulated in the value of

a corresponding latent variable. Conditioned on the latent variable, the tagging decisions for each

language remain independent. In contrast to the first model, the architecture of the hidden variable

model allows it to scale gracefully as the number of languages increases.

Both approaches are formulated as hierarchical Bayesian models with an underlying trigram

HMM substructure for each language. The first model operates as a simple directed graphical

model with only one additional coupling parameter beyond the transition and emission parameters

used in monolingual HMMs. The latent variable model, on the other hand, is formulated as a

non-parametric model; it can be viewed as performing multilingual clustering on aligned sets of

tag variables. Each latent variable value indexes a separate distribution on tags for each language,

appropriate to the given context. For both models, we perform inference using Markov Chain Monte

Carlo sampling techniques.

We evaluate our models on a parallel corpus of eight languages: Bulgarian, Czech, English,

Estonian, Hungarian, Romanian, Serbian, and Slovene. We consider a range of scenarios that vary

from combinations of bilingual models to a single model that is jointly trained on all eight lan-

guages. Our results show consistent and robust improvements over a monolingual baseline for

almost all combinations of languages. When a complete tag lexicon is available and the latent vari-

able model is trained using eight languages, average performance increases from 91.1% accuracy

to 95%, more than halving the gap between unsupervised and supervised performance. In more re-

alistic cases, where the lexicon is restricted to only frequently occurring words, we see even larger

gaps between monolingual and multilingual performance. In one such scenario, average multilin-

gual performance increases to 82.8% from a monolingual baseline of 74.8%. For some language

pairs, the improvement is especially noteworthy; for instance, in complete lexicon scenario, Serbian

improves from 84.5% to 94.5% when paired with English.

We find that in most scenarios the latent variable model achieves higher performance than the

merged structure model, even when it too is restricted to pairs of languages. Moreover the hidden

variable model can effectively accommodate large numbers of languages which makes it a more

desirable framework for multilingual learning. However, we observe that the latent variable model

is somewhat sensitive to lexicon coverage. The performance of the merged structure model, on the

other hand, is more robust in this respect. In the case of the drastically reduced lexicon (with 100

words only), its performance is clearly better than the hidden variable model. This indicates that the

merged structure model might be a better choice for the languages that lack lexicon resources.

A surprising discovery of our experiments is the marked variation in the level of improvement

across language pairs. If the best pairing for each language is chosen by an oracle, average bilingual

performance reaches 95.4%, compared to average performance of 93.1% across all pairs. Our

experiments demonstrate that this variability is influenced by cross-lingual links between languages

as well as by the model under consideration. We identify several factors that contribute to the

success of language pairings, but none of them can uniquely predict which supplementary language

is most helpful. These results suggest that when multi-parallel corpora are available, a model that

simultaneously exploits all the languages – such as the latent variable model proposed here – is
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preferable to a strategy that selects one of the bilingual models. We found that performance tends

to improves steadily as the number of available languages increases.

In realistic scenarios, tagging resources for some number of languages may already be available.

Our models can easily exploit any amount of tagged data in any subset of available languages.

As our experiments show, as annotation is added, performance increases even for those languages

lacking resources.

The remainder of the paper is structured as follows. Section 2 compares our approach with

previous work on multilingual learning and unsupervised part-of-speech tagging. Section 3 presents

two approaches for modeling multilingual tag sequences, along with their inference procedures and

implementation details. Section 4 describes corpora used in the experiments, preprocessing steps

and various evaluation scenarios. The results of the experiments and their analysis are given in

Sections 5, and 6. We summarize our contributions and consider directions for future work in

Section 7.

2. Related Work

We identify two broad areas of related work: multilingual learning and inducing part-of-speech tags

without labeled data. Our discussion of multilingual learning focuses on unsupervised approaches

that incorporate two or more languages. We then describe related work on unsupervised and semi-

supervised models for part-of-speech tagging.

2.1 Multilingual Learning

The potential of multilingual data as a rich source of linguistic knowledge has been recognized since

the early days of empirical natural language processing. Because patterns of ambiguity vary greatly

across languages, unannotated multilingual data can serve as a learning signal in an unsupervised

setting. We are especially interested in methods to leverage more than two languages jointly, and

compare our approach with relevant prior work.

Multilingual learning may also be applied in a semi-supervised setting, typically by projecting

annotations across a parallel corpus to another language where such resources do not exist (e.g.,

Yarowsky, Ngai, & Wicentowski, 2000; Diab & Resnik, 2002; Padó & Lapata, 2006; Xi & Hwa,

2005). As our primary focus is on the unsupervised induction of cross-linguistic structures, we do

not address this area.

2.1.1 BILINGUAL LEARNING

Word sense disambiguation (WSD) was among the first successful applications of automated multi-

lingual learning (Dagan et al., 1991; Brown et al., 1991). Lexical ambiguity differs across languages

– each sense of a polysemous word in one language may translate to a distinct counterpart in another

language. This makes it possible to use aligned foreign-language words as a source of noisy super-

vision. Bilingual data has been leveraged in this way in a variety of WSD models (Brown et al.,

1991; Resnik & Yarowsky, 1997; Ng, Wang, & Chan, 2003; Diab & Resnik, 2002; Li & Li, 2002;

Bhattacharya, Getoor, & Bengio, 2004), and the quality of supervision provided by multilingual

data closely approximates that of manual annotation (Ng et al., 2003). Polysemy is one source of

ambiguity for part-of-speech tagging; thus our model implicitly leverages multilingual WSD in the

context of a higher-level syntactic analysis.
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Multilingual learning has previously been applied to syntactic analysis; a pioneering effort was

the inversion transduction grammar of Wu (1995). This method is trained on an unannotated parallel

corpus using a probabilistic bilingual lexicon and deterministic constraints on bilingual tree struc-

tures. The inside-outside algorithm (Baker, 1979) is used to learn parameters for manually specified

bilingual grammar. These ideas were extended by subsequent work on synchronous grammar in-

duction and hierarchical phrase-based translation (Wu & Wong, 1998; Chiang, 2005).

One characteristic of this family of methods is that they were designed for inherently multilin-

gual tasks such as machine translation and lexicon induction. While we share the goal of learning

from multilingual data, we seek to induce monolingual syntactic structures that can be applied even

when multilingual data is unavailable.

In this respect, our approach is closer to the unsupervised multilingual grammar induction work

of Kuhn (2004). Starting from the hypothesis that trees induced over parallel sentences should

exhibit cross-lingual structural similarities, Kuhn uses word-level alignments to constrain the set

of plausible syntactic constituents. These constraints are implemented through hand-crafted deter-

ministic rules, and are incorporated in expectation-maximization grammar induction to assign zero

likelihood to illegal bracketings. The probabilities of the productions are then estimated separately

for each language, and can be applied to monolingual data directly. Kuhn shows that this form of

multilingual training yields better monolingual parsing performance.

Our methods incorporate cross-lingual information in a fundamentally different manner. Rather

than using hand-crafted deterministic rules – which may require modification for each language

pair – we estimate probabilistic multilingual patterns directly from data. Moreover, the estimation

of multilingual patterns is incorporated directly into the tagging model itself.

Finally, multilingual learning has recently been applied to unsupervised morphological seg-

mentation (Snyder & Barzilay, 2008). This research is related, but moving from morphological to

syntactic analysis imposes new challenges. One key difference is that Snyder & Barzilay model

morphemes as unigrams, ignoring the transitions between morphemes. In syntactic analysis, transi-

tion information provides a crucial constraint, requiring a fundamentally different model structure.

2.1.2 BEYOND BILINGUAL LEARNING

While most work on multilingual learning focuses on bilingual analysis, some models operate on

more than one pair of languages. For instance, Genzel (2005) describes a method for inducing a

multilingual lexicon from a group of related languages. This work first induces bilingual models for

each pair of languages and then combines them. We take a different approach by simultaneously

learning from all languages, rather than combining bilingual results.

A related thread of research is multi-source machine translation (Och & Ney, 2001; Utiyama

& Isahara, 2006; Cohn & Lapata, 2007; Chen, Eisele, & Kay, 2008; Bertoldi, Barbaiani, Federico,

& Cattoni, 2008) where the goal is to translate from multiple source languages to a single target

language. By using multi-source corpora, these systems alleviate sparseness and increase transla-

tion coverage, thereby improving overall translation accuracy. Typically, multi-source translation

systems build separate bilingual models and then select a final translation from their output. For in-

stance, a method developed by Och and Ney (2001) generates several alternative translations from

source sentences expressed in different languages and selects the most likely candidate. Cohn and

Lapata (2007) consider a different generative model: rather than combining alternative sentence

translations in a post-processing step, their model estimates the target phrase translation distribu-
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tion by marginalizing over multiple translations from various source languages. While their model

combines multilingual information at the phrase level, at its core are estimates for phrase tables that

are obtained using bilingual models.

In contrast, we present an approach for unsupervised multilingual learning that builds a single

joint model across all languages. This makes maximal use of unlabeled data and sidesteps the

difficult problem of combining the output of multiple bilingual systems without supervision.

2.2 Unsupervised Part-of-Speech Tagging

Unsupervised part-of-speech tagging involves predicting the tags for words, without annotations of

the correct tags for any word tokens. Generally speaking, the unsupervised setting does permit the

use of declarative knowledge about the relationship between tags and word types, in the form of a

dictionary of the permissible tags for the most common words. This setup is referred to as “semi-

supervised” by Toutanova and Johnson (2008), but is considered “unsupervised” in most other pa-

pers on the topic (e.g., Goldwater & Griffiths, 2007). Our evaluation considers tag dictionaries of

varying levels of coverage.

Since the work of Merialdo (1994), the hidden Markov model (HMM) has been the most com-

mon representation2 for unsupervised tagging (Banko & Moore, 2004). Part-of-speech tags are

encoded as a linear chain of hidden variables, and words are treated as emitted observations. Recent

advances include the use of a fully Bayesian HMM (Johnson, 2007; Goldwater & Griffiths, 2007),

which places prior distributions on tag transition and word-emission probabilities. Such Bayesian

priors permit integration over parameter settings, yielding models that perform well across a range

of settings. This is particularly important in the case of small datasets, where many of the counts

used for maximum-likelihood parameter estimation will be sparse. The Bayesian setting also facil-

itates the integration of other data sources, and thus serves as the departure point for our work.

Several recent papers have explored the development of alternative training procedures and

model structures in an effort to incorporate more expressive features than permitted by the genera-

tive HMM. Smith and Eisner (2005) maintain the HMM structure, but incorporate a large number

of overlapping features in a conditional log-linear formulation. Contrastive estimation is used to

provide a training criterion which maximizes the probability of the observed sentences compared to

a set of similar sentences created by perturbing word order. The use of a large set of features and a

discriminative training procedure led to strong performance gains.

Toutanova and Johnson (2008) propose an LDA-style model for unsupervised part-of-speech

tagging, grouping words through a latent layer of ambiguity classes. Each ambiguity class corre-

sponds to a set of permissible tags; in many languages this set is tightly constrained by morpho-

logical features, thus allowing an incomplete tagging lexicon to be expanded. Haghighi and Klein

(2006) also use a variety of morphological features, learning in an undirected Markov Random Field

that permits overlapping features. They propagate information from a small number of labeled “pro-

totype” examples using the distributional similarity between prototype and non-prototype words.

Our focus is to effectively incorporate multilingual evidence, and we require a simple model

that can easily be applied to multiple languages with widely varying structural properties. We view

this direction as orthogonal to refining monolingual tagging models for any particular language.

2. In addition to the basic HMM architecture, other part-of-speech tagging approaches have been explored (Brill, 1995;

Mihalcea, 2004)
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Figure 1: Example graphical structures of (a) two standard monolingual HMMs, (b) our merged

node model, and (c) our latent variable model with three superlingual variables.

3. Models

The motivating hypothesis of this work is that patterns of ambiguity at the part-of-speech level differ

across languages in systematic ways. By considering multiple languages simultaneously, the total

inherent ambiguity can be reduced in each language. But with the potential advantages of leveraging

multilingual information comes the challenge of respecting language-specific characteristics such as

tag inventory, selection and order. To this end, we develop models that jointly tag parallel streams

of text in multiple languages, while maintaining language-specific tag sets and parameters over

transitions and emissions.
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Part-of-speech tags reflect the syntactic and semantic function of the tagged words. Across

languages, pairs of word tokens that are known to share semantic or syntactic function should have

tags that are related in systematic ways. The word alignment task in machine translation is to

identify just such pairs of words in parallel sentences. Aligned word pairs serve as the cross-lingual

anchors of our model, allowing information to be shared via joint tagging decisions. Research in

machine translation has produced robust tools for identifying word alignments; we use such a tool

as a black box and treat its output as a fixed, observed property of the parallel data.

Given a set of parallel sentences, we posit a hidden Markov model (HMM) for each language,

where the hidden states represent the tags and the emissions are the words. In the unsupervised

monolingual setting, inference on the part-of-speech tags is performed jointly with estimation of

parameters governing the relationship between tags and words (the emission probabilities) and be-

tween consecutive tags (the transition probabilities). Our multilingual models are built upon this

same structural foundation, so that the emission and transition parameters retain an identical inter-

pretation as in the monolingual setting. Thus, these parameters can be learned on parallel text and

later applied to monolingual data.

We consider two alternative approaches for incorporating cross-lingual information. In the first

model, the tags for aligned words are merged into single bi-tag nodes; in the second, latent variable

model, an additional layer of hidden superlingual tags instead exerts influence on the tags of clusters

of aligned words. The first model is primarily designed for bilingual data, while the second model

operates over any number of languages. Figure 1 provides a graphical model representation of the

monolingual, merged node, and latent variable models instantiated over a single parallel sentence.

Both the merged node and latent variable approaches are formalized as hierarchical Bayesian

models. This provides a principled probabilistic framework for integrating multiple sources of

information, and offers well-studied inference techniques. Table 1 summarizes the mathematical

notation used throughout this section. We now describe each model in depth.

3.1 Bilingual Unsupervised Tagging: A Merged Node Model

In the bilingual merged node model, cross-lingual context is incorporated by creating joint bi-tag

nodes for aligned words. It would be too strong to insist that aligned words have an identical

tag; indeed, it may not even be appropriate to assume that two languages share identical tag sets.

However, when two words are aligned, we do want to choose their tags jointly. To enable this, we

allow the values of the bi-tag nodes to range over all possible tag pairs 〈t, t′〉 ∈ T × T ′, where T

and T ′ represent the tagsets for each language.

The tags t and t′ need not be identical, but we do believe that they are systematically related.

This is modeled using a coupling distribution ω, which is multinomial over all tag pairs. The

parameter ω is combined with the standard transition distribution φ in a product-of-experts model.

Thus, the aligned tag pair 〈yi, y
′
j〉 is conditioned on the predecessors yi−1 and y′j−1, as well as the

coupling parameter ω(yi, y
′
j).
3 The coupled bi-tag nodes serve as bilingual “anchors” – due to the

Markov dependency structure, even unaligned words may benefit from cross-lingual information

that propagates from these nodes.

3. While describing the merged node model, we consider only the two languages ℓ and ℓ′, and use a simplified notation

in which we write 〈y, y′〉 to mean 〈yℓ, yℓ′〉. Similar abbreviations are used for the language-indexed parameters.
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Notation used in both models

xℓ
i – The ith word token of the sentence in language �.

yℓ
i – The ith tag of the sentence in language �.

a
ℓ,ℓ′ – The word alignments for the language pair 〈�, �′〉.

φℓ
t – The transition distribution (over tags), conditioned on tag t in lan-

guage �. We describe a bigram transition model, though our imple-

mentation uses trigrams (without bigram interpolations); the ex-

tension is trivial.

θℓ
t – The emission distribution (over words), conditioned on tag t in

language �.

φ0 – The parameter of the symmetric Dirichlet prior on the transition

distributions.

θ0 – The parameter of the symmetric Dirichlet prior on the emission

distributions.

Notation used in the merged node model

ω – A coupling parameter that assigns probability mass to each pair of

aligned tags.

ω0 – A Dirichlet prior on the coupling parameter.

Ab – Distribution over bilingual alignments.

Notation used in the latent variable model

π – A multinomial over the superlingual tags z.

α – The concentration parameter for π, controlling how much proba-

bility mass is allocated to the first few values.

zj – The setting of the jth superlingual tag, ranging over the set of in-

tegers, and indexing a distribution set in Ψ.

Ψz = 〈ψ1
z , ψ

2
z , . . . , ψ

n
z 〉 – The zth set of distributions over tags in all languages �1 through

�n.

G0 – A base distribution from which the Ψz are drawn, whose form is

a set of n symmetric Dirichlet distributions each with a parameter

ψ0.

Am – Distribution over multilingual alignments.

Table 1: Summary of notation used in the description of both models. As each sentence is treated

in isolation (conditioned on the parameters), the sentence indexing is left implicit.
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We now present a generative account of how the words in each sentence and the parameters

of the model are produced. This generative story forms the basis of our sampling-based inference

procedure.

3.1.1 MERGED NODE MODEL: GENERATIVE STORY

Our generative story assumes the existence of two tagsets, T and T ′, and two vocabularies W and

W ′ – one of each for each language. For ease of exposition, we formulate our model with bigram

tag dependencies. However, in our experiments we used a trigram model (without any bigram

interpolation), which is a trivial extension of the described model.

1. Transition and Emission Parameters. For each tag t ∈ T , draw a transition distribution φt

over tags T , and an emission distribution θt over wordsW . Both the transition and emission

distributions are multinomial, so they are drawn from their conjugate prior, the Dirichlet (Gel-

man, Carlin, Stern, & Rubin, 2004). We use symmetric Dirichlet priors, which encode only an

expectation about the uniformity of the induced multinomials, but not do encode preferences

for specific words or tags.

For each tag t ∈ T ′, draw a transition distribution φ′
t over tags T

′, and an emission distribution

θ′t over wordsW ′, both from symmetric Dirichlet priors.

2. Coupling Parameter. Draw a bilingual coupling distribution ω over tag pairs pairs T × T ′.

This distribution is multinomial with dimension |T | · |T ′|, and is drawn from a symmetric

Dirichlet prior ω0 over all tag pairs.

3. Data. For each bilingual parallel sentence:

(a) Draw an alignment a from a bilingual alignment distribution Ab. The following para-

graph defines a and Ab more formally.

(b) Draw a bilingual sequence of part-of-speech tags (y1, ..., ym), (y′1, ..., y
′
n) according to:

P ((y1, ..., ym), (y′1, ..., y
′
n)|a, φ, φ′, ω).4 This joint distribution thus conditions on the

alignment structure, the transition probabilities for both languages, and the coupling

distribution; a formal definition is given in Formula 1.

(c) For each part-of-speech tag yi in the first language, emit a word from the vocabularyW :

xi ∼ θyi
,

(d) For each part-of-speech tag y′j in the second language, emit a word from the vocabulary

W ′: x′
j ∼ θ′

y′

j
.

This completes the outline of the generative story. We now provide more detail on how align-

ments are handled, and on the distribution over coupled part-of-speech tag sequences.

Alignments An alignment a defines a bipartite graph between the words x and x
′ in two parallel

sentences . In particular, we represent a as a set of integer pairs, indicating the word indices.

Crossing edges are not permitted, as these would lead to cycles in the resulting graphical model;

thus, the existence of an edge (i, j) precludes any additional edges (i + a, j − b) or (i − a, j + b),

4. We use a special end state, rather than explicitly modeling sentence length. Thus the values ofm and n are determined

stochastically.
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for a, b ≥ 0. From a linguistic perspective, we assume that the edge (i, j) indicates that the words
xi and x′

j share some syntactic and/or semantic role in the bilingual parallel sentences.

From the perspective of the generative story, alignments are treated as draws from a distribu-

tion Ab. Since the alignments are always observed, we can remain agnostic about the distribution

Ab, except to require that it assign zero probability to alignments which either: (i) align a single

index in one language to multiple indices in the other language or (ii) contain crossing edges. The

resulting alignments are thus one-to-one, contain no crossing edges, and may be sparse or even

possibly empty. Our technique for obtaining alignments that display these properties is described in

Section 4.2.

Generating Tag Sequences In a standard hidden Markov model for part-of-speech tagging, the

tags are drawn as a Markov process from the transition distribution. This permits the probability

of a tag sequence to factor across the time steps. Our model employs a similar factorization: the

tags for unaligned words are drawn from their predecessor’s transition distribution, while joined tag

nodes are drawn from a product involving the coupling parameter and the transition distributions

for both languages.

More formally, given an alignment a and sets of transition parameters φ and φ′, we factor the

conditional probability of a bilingual tag sequence (y1, ..., ym), (y′1, ..., y
′
n) into transition probabil-

ities for unaligned tags, and joint probabilities over aligned tag pairs:

P ((y1, ..., ym), (y′1, ..., y
′
n)|a, φ, φ′, ω) =

∏

unaligned i

φyi−1
(yi)

∏

unaligned j

φ′
y′

j−1

(y′j)

∏

(i,j)∈a

P (yi, y
′
j |yi−1, y

′
j−1, φ, φ′, ω). (1)

Because the alignment contains no crossing edges, we can still model the tags as generated

sequentially by a stochastic process. We define the distribution over aligned tag pairs to be a product

of each language’s transition probability and the coupling probability:

P (yi, y
′
j |yi−1, y

′
j−1, φ, φ′, ω) =

φyi−1
(yi) φ′

y′

j−1

(y′j)ω(yi, y
′
j)

Z
. (2)

The normalization constant here is defined as:

Z =
∑

y,y′

φyi−1
(y) φ′

y′

j−1

(y′) ω(y, y′).

This factorization allows the language-specific transition probabilities to be shared across aligned

and unaligned tags.

Another way to view this probability distribution is as a product of three experts: the two tran-

sition parameters and the coupling parameter. Product-of-expert models (Hinton, 1999) allow each

information source to exercise very strong negative influence on the probability of tags that they

consider to be inappropriate, as compared with additive models. This is ideal for our setting, as it

prevents the coupling distribution from causing the model to generate a tag that is unacceptable from

the perspective of the monolingual transition distribution. In preliminary experiments we found that

a multiplicative approach was strongly preferable to additive models.
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3.1.2 MERGED NODE MODEL: INFERENCE

The goal of our inference procedure is to obtain transition and emission parameters θ and φ that can

be applied to monolingual test data. Ideally we would choose the parameters that have the highest

marginal probability, conditioned on the observed words x and alignments a,

θ̂, φ̂ = argmax
θ,φ

∫

P (θ, φ,y, ω|x,a, θ0, φ0, ω0)dydω.

While the structure of our model permits us to decompose the joint probability, it is not pos-

sible to analytically marginalize all of the hidden variables. We resort to standard Monte Carlo

approximation, in which marginalization is performed through sampling. By repeatedly sampling

individual hidden variables according to the appropriate distributions, we obtain a Markov chain

that is guaranteed to converge to a stationary distribution centered on the desired posterior. Thus,

after an initial burn-in phase, we can use the samples to approximate a marginal distribution over

any desired parameter (Gilks, Richardson, & Spiegelhalter, 1996).

The core element of our inference procedure is Gibbs sampling (Geman &Geman, 1984). Gibbs

sampling begins by randomly initializing all unobserved random variables; at each iteration, each

random variable ui is then sampled from the conditional distribution P (ui|u−i), where u−i refers

to all variables other than ui. Eventually, the distribution over samples drawn from this process will

converge to the unconditional joint distribution P (u) of the unobserved variables. When possible,
we avoid explicitly sampling variables which are not of direct interest, but rather integrate over

them. This technique is known as collapsed sampling; it is guaranteed never to increase sampling

variance, and will often reduce it (Liu, 1994).

In the merged node model, we need sample only the part-of-speech tags and the priors. We are

able to exactly marginalize the emission parameters θ and approximately marginalize the transition

and coupling parameters φ and ω (the approximations are required due to the re-normalized product

of experts — see below for more details). We draw repeated samples of the part-of-speech tags, and

construct a sample-based estimate of the underlying tag sequence. After sampling, we construct

maximum a posteriori estimates of the parameters of interest for each language, θ and φ.

Sampling Unaligned Tags For unaligned part-of-speech tags, the conditional sampling equations

are identical to the monolingual Bayesian hidden Markov model. The probability of each tag de-

composes into three factors:

P (yi|y−i,y
′,x,x′, θ0, φ0) ∝ P (xi|yi,y−i,x−i, θ0)P (yi|yi−1,y−i, φ0)P (yi+1|yi,y−i, φ0), (3)

which follows from the chain rule and the conditional independencies in the model. The first factor

is for the emission xi and the remaining two are for the transitions. We now derive the form of each

factor, marginalizing the parameters θ and φ.

For the emission factor, we can exactly marginalize the emission distribution θ, whose prior is

Dirichlet with hyperparameter θ0. The resulting distribution is a ratio of counts, where the prior acts

as a pseudo-count:

P (xi|y,x−i, θ0) =

∫

θyi

θyi
(xi)P (θyi

|y,x−i, θ0)dθyi
=

n(yi, xi) + θ0

n(yi) + |Wyi
|θ0

. (4)

Here, n(yi) is the number of occurrences of the tag yi in y−i, n(yi, xi) is the number of occur-
rences of the tag-word pair (yi, xi) in (y−i,x−i), andWyi

is the set of word types in the vocabulary
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W that can take tag yi. The integral is tractable due to Dirichlet-multinomial conjugacy, and an

identical marginalization was applied in the monolingual Bayesian HMM of Goldwater and Grif-

fiths (2007).

For unaligned tags, it is also possible to exactly marginalize the parameter φ governing transi-

tions. For the transition from i − 1 to i,

P (yi|yi−1,y−i, φ0) =

∫

φyi−1

φyi−1
(yi)P (φyi

|y−i, φ0)dφyi−1
=

n(yi−1, yi) + φ0

n(yi−1) + |T |φ0
. (5)

The factors here are similar to the emission probability: n(yi) is the number of occurrences of
the tag yi in y−i, n(yi−1, yi) is the number of occurrences of the tag sequence (yi−1, yi), and T is

the tagset. The probability for the transition from i to i + 1 is analogous.

Jointly Sampling Aligned Tags The situation for tags of aligned words is more complex. We

sample these tags jointly, considering all |T × T ′| possibilities. We begin by decomposing the
probability into three factors:

The first two factors are emissions, and are handled identically to the unaligned case (For-

mula 4). The expansion of the final, joint factor depends on the alignment of the succeeding tags.

If neither of the successors (in either language) are aligned, we have a product of the bilingual

coupling probability and four transition probabilities:

P (yi, y
′
j |y−i,y

′
−j , φ, φ′, ω) ∝ ω(yi, y

′
j)φyi−1

(yi)φyi
(yi+1)φ

′
y′

j−1

(y′j)φ
′
y′

j
(y′j+1).

Whenever one or more of the succeeding words is aligned, the sampling formulas must account

for the effect of the sampled tag on the joint probability of the succeeding tags, which is no longer

a simple multinomial transition probability. We give the formula for one such case—when we are

sampling a joint tag pair (yi, y
′
j), whose succeeding words (xi+1, x

′
j+1) are also aligned to one

another:

P (yi, yj |y−i, y
′
−j ,a, φ, φ′, ω) ∝ ω(yi, y

′
j)φyi−1

(yi)φ′
y′

j−1

(y′j)

[

φyi
(yi+1)φ′

y′

j
(y′j+1)

∑

t,t′ φyi
(t)φ′

y′

j
(t′)ω(t, t′)

]

. (6)

Intuitively, if ω puts all of its probability mass on a single assignment yi+1 = t, y′j+1 = t′,

then the transitions from i to i + 1 and j to j + 1 are irrelevant, and the final factor goes to one.
Conversely, if ω is indifferent and assigns equal probability to all pairs 〈t, t′〉, then the final fac-
tor becomes proportional to φyi

(yi+1)φ
′
y′

j
(y′j+1), which is the same as if xi+1 and xj+1 were not

aligned. In general, as the entropy of ω increases, the transition to the succeeding nodes exerts a

greater influence on yi and y′j . Similar equations can be derived for cases where the succeeding tags

are not aligned to each other, but one of them is aligned to another tag, e.g., xi+1 is aligned to x′
j+2.

As before, we would like to marginalize the parameters φ, φ′, and ω. Because these parameters

interact as a product-of-experts model, these marginalizations are approximations. The form of the

marginalizations for φ and φ′ are identical to Formula 5. For the coupling distribution,

Pω(yi, y
′
j |y−i,y

′
−j , ω0) ≈

n(yi, y
′
j) + ω0

N(a) + |T × T ′|ω0
, (7)

P (yi, y
′
j |y−i, y

′
−j , x, x

′,a, θ0, θ
′
0, φ, φ′, ω) ∝ P (xi|y, x−i, θ0)P (x′

j |y
′, x′−j , θ

′
0)P (yi, y

′
j |y−i, y

′
−j ,a, φ, φ′, ω).
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where n(yi, y
′
j) is the number of times tags yi and y′j were aligned, excluding i and j, and N(a)

is the total number of alignments. As above, the prior ω0 appears as a smoothing factor; in the

denominator it is multiplied by the dimensionality of ω, which is the size of the cross-product of the

two tagsets. Intuitively, this approximation would be exactly correct if each aligned tag had been

generated twice — once by the transition parameter and once by the coupling parameter — instead

of a single time by the product of experts.

The alternative to approximately marginalizing these parameters would be to sample them using

a Metropolis-Hastings scheme as in the work by Snyder, Naseem, Eisenstein, and Barzilay (2008).

The use of approximate marginalizations represents a bias-variance tradeoff, where the decreased

sampling variance justifies the bias introduced by the approximations, for practical numbers of

samples.

3.2 Multilingual Unsupervised Tagging: A Latent Variable Model

The model described in the previous section is designed for bilingual aligned data; as we will see

in Section 5, it exploits such data very effectively. However, many resources contain more than

two languages: for example, Europarl contains eleven, and the Multext-East corpus contains eight.

This raises the question of how best to exploit all available resources when multi-aligned data is

available.

One possibility would be to train separate bilingual models and then combine their output at test

time, either by voting or some other heuristic. However, we believe that cross-lingual information

reduces ambiguity at training time, so it would be preferable to learn frommultiple languages jointly

during training. Indeed, the results in Section 5 demonstrate that joint training outperforms such a

voting scheme.

Another alternative would be to try to extend the bilingual model developed in the previous

section. While such an extension is possible in principle, the merged node model does not scale well

in the case of multi-aligned data across more than two languages. Recall that we use merged nodes

to represent both tags for aligned words; the state space of such nodes grows as |T |L, exponential
in the number of languages L. Similarly, the coupling parameter ω has the same dimension, so

that the counts required for estimation become too sparse as the number of languages increases.

Moreover, the bi-tag model required removing crossing edges in the word-alignment, so as to avoid

cycles. This is unproblematic for pairs of aligned sentences, usually requiring the removal of less

than 5% of all edges (see Table 16 in Appendix A). However, as the number of languages grows, an

increasing number of alignments will have to be discarded.

Instead, we propose a new architecture specifically designed for the multilingual setting. As

before, we maintain HMM substructures for each language, so that the learned parameters can

easily be applied to monolingual data. However, rather than merging tag nodes for aligned words,

we introduce a layer of superlingual tags. The role of these latent nodes is to capture cross-lingual

patterns. Essentially they perform a non-parametric clustering over sets of aligned tags, encouraging

multilingual patterns that occur elsewhere in the corpus.

More concretely, for every set of aligned words, we add a superlingual tag with outgoing edges

to the relevant part-of-speech nodes. An example configuration is shown in Figure 1c. The super-

lingual tags are each generated independently, and they influence the selection of the part-of-speech

tags to which they are connected. As before, we use a product-of-experts model to combine these

cross-lingual cues with the standard HMM transition model.
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This setup scales well. Crossing and many-to-many alignments may be used without creating

cycles, as all cross-lingual information emanates from the hidden superlingual tags. Furthermore,

the size of the model and its parameter space scale linearly with the number of languages. We now

describe the role of the superlingual tags in more detail.

3.2.1 PROPAGATING CROSS-LINGUAL PATTERNS WITH SUPERLINGUAL TAGS

Each superlingual tag specifies a set of distributions — one for each language’s part-of-speech

tagset. In order to learn repeated cross-lingual patterns, we need to constrain the number of values

that the superlingual tags can take and thus the number of distributions they provide. For example,

we might allow the superlingual tags to take on integer values from 1 to K, with each integer

value indexing a separate set of tag distributions. Each set of distributions should correspond to a

discovered cross-lingual pattern in the data. For example, one set of distributions might favor nouns

in each language and another might favor verbs, though heterogenous distributions (e.g., favoring

determiners in one language and prepositions in others) are also possible.

Rather than fixing the number of superlingual tag values to an arbitrary size K, we leave it un-

bounded, using a non-parametric Bayesian model. To encourage the desired multilingual clustering

behavior, we use a Dirichlet process prior (Ferguson, 1973). Under this prior, high posterior prob-

ability is obtained only when a small number of values are used repeatedly. The actual number of

sampled values will thus be dictated by the data.

We draw an infinite sequence of distribution sets Ψ1, Ψ2, . . . from some base distribution G0.

Each Ψi is a set of distributions over tags, with one distribution per language, written ψ
(ℓ)
i . To

weight these sets of distributions, we draw an infinite sequence of mixture weights π1, π2, . . . from

a stick-breaking process, which defines a distribution over the integers with most probability mass

placed on some initial set of values. The pair of sequences π1, π2, . . . and Ψ1, Ψ2, . . . now define

the distribution over superlingual tags and their associated distributions on parts-of-speech. Each

superlingual tag z ∈ N is drawn with probability πz , and is associated with the set of multinomials

〈ψℓ
z, ψ

ℓ′

z , . . .〉.
As in the merged node model, the distribution over aligned part-of-speech tags is governed by

a product of experts. In this case, the incoming edges are from the superlingual tags (if any) and

the predecessor tag. We combine these distributions via their normalized product. Assuming tag

position i of language � is connected to M superlingual tags, the part-of-speech tag yi is drawn

according to,

yi ∼
φyi−1

(yi)
∏M

m=1 ψℓ
zm

(yi)

Z
, (8)

where φyi−1
indicates the transition distribution, zm is the value of themth connected superlingual

tag, and ψℓ
zm

(yi) indicates the tag distribution for language � given by Ψzm . The normalization Z is

obtained by summing this product over all possible values of yi.

This parameterization allows for a relatively simple parameter space. It also leads to a desirable

property: for a tag to have high probability, each of the incoming distributions must allow it. That is,

any expert can “veto” a potential tag by assigning it low probability, generally leading to consensus

decisions.

We now formalize this description by giving the stochastic generative process for the observed

data (raw parallel text and alignments), according to the multilingual model.
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3.2.2 LATENT VARIABLE MODEL: GENERATIVE STORY

For n languages, we assume the existence of n tagsets T 1, . . . , Tn and vocabularies,W 1, . . . , Wn,

one for each language. Table 1 summarizes all relevant parameters. For clarity the generative

process is described using only bigram transition dependencies, but our experiments use a trigram

model, without any bigram interpolations.

1. Transition and Emission Parameters. For each language � = 1, ..., n and for each tag
t ∈ T ℓ, draw a transition distribution φℓ

t over tags Tℓ and an emission distribution θℓ
t over

wordsW ℓ, all from symmetric Dirichlet priors of appropriate dimension.

2. Superlingual Tag Parameters. Draw an infinite sequence of sets of distributions over tags

Ψ1, Ψ2, . . ., where each Ψi is a set of n multinomials 〈ψ1
i , ψ

2
i , . . . ψ

n
i 〉, one for each of n

languages. Each multinomial ψℓ
i is a distribution over the tagset T ℓ, and is drawn from a

symmetric Dirichlet prior; these priors together comprise the base distributionG0, fromwhich

each Ψi is drawn.

At the same time, draw an infinite sequence of mixture weights π ∼ GEM(α), where
GEM(α) indicates the stick-breaking distribution (Sethuraman, 1994) with concentration
parameter α = 1. These parameters define a distribution over superlingual tags, or equiva-
lently over the part-of-speech distributions that they index:

z ∼
∑∞

k πkδk=z (9)

Ψ ∼
∑∞

k πkδΨ=Ψk
(10)

where δΨ=Ψk
is defined as one when Ψ = Ψk and zero otherwise. From Formula 10, we can

say that the set of multinomials Ψ is drawn from a Dirichlet process, conventionally written

DP (α, G0).

3. Data. For each multilingual parallel sentence:

(a) Draw an alignment a from multilingual alignment distribution Am. The alignment a

specifies sets of aligned indices across languages; each such set may consist of indices

in any subset of the languages.

(b) For each set of indices in a, draw a superlingual tag value z according to Formula 9.

(c) For each language �, for i = 1, . . . (until end-tag reached):

i. Draw a part-of-speech tag yi ∈ T ℓ according to Formula 8.

ii. Draw a word wi ∈ W ℓ according to the emission distribution θyi
.

One important difference from the merged node model generative story is that the distribution

over multilingual alignmentsAm is unconstrained: we can generate crossing and many-to-one align-

ments as needed. To perform Bayesian inference under this model we again use Gibbs sampling,

marginalizing parameters whenever possible.
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3.2.3 LATENT VARIABLE MODEL: INFERENCE

As in section 3.1.2, we employ a sampling-based inference procedure. Again, standard closed forms

are used to analytically marginalize the emission parameters θ, and approximate marginalizations

are applied to transition parameters φ, and superlingual tag distributions ψℓ
i ; similar techniques are

used to marginalize the superlingual tag mixture weights π. As before, these approximations would

be exact if each of the parameters in the numerator of Formula 8 were solely responsible for other

sampled tags.

We still must sample the part-of-speech tags y and superlingual tags z. The remainder of the

section describes the sampling equations for these variables.

Sampling Part-of-speech Tags To sample the part-of-speech tag for language � at position i we

draw from:

P (yℓ
i |y−(ℓ,i),x,a, z) ∝ P (xℓ

i |x
ℓ
−i,y

ℓ)P (yℓ
i+1|y

ℓ
i ,y−(ℓ,i),a, z)P (yℓ

i |y−(ℓ,i),a, z) (11)

where y−(ℓ,i) refers to all tags except y
ℓ
i . The first factor handles the emissions, and the latter two

factors are the generative probabilities of (i) the current tag given the previous tag and superlingual

tags, and (ii) the next tag given the current tag and superlingual tags. These two quantities are similar

to equation 8, except here we integrate over the transition parameter φyi−1
and the superlingual tag

parameters ωℓ
z . We end up with a product of integrals, each of which we compute in closed form.

Terms involving the transition distributions φ and the emission distributions θ are identical to

the bilingual case, as described in Section 3.1.2. The closed form for integrating over the parameter

of a superlingual tag with value z is given by:

∫

ψℓ
z(yi)P (ψℓ

z|ψ
ℓ
0)dψℓ

z =
n(z, yi, �) + ψℓ

0

n(z, �) + T ℓψℓ
0

where n(z, yi, �) is the number of times that tag yi is observed together with superlingual tag z in

language �, n(z, �) is the total number of times that superlingual tag z appears with an edge into

language �, and ψℓ
0 is a symmetric Dirichlet prior over tags for language �.

Sampling Superlingual Tags For each set of aligned words in the observed alignment a we need

to sample a superlingual tag z. Recall that z is an index into an infinite sequence

〈ψℓ1
1 , . . . , ψℓn

1 〉, 〈ψℓ1
2 , . . . , ψℓn

2 〉, . . . ,

where each ψℓ
z is a distribution over the tagset T

ℓ. The generative distribution over z is given by

Formula 9. In our sampling scheme, however, we integrate over all possible settings of the mixture

weights π using the standard Chinese Restaurant Process closed form (Escobar & West, 1995):

P
(

zi

∣

∣z−i,y
)

∝
∏

ℓ

P
(

yℓ
i

∣

∣zi, z−i,y−(ℓ,i)

)

·

{

1
k+α

n(zi) if zi ∈ z−i

α
k+α

otherwise
(12)

The first group of factors is the product of closed form probabilities for all tags connected to the

superlingual tag, conditioned on zi. Each of these factors is calculated in the same manner as

equation 11 above. The final factor is the standard Chinese Restaurant Process closed form for

posterior sampling from a Dirichlet process prior. In this factor, k is the total number of sampled

superlingual tags, n(zi) is the total number of times the value zi occurs in the sampled superlingual

tags, and α is the Dirichlet process concentration parameter (see Step 2 in Section 3.2.2).
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3.3 Implementation

This section describes implementation details that are necessary to reproduce our experiments. We

present details for the merged node and latent variable models, as well as our monolingual baseline.

3.3.1 INITIALIZATION

An initialization phase is required to generate initial settings for the word tags and hyperparameters,

and for the superlingual tags in the latent variable model. The initialization is as follows:

• Monolingual Model

– Tags: Random, with uniform probability among tag dictionary entries for the emitted

word.

– Hyperparameters θ0, φ0: Initialized to 1.0

• Merged Node Model

– Tags: Random, with uniform probability among tag dictionary entries for the emitted

word. For joined tag nodes, each slot is selected from the tag dictionary of the emitted

word in the appropriate language.

– Hyperparameters θ0, φ0, ω0: Initialized to 1.0

• Latent Variable Model

– Tags: Set to the final estimate from the monolingual model.

– Superlingual Tags: Initially a set of 14 superlingual tag values is assumed— each value

corresponds to one part-of-speech tag. Each alignment is assigned one of these 14 values

based on the most common initial part-of-speech tag of the words in the alignment.

– Hyperparameters θℓ
0, φ

ℓ
0: Initialized to 1.0

– Base Distribution Gℓ
0: Set to a symmetric Dirichlet distribution with parameter value

fixed to 1.0

– Concentration Parameter α: Set to 1.0 and remains fixed throughout.

3.3.2 HYPERPARAMETER ESTIMATION

Both models have symmetric Dirichlet priors θ0 and φ0, for the emission and transition distribu-

tions respectively. The merged node model also has symmetric Dirichlet prior ω0 on the coupling

parameter. We re-estimate these priors during inference, based on non-informative hyperpriors.

Hyperparameter re-estimation applies the Metropolis-Hastings algorithm after each full epoch

of sampling the tags. In addition, we run an initial 200 iterations to speed convergence. Metropolis-

Hastings is a sampling technique that draws a new value u from a proposal distribution, and makes

a stochastic decision about whether to accept the new sample (Gelman et al., 2004). This decision is

based on the proposal distribution and on the joint probability of u with the observed and sampled

variables xℓ and y
ℓ.

We assume an improper prior P (u) that assigns uniform probability mass over the positive reals,
and use a Gaussian proposal distribution with the mean set to the previous value of the parameter and
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variance set to one-tenth of the mean.5 For non-pathological proposal distributions, the Metropolis-

Hastings algorithm is guaranteed to converge in the limit to a stationary Markov chain centered on

the desired joint distribution. We observe an acceptance rate of approximately 1/6, which is in line

with standard recommendations for rapid convergence (Gelman et al., 2004).

3.3.3 FINAL PARAMETER ESTIMATES

The ultimate goal of training is to learn models that can be applied to unaligned monolingual data.

Thus, we need to construct estimates for the transition and emission parameters φ and θ. Our

sampling procedure focuses on the tags y. We construct maximum a posteriori estimates ŷ, indi-

cating the most likely tag sequences for the aligned training corpus. The predicted tags ŷ are then

combined with priors φ0 and θ0 to construct maximum a posteriori estimates of the transition and

emission parameters. These learned parameters are then applied to the monolingual test data to find

the highest probability tag sequences using the Viterbi algorithm.

For the monolingual and merged node models, we perform 200 iterations of sampling, and select

the modal tag settings in each slot. Further sampling was not found to produce different results. For

the latent variable model, we perform 1000 iterations of sampling, and select the modal tag values

from the last 100 samples.

4. Experimental Setup

We perform a series of empirical evaluations to quantify the contribution of bilingual and multilin-

gual information for unsupervised part-of-speech tagging. Our first evaluation follows the standard

procedures established for unsupervised part-of-speech tagging: given a tag dictionary (i.e., a set of

possible tags for each word type), the model selects the appropriate tag for each token occurring in

a text. We also evaluate tagger performance when the available dictionaries are incomplete (Smith

& Eisner, 2005; Goldwater & Griffiths, 2007). In all scenarios, the model is trained using only

untagged text.

In this section, we first describe the parallel data and part-of-speech annotations used for system

evaluation. Next we describe a monolingual baseline and the inference procedure used for testing.

4.1 Data

As a source of parallel data, we use Orwell’s novel “Nineteen Eighty Four” in the original English

as well as its translation to seven languages — Bulgarian, Czech, Estonian, Hungarian, Slovene,

Serbian and Romanian.6 Each translation was produced by a different translator and published in

print separately by different publishers.

This dataset has representatives from four language families — Slavic, Romance, Ugric and

Germanic. This data is distributed as part of the publicly available Multext-East corpus, Version 3

(Erjavec, 2004). The corpus provides detailed morphological annotation at the token level, including

part-of-speech tags. In addition, a lexicon for each language is provided.

5. This proposal is identical to the parameter re-estimation applied for emission and transition priors by Goldwater and

Griffiths (2007).

6. In our initial publication (Snyder et al., 2008), we used a subset of this data, only including sentences that have

one-to-one alignments between all four languages considered in that paper. The current set-up makes use of all the

sentences available in the corpus.
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Percentage Aligned

Sentences Words BG CS EN ET HU RO SL SR

Bulgarian (BG) 6681 101175 - 41.7 50.5 33.5 31.3 41.5 45.4 45.9

Czech (CS) 6750 102834 41.0 - 41.9 39.1 30.7 31.7 56.2 48.4

English (EN) 6736 118426 43.2 36.4 - 34.4 32.9 42.5 44.6 40.9

Estonian (ET) 6477 94900 35.7 42.4 42.9 - 33.8 29.2 44.8 39.7

Hungarian (HU) 6767 98428 32.2 32.0 39.6 32.6 - 26.9 34.6 30.3

Romanian (RO) 6519 118330 35.5 27.5 42.5 23.4 22.4 - 30.8 32.1

Slovene (SL) 6688 116908 39.3 49.4 45.2 36.4 29.1 31.2 - 51.2

Serbian (SR) 6676 112131 41.4 44.4 43.2 33.6 26.6 33.9 53.4 -

Table 2: Percentage of the words in the row language that have alignments when paired with the

column language.

The corpus consists of 118,426 English words in 6,736 sentences (see Table 3). Of these sen-

tences, the first 75% are used for training, taking advantage of the multilingual alignments. The

remaining 25% are used for evaluation. In the evaluation, only monolingual information is made

available to the model, to simulate performance on non-parallel data.

4.2 Alignments

In our experiments we use sentence-level alignments provided in the Multext-East corpus. Word-

level alignments are computed for each language pair using GIZA++ (Och & Ney, 2003). The

procedures for handling these alignments are different for the merged node and latent variable mod-

els.

4.2.1 MERGED NODE MODEL

We obtain 28 parallel bilingual corpora by considering all pairings of the eight languages. To

generate one-to-one alignments at the word level, we intersect the one-to-many alignments going in

each direction. This process results in alignment of about half the tokens in each bilingual parallel

corpus. We further automatically remove crossing alignment edges, as these would induce cycles in

the graphical model. We employ a simple heuristic: crossing alignment edges are removed based

on the order in which they appear from left to right; this step eliminates on average 3.62% of the

edges. Table 2 shows the number of aligned words for each language pair after removing crossing

edges. More detailed statistics about the total number of alignments are provided in Appendix A.

4.2.2 LATENT VARIABLE MODEL

As in the previous setting, we run GIZA++ on all 28 pairings of the 8 languages, taking the inter-

section of alignments in each direction. Since we want each latent superlingual variable to span as

many languages as possible, we aggregate pairwise lexical alignments into larger sets of densely

aligned words and assign a single latent superlingual variable to each such set. Specifically, for

each word token, we consider the set of the word itself and all word tokens to which it is aligned.

If pairwise alignments occur between 2/3 of all token pairs in this set, then it is considered densely
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Figure 2: An example of a multilingual alignment configuration. Nodes correspond to words to-

kens, and are labeled by their language. Edges indicate pairwise alignments produced

by GIZA++. Boxes indicate alignment sets, though the set C1 is subsumed by C2 and

eventually discarded, as described in the text.

connected and is admitted as an alignment set. Otherwise, increasingly smaller subsets are consid-

ered until one that is densely connected is found. This procedure is repeated for all word tokens

in the corpus that have at least one alignment. Finally, the alignment sets are pruned by removing

those which are subsets of larger alignment sets. Each of the remaining sets is considered the site

of a latent superlingual variable.

This process can be illustrated by an example. The sentence “I know you, the eyes seemed to

say, I see through you,” appears in the original English version of the corpus. The English word

token seemed is aligned to word tokens in Serbian (činilo), Estonian (näis), and Slovenian (zdelo).

The Estonian and Slovenian tokens are aligned to each other. Finally, the Serbian token is aligned to

a Hungarian word token (mintha), which is itself not aligned to any other tokens. This configuration

is shown in Figure 2, with the nodes labeled by the two-letter language abbreviations.

We now construct alignment sets for these words.

• For the Hungarian word, there is only one other aligned word, in Serbian, so the alignment
set consists only of this pair (C1 in the figure).

• The Serbian word has aligned partners in both Hungarian and English; overall this set has
two pairwise alignments out of a possible three, as the English and Hungarian words are

not aligned. Still, since 2/3 of the possible alignments are present, an alignment set (C2) is

formed. C1 is subsumed by C2, so it is eliminated.

• The English word is aligned to tokens in Serbian, Estonian, and Slovenian; four of six possible
links are present, so an alignment set (C3) is formed. Note that if the Estonian and Slovenian

words were not aligned to each other then we would have only three of six links, so the set
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would not be densely connected by our definition; we would then remove a member of the

alignment set.

• The Estonian token is aligned to words in Slovenian and English; all three pairwise alignments
are present, so an alignment set (C4) is formed. An identical alignment set is formed by

starting with the Slovenian word, but only one superlingual tag is created.

Thus, for these five word tokens, a total of three overlapping alignment sets are created. Over

the entire corpus, this process results in 284,581 alignment sets, covering 76% of all word tokens.

Of these tokens, 61% occur in exactly one alignment set, 29% occur in exactly two alignment sets,

and the remaining 10% occur in three or more alignment sets. Of all alignment sets, 32% include

words in just two languages, 26% include words in exactly three languages, and the remaining 42%

include words in four or more languages. The sets remain fixed during sampling and are treated by

the model as observed data.

Number Tags per token when lexicon contains ... Trigram

of Tokens all words count > 5 count > 10 top 100 words Entropy

Bulgarian (BG) 101175 1.39 4.61 5.48 7.33 1.63

Czech (CS) 102834 1.35 5.27 6.37 8.24 1.64

English (EN) 118426 1.49 3.11 3.81 6.21 1.51

Estonian (ET) 94900 1.36 4.91 5.82 7.34 1.61

Hungarian (HU) 98428 1.29 5.42 6.41 7.85 1.62

Romanian (RO) 118330 1.55 4.49 5.53 8.54 1.73

Slovene (SL) 116908 1.33 4.59 5.49 7.23 1.64

Serbian (SR) 112131 1.38 4.76 5.73 7.61 1.73

Table 3: Corpus size and tag/token ratio for each language in the set. The last column shows the

trigram entropy for each language based on the annotations provided with the corpus.

4.3 Tagset

The Multext-East corpus is manually annotated with detailed morphosyntactic information. In our

experiments, we focus on the main syntactic category encoded as the first letter of the provided

labels. The annotation distinguishes between 14 parts-of-speech, of which 11 are common for all

languages in our experiments. Appendix B lists the tag repository for each of the eight languages.

In our first experiment, we assume that a complete tag lexicon is available, so that the set of

possible parts-of-speech for each word is known in advance. We use the tag dictionaries provided

in the Multext-East corpus. The average number of possible tags per token is 1.39. We also experi-

mented with incomplete tag dictionaries, where entries are only available for words appearing more

than five or ten times in the corpus. For other words, the entire tagset of 14 tags is considered. In

these two scenarios, the average per-token tag ambiguity is 4.65 and 5.58, respectively. Finally we

also considered the case when lexicon entries are available for only the 100 most frequent words.

In this case the average tags per token ambiguity is 7.54. Table 3 shows the specific tag/token ratio

for each language for all scenarios.
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In the Multext-East corpus, punctuation marks are not annotated with part-of-speech tags. We

expand the tag repository by defining a separate tag for all punctuation marks. This allows the model

to make use of any transition or coupling patterns involving punctuation marks. However, we do

not consider punctuation tokens when computing model accuracy.

4.4 Monolingual Comparisons

As our monolingual baseline we use the unsupervised Bayesian hidden Markov model (HMM) of

Goldwater and Griffiths (2007). This model, which they call BHMM1, modifies the standard HMM

by adding priors and by performing Bayesian inference. Its performance is on par with state-of-

the-art unsupervised models. The Bayesian HMM is a particularly informative baseline because

our model reduces to this baseline when there are no alignments in the data. This implies that any

performance gain over the baseline can only be attributed to the multilingual aspect of our model.

We used our own implementation after verifying that its performance on the Penn Treebank corpus

was identical to that reported by Goldwater and Griffiths.

To provide an additional point of comparison, we use a supervised hiddenMarkov model trained

using the annotated corpus. We apply the standard maximum-likelihood estimation and perform in-

ference using Viterbi decoding with pseudo-count smoothing for unknown words (Rabiner, 1989).

In Appendix C we also report supervised results using the “Stanford Tagger”, version 1.67. Al-

though the results are slightly lower than our own supervised HMM implementation, we note that

this system is not directly comparable to our set-up, as it does not allow the use of a tag dictionary

to constrain part-of-speech selections.

4.5 Test Set Inference

We use the same procedure to apply all the models (the monolingual model, the bilingual merged

node model, and the latent variable model) to test data. After training, trigram transition and word

emission probabilities are computed, using the counts of tags assigned in the final training iteration.

Similarly, the final sampled values of the hyperparameters are selected as smoothing parameters. We

then apply Viterbi decoding to identify the highest probability tag sequences for each monolingual

test set. We report results for multilingual and monolingual experiments averaged over five runs and

for bilingual experiments averaged over three runs. The average standard-deviation of accuracy over

multiple runs is less than 0.25 except when the lexicon is limited to the 100 most frequent words.

In that case the standard deviation is 1.11 for monolingual model, 0.85 for merged node model and

1.40 for latent variable model.

5. Results

In this section, we first report the performance for the two models on the full and reduced lexicon

cases. Next, we report results for a semi-supervised experiment, where a subset of the languages

have annotated text at training time. Finally, we investigate the sensitivity of both models to hyper-

parameter values and provide run time statistics for the latent variable model for increasing numbers

of languages.

7. http://nlp.stanford.edu/software/tagger.shtml
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Avg BG CS EN ET HU RO SL SR

1. Random 83.3 82.5 86.9 80.7 84.0 85.7 78.2 84.5 83.5

2. Monolingual 91.2 88.7 93.9 95.8 92.7 95.3 91.1 87.4 84.5

3. MERGEDNODE: average 93.2 91.3 96.9 95.9 93.3 96.7 91.9 89.3 90.2

4. LATENTVARIABLE 95.0 92.6 98.2 95.0 94.6 96.7 95.1 95.8 92.3

5. Supervised 97.3 96.8 98.6 97.2 97.0 97.8 97.7 97.0 96.6

6. MERGEDNODE: voting 93.0 91.6 97.4 96.1 94.3 96.8 91.6 87.9 88.2

7. MERGEDNODE: best pair 95.4 94.7 97.8 96.1 94.2 96.9 94.1 94.8 94.5

Table 4: Tagging accuracy with complete tag dictionaries. The first column reports average results

across all languages (see Table 3 for language name abbreviations). The latent variable

model is trained using all eight languages, whereas the merged node models are trained on

language pairs. In the latter case, results are given by averaging over all pairings (line 3),

by having all bilingual models vote on each tag prediction (line 6), and by having an oracle

select the best pairing for each target language (line 7). All differences between LATENT-

VARIABLE, MERGEDNODE: voting, and Monolingual (lines 2, 4, and 6) are statistically

significant at p < 0.05 according to a sign test.

5.1 Full Lexicon Experiments

Our experiments show that both the merged node and latent variable models substantially improve

tagging accuracy. Since the merged node model is restricted to pairs of languages, we provide

average results over all possible pairings. In addition, we also consider two methods for combining

predictions from multiple bilingual pairings: one using a voting scheme and the other employing an

oracle to select the best pairings (see below for additional details).

As shown in Line 4 of Table 4, the merged node model achieves, on average, 93.2% accuracy,

a two percentage point improvement over the monolingual baseline.8 The latent variable model —

trained once on all eight languages — achieves 95% accuracy, nearly two percentage points higher

than the bilingual merged node model. These two results correspond to error reductions of 23% and

43% respectively, and reduce the gap between unsupervised and supervised performance by over

30% and 60%.

As mentioned above, we also employ a voting scheme to combine information from multiple

languages using the merged node model. Under this scheme, we train bilingual merged node models

for each language pair. Then, when making tag predictions for a particular language — e.g., Roma-

nian — we consider the preferences of each bilingual model trained with Romanian and a second

language. The tag preferred by a plurality of models is selected. The results for this method are

shown in line 6 of Table 4, and do not differ significantly from the average bilingual performance.

Thus, this simple method of combining information from multiple language does not measure up to

the joint multilingual model performance.

8. The accuracy of the monolingual English tagger is relatively high compared to the 87% reported by Goldwater and

Griffiths (2007) on the WSJ corpus. We attribute this discrepancy to the differences in tag inventory used in our

data-set. For example, when Particles and Prepositions are merged in the WSJ corpus (as they happen to be in our

tag inventory and corpus), the performance of Goldwater’s model on WSJ is similar to what we report here.
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Figure 3: Summary of model performance in full and reduced lexicon conditions. Improvement

over the random baseline is indicated for the monolingual baseline, the merged node

model (average performance over all possible bilingual pairings), and the latent variable

model (trained on all eight languages). “Counts > x” indicates that only words with

counts greater than x were kept in the lexicon; “Top 100” keeps only the 100 most com-

mon words.

We use the sign test to assess whether there are statistically significant differences in the accu-

racy of the tag predictions made by the monolingual baseline (line 2 of Table 4), the latent variable

model (line 4), and the voting-based merged node model (line 6). All differences in these rows are

found to be statistically significant at p < 0.05. Note that we cannot use the sign test to compare the
average performance of the bilingual model (line 3), since this result is an aggregate over accuracies

for every language pair.

5.2 Reduced Lexicon Experiments

In realistic application scenarios, we may not have a tag dictionary with coverage across the en-

tire lexicon. We consider three reduced lexicons: removing all words with counts of five or less;

removing all words with counts of ten or less; and keeping only the top 100 most frequent words.

Words that are removed from the lexicon can take any tag, increasing the overall difficulty of the

task. These results are shown in Table 5 and graphically summarized in Figure 3. In all cases, the

monolingual model is less robust to reduction in lexicon coverage than the multilingual models. In

the case of the 100 word lexicon, the latent variable model achieves accuracy of 57.9%, compared to

53.8% for the monolingual baseline. The merged node model, on the other hand, achieves a slightly

higher average performance of 59.5%. In the two other scenarios, the latent variable model trained

on all eight languages outperforms the bilingual merged node model, even when an oracle selects

the best bilingual pairing for each target language. For example, using the lexicon with words that

appear greater than five times, the monolingual baseline achieves 74.7% accuracy, the merged node

model using the best possible pairings achieves 81.7% accuracy, and the full latent variable model

achieves an accuracy of 82.8%.
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Avg BG CS EN ET HU RO SL SR

C
o
u
n
ts

>
5

Random 63.6 62.9 62 71.8 61.6 61.3 62.8 64.8 61.8

Monolingual 74.8 73.5 72.2 87.3 72.5 73.5 77.1 75.7 66.3

MERGEDNODE: average 80.1 80.2 79 90.4 76.5 77.3 82.7 78.7 75.9

LATENTVARIABLE 82.8 81.3 83.0 88.1 80.6 80.8 86.1 83.6 78.8

MERGEDNODE: voting 80.4 80.4 78.5 90.7 76.4 76.8 84.0 79.7 76.4

MERGEDNODE: best pair 81.7 82.7 79.7 90.7 77.5 78 84.4 80.9 79.4

C
o
u
n
ts

>
1
0

Random 57.9 57.5 54.7 68.3 56 55.1 57.2 59.2 55.5

Monolingual 70.9 71.9 66.7 84.4 68.3 69.0 73.0 70.4 63.7

MERGEDNODE: average 77.2 77.8 75.3 88.8 72.9 73.8 80.5 76.1 72.4

LATENTVARIABLE 79.7 78.8† 79.4 86.1 77.9 76.4 83.1 80.0 75.9

MERGEDNODE: voting 77.5 78.4† 75.3 89.2 73.1 73.3 81.7 76.1 73.1

MERGEDNODE: best pair 79.0 80.2 76.7 89.4 74.9 75.2 82.1 77.6 76.1

T
o
p
1
0
0

Random 37.3 36.7 32.1 48.9 36.6 36.4 33.7 39.8 33.8

Monolingual 53.8 60.9‡ 44.1 69.0 54.8∗ 56.8 51.4 49.4 44.0

MERGEDNODE: average 59.6 60.1 52.5 73.5 59.5 59.4 61.4 56.6 53.4

LATENTVARIABLE 57.9 65.5 49.3 71.6 54.3∗ 51.0 57.5 53.9 60.4

MERGEDNODE: voting 62.4 61.5‡ 55.4 74.8 62.2 60.9 64.3 62.3 57.5

MERGEDNODE: best pair 63.6 64.7 55.3 77.4 61.5 60.2 69.3 63.1 56.9

Table 5: Tagging accuracy in reduced lexicon conditions. “Counts > x” indicates that only words

with counts greater than x were kept in the lexicon; “Top 100” keeps only the 100 most

common words. The latent variable model is trained using all eight languages, whereas

the merged node models are trained on language pairs. In the latter case, results are given

by averaging over all pairings, by having all bilingual models vote on each tag prediction,

and by having an oracle select the best pairing for each target language. Other than the

three pairs of results marked with †, ‡, and ∗, all differences between “monolingual”,
“LATENTVARIABLE”, and “MERGEDNODE: voting” are statistically significant at p <

0.05 according to a sign test.

Next we consider the performance of the bilingual merged node model when the lexicon is

reduced for only one of the two languages. This condition may occur when dealing with two lan-

guages with asymmetric resources, in terms of unannotated text. As shown in Table 6, the merged

models on average scores 5.7 points higher than the monolingual model when both tag dictionar-

ies are reduced, but 14.3 points higher when the partner language has a full tag dictionary. This

suggests that the bilingual models effectively transfer the additional lexical information available

for the resource-rich language to the resource-poor language, yielding substantial performance im-

provements.

Perhaps the most surprising result is that the resource-rich language gains as much on average

from pairing with the resource-poor partner language as it would have gained from pairing with a

language with a full lexicon. In both cases, an average accuracy of 93.2% is achieved, compared to

the 91.1% monolingual baseline.
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Monolingual Bilingual (Merged Node)

Reduced Full Both reduced Reduced language Unreduced language Both full

BG 60.9 88.7 60.1 71.3 91.6 91.3

CS 44.1 93.9 52.5 66.7 97.1 96.9

EN 69.0 95.8 73.5 82.4 95.8 95.9

ET 54.8 92.7 59.5 65.6 93.3 93.3

HU 56.8 95.3 59.4 63.0 96.7 96.7

RO 51.4 91.1 61.4 69.3 91.5 91.9

SL 49.4 87.4 56.6 63.3 89.1 89.3

SR 44.0 84.5 53.4 63.6 90.3 90.2

Avg. 53.8 91.2 59.5 68.1 93.2 93.2

Table 6: Various scenarios for reducing the tag dictionary to the 100 most frequent terms.

5.3 Indirect Supervision

Although the main focus of this paper is unsupervised learning, we also provide some results in-

dicating that multilingual learning can be applied to scenarios with varying amounts of annotated

data. These scenarios are in fact quite realistic, as previously trained and highly accurate taggers

will usually be available for at least some of the languages in a parallel corpus. We apply our latent

variable model to these scenarios by simply treating the tags of annotated data (in any subset of

languages) as fixed and observed throughout the sampling procedure. From a strictly probabilistic

perspective this is the correct approach. However, we note that, in practice, heuristics and objec-

tive functions which place greater emphasis on the supervised portion of the data may yield better

results. We do not explore that possibility here.

supervised language(s)...

BG CS EN ET HU RO SL SR All others None

a
cc
u
ra
cy
fo
r.
..

BG 69.1 68.0 65.9 60.4 67.1 73.9 69.6 76.2 65.5

CS 50.8 52.2 50.2 51.2 51.0 56.6 53.1 76.6 49.3

EN 62.6 70.5 68.1 61.8 61.9 80.6 69.5 82.8 71.6

ET 57.2 58.0 57.7 56.1 56.4 59.8 57.1 72.5 54.3

HU 50.3 50.0 53.1 51.4 51.1 49.8 50.0 62.3 51.0

RO 62.8 61.6 61.3 57.8 58.5 62.9 59.2 74.9 57.5

SL 55.0 56.8 55.6 53.2 54.4 54.7 56.2 77.7 53.9

SR 64.9 65.9 64.1 63.5 61.6 63.4 69.9 72.5 60.4

Avg 57.7 61.7 58.9 58.6 57.7 57.9 64.8 59.2 74.4 57.9

Table 7: Performance of the latent variable model when some of the eight languages have super-

vised annotations and the others have only the most frequent 100 words lexicon. The

first eight columns report results when only one of the eight languages is supervised. The

penultimate column reports results when all but one of the languages are supervised. The

final column reports results when no supervision is available (repeated from Table 5 for

convenience).
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Table 7 gives results for two scenarios of indirect supervision: where only one of the eight

languages has annotated data, and where all but one of the languages has annotated data. In both

cases, the unsupervised languages are provided with a 100 word lexicon, and all eight languages are

trained together. When only one of the eight languages is supervised, the results vary depending on

the choice of supervised language. When one of Bulgarian, Hungarian, or Romanian is supervised,

no improvement is seen, on average, for the other seven languages. However, when Slovene is su-

pervised, the improvement seen for the other languages is fairly substantial, with average accuracy

rising to 64.8%, from 57.9% for the unsupervised latent variable model and 53.8% for the mono-

lingual baseline. Perhaps unsurprisingly, the results are more impressive when all but one of the

languages is supervised. In this case, the average accuracy of the lone unsupervised language rises

to 74.4%. Taken together, these results indicate that any mixture of supervised resources may be

added to the mix in a very simple and straightforward way, often yielding substantial improvements

for the other languages.

5.4 Hyperarameter Sensitivity and Runtime Statistics

Both models employ hyperparameters for the emission and transition distribution priors (θ0 and φ0

respectively) and the merged node model employs an additional hyperparameter for the coupling

distribution prior (ω0). These hyperparameters are all updated throughout the inference procedure.

The latent variable model uses two additional hyperparameters that remained fixed: the concen-

tration parameter of the Dirichlet process (α) and the parameter of the base distribution for super-

lingual tags (ψ0). For the experiments described above we used the initialization values listed in

Section 3.3.1. Here we investigate the sensitivity of the models to different initializations of θ0,

φ0, and ω0, and to different fixed values of α and ψ0. Tables 8 and 9 show the results obtained

for the merged node and latent variable models, respectively, using a full lexicon. We observe that

across a wide range of values, both models yield very similar results. In addition, we note that the

final sampled hyperparameter values for transition and emission distributions always fall below one,

indicating that sparse priors are preferred.

As mentioned in Section 3.2 one of the key theoretical benefits of the latent variable approach is

that the size of the model and its parameter space scale linearly with the number of languages. Here

we provide empirical confirmation by running the latent variable model on all possible subsets of

the eight languages, recording the time elapsed for each run9. Figure 4 shows the average running

time as the number of languages is increased (averaged over all subsets of each size). We see that the

model running time indeed scales linearly as languages are added, and that the per-language running

time increases very slowly: when all eight languages are included, the time taken is roughly double

that for eight monolingual models run serially. Both of our models scale well with tagset size and

the number of examples. The time dependence on the former is cubic, as we use trigram models and

employ Viterbi decoding to find optimal sequences at test-time. During the training time, however,

the time scales linearly with the tagset size for the latent variable model and quadratically for the

merged node model. This is due to the use of Gibbs sampling that isolates the individual sampling

decision on tags (for the latent variable model) and tag-pairs (for the merged node model). The

dependence on the number of training examples is also linear for the same reason.

9. All experiments were single-threaded and run using an Intel Xeon 3.0 GHz processor
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MERGEDNODE: hyperparameter initializations

φ0 1.0 0.1 0.01 1.0 1.0 1.0 1.0

θ0 1.0 1.0 1.0 0.1 0.01 1.0 1.0

ω0 1.0 1.0 1.0 1.0 1.0 0.1 0.01

BG 91.3 91.3 91.3 91.3 91.2 91.1 91.3

CS 96.9 97.0 97.0 96.9 96.8 96.5 97.1

EN 95.9 95.9 95.9 95.9 95.9 95.9 95.9

ET 93.3 93.4 93.3 93.4 93.2 93.4 93.2

HU 96.7 96.7 96.7 96.7 96.7 96.7 96.8

RO 91.9 91.8 91.8 91.9 91.8 91.8 91.8

SL 89.3 89.3 89.3 89.3 89.4 89.3 89.3

SR 90.2 90.2 90.2 90.2 90.2 90.2 90.2

Avg 93.2 93.2 93.2 93.2 93.2 93.1 93.2

Table 8: Results for different initializations of the hyperparameters of the merged node model. φ0,

θ0 and ω0 are the hyperparameters for the transition, emission and coupling multinomials

respectively. The results for each language are averaged over all possible pairings with the

other languages.

LATENTVARIABLE: hyperparameter initializations & settings

α 1.0 0.1 10 100 1.0 1.0 1.0 1.0 1.0 1.0

ψ0 1.0 1.0 1.0 1.0 0.1 0.01 1.0 1.0 1.0 1.0

φ0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 0.01 1.0 1.0

θ0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 0.01

BG 92.6 92.6 92.6 92.6 92.6 92.7 92.6 92.6 92.6 92.6

CS 98.2 98.1 98.2 98.2 98.1 98.1 98.2 98.1 98.2 98.1

EN 95.0 95.0 94.9 94.8 95.1 95.2 95.0 94.9 94.9 95.0

ET 94.6 95.0 95.0 94.9 94.2 94.8 95.0 94.9 94.9 94.5

HU 96.7 96.7 96.7 96.7 96.7 96.6 96.7 96.7 96.7 96.7

RO 95.1 95.0 95.1 95.1 95.2 95.1 95.0 94.9 95.1 95.0

SL 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8

SR 92.3 92.3 92.3 92.3 92.4 92.4 92.3 92.3 92.3 92.3

Avg 95.0 95.1 95.1 95.0 95.0 95.1 95.1 95.0 95.1 95.0

Table 9: Results for different initializations and settings of hyperparameters of the latent variable

model. φ0 and θ0 are the hyperparameters for the transition and emission multinomials re-

spectively and are updated throughout inference. α and ψ0 are the concentration parameter

and base distribution parameter, respectively, for the Dirichlet process, and remain fixed.

6. Analysis

In this section we provide further analysis of: (i) factors that influence the effectiveness of language

pairings in bilingual models, (ii) the incremental value of adding more languages in the latent vari-
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Figure 4: Average running time for 1000 iterations of the latent variable model. Results are av-

eraged over all possible language subsets of each size. The top line shows the average

running time for the entire subset, and the bottom line shows the running time divided by

the number of languages.

able model, (iii) the superlingual tags and their corresponding cross-lingual patterns as learned by

the latent variable model, and (iv) whether multilingual data is more helpful than additional mono-

lingual data. We focus here on the full lexicon scenario, though we expect our analysis to extend to

the various reduced lexicon cases considered above as well.

6.1 Predicting Effective Language Pairings

We first analyze the cross-lingual variation in performance for different bilingual language pairings.

As shown in Table 10, the performance of the merged node model for each target language varies

substantially across pairings. In addition, the identity of the optimally helpful language pairing

also depends heavily on the target language in question. For instance, Slovene, achieves a large

improvement when paired with Serbian (+7.4), a closely related Slavic language, but only a mi-

nor improvement when coupled with English (+1.8). On the other hand, for Bulgarian, the best

performance is achieved when coupling with English (+6) rather than with closely related Slavic

languages (+2.4 and +0). Thus, optimal pairings do not correspond simply to language relatedness.

We note that when applying multilingual learning to morphological segmentation the best results

were obtained for related languages, but only after incorporating declarative knowledge about their

lower-level phonological relations using a prior which encourages phonologically close aligned

morphemes (Snyder & Barzilay, 2008). Here too, a more complex model which models lower-level

morphological relatedness (such as case) may yield better outcomes for closely related languages.

As an upper bound on the merged node model performance, line 7 of Table 10 shows the results

when selecting (with the help of an oracle) the best partner for each language. The average accu-

racy using this oracle is 95.4%, substantially higher than the average bilingual pairing accuracy of

93.2%, and even somewhat higher than the latent variable model performance of 95%. This gap in
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performance motivates a closer examination of the relationship between languages that constitute

effective pairings.

MERGEDNODE MODEL

coupled with...

Avg BG CS EN ET HU RO SL SR

a
cc
u
ra
cy
fo
r.
..

BG 91.3 90.2 94.7 92.3 90.6 91.2 91.1 88.7†

CS 96.9 95.3 97.5 97.8 96.3 96.4 97.4 97.4

EN 95.9 96.1 95.9† 95.8† 95.8† 95.8† 96.1 96.0

ET 93.3 93.0 94.0 92.9† 92.2† 93.0 94.2 93.9

HU 96.7 96.8 96.6 96.8 96.9 96.8 96.5 96.7

RO 91.9 94.1 90.6† 92.0 91.3 90.3† 91.3 93.9

SL 89.3 88.5 88.1 89.2 89.8 87.5† 87.5† 94.8

SR 90.2 88.5 88.2 94.5 94.2 89.5 85.0 91.4

Table 10: Merged node model accuracy for all language pairs. Each row corresponds to the perfor-

mance of one language, each column indicates the language with which the performance

was achieved. The best result for each language is indicated in bold. All results other than

those marked with a † are significantly higher than the monolingual baseline at p < 0.05
according to a sign test.

6.1.1 CROSS-LINGUAL ENTROPY

In a previous publication (Snyder et al., 2008) we proposed using cross-lingual entropy as a post-

hoc explanation for variation in coupling performance. This measure calculates the entropy of a

tagging decision in one language given the identity of an aligned tag in the other language. While

cross-lingual entropy seemed to correlate well with relative performance for the four languages

considered in that publication, we find that it does not correlate as strongly for all eight languages

considered here. We computed the Pearson correlation coefficient (Myers & Well, 2002) between

the relative bilingual performance and cross-lingual entropy. For each target language, we rank the

remaining seven languages based on two measures: how well the paired language contributes to

improved performance of the target, and the cross-lingual entropy of the target language given the

coupled language. We compute the Pearson correlation coefficient between these two rankings to

assess their degree of overlap. See Table 19 in the Appendix for a complete list of results. On

average, the coefficient was 0.29, indicating a weak positive correlation between relative bilingual

performance and cross-lingual entropy.

6.1.2 ALIGNMENT DENSITY

We note that even if cross-lingual entropy had exhibited higher correlation with performance, it

would be of little practical utility in an unsupervised scenario since its estimation requires a tagged

corpus. Next we consider the density of pairwise lexical alignments between language pairs as

a predictive measure of their coupled performance. Since alignments constitute the multilingual

anchors of our models, as a practical matter greater alignment density should yield greater oppor-

tunities for cross-lingual transfer. From the linguistic viewpoint, this measure may also indirectly
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capture the correspondence between two languages. Moreover, this measure has the benefit of be-

ing computable from an untagged corpus, using automatically obtained GIZA++ alignments. As

before, for each target language, we rank the other languages by relative bilingual performance, as

well as by the percentage of words in the target language to which they provide alignments. Here

we find an average Pearson coefficient of 0.42, indicating mild positive correlation. In fact, if we

use alignment density as a criterion for selecting optimal pairing decisions for each target language,

we obtain an average accuracy of 94.67% — higher than average bilingual performance, but still

somewhat below the performance of the multilingual model.

6.1.3 MODEL CHOICE

The choice of model may also contribute to the patterns of variability we observe across language

pairs. To test this hypothesis, we ran our latent variable model on all pairs of languages. The results

of this experiment are shown in Table 11. As in the case of the merged node model, the performance

of each target language depends heavily on the choice of partner. However, the exact patterns of

variability differ in this case from those observed for the merged node model. To measure this vari-

ability, we compare the pairing preferences for each language under each of the two models. More

specifically, for each target language we rank the remaining seven languages by their contribution

under each of our two models, and compute the Pearson coefficient between these two rankings. As

seen in the last column of Table 19 in the Appendix, we find a coefficient of 0.49 between the two

rankings, indicating positive, though far from perfect, correlation.

LATENTVARIABLE MODEL

coupled with...

Avg BG CS EN ET HU RO SL SR

a
cc
u
ra
cy
fo
r.
..

BG 91.9 92.2 91.9 91.6 91.6 92.1 92.3 91.8

CS 97.2 97.5 97.5 97.6 97.4 97.4 96.5 96.8

EN 95.7 95.7† 95.7† 95.7† 95.6† 95.7† 95.7† 95.8†

ET 93.9 94.8 94.3 93.4 92.3† 93.9 94.5 94.1

HU 96.8 97.0 96.8 96.7 96.7 96.8 96.6 96.8

RO 93.2 94.6 92.1 92.4 92.3 92.1 94.4 94.7

SL 90.5 88.6 87.7 92.4 95.2 87.5† 87.6† 94.6

SR 91.6 94.7 88.5 94.5 94.5 89.7 88.0 91.1

Table 11: Accuracy of latent variable model when run on language pairs. Each row corresponds

to the performance of one language, each column indicates the language with which the

performance was achieved. The best result for each language is indicated in bold. All

results other than those marked with a † are significantly higher than the monolingual
baseline at p < 0.05 according to a sign test.

6.1.4 UTILITY OF EACH LANGUAGE AS A BILINGUAL PARTNER

We also analyze the overall helpfulness of each language. As before, for each target language, we

rank the remaining seven languages by the degree to which they contribute to increased target lan-

guage performance when paired in a bilingual model. We can then ask whether the helpfulness
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rankings provided by each of the eight languages are correlated with one another — in other words,

whether languages tend to be universally helpful (or unhelpful) or whether helpfulness depends

heavily on the identity of the target language. We consider all pairs of target languages, and com-

pute the Pearson rank correlation between their rankings of the six supplementary languages that

they have in common (excluding the two target languages themselves). When we average these pair-

wise rank correlations we obtain a coefficient of 0.20 for the merged node model and 0.21 for the

latent variable model. These low correlations indicate that language helpfulness depends crucially

on the target language in question. Nevertheless, we can still compute the average helpfulness of

each language (across all target languages) to obtain something like a “universal” helpfulness rank-

ing. See Table 20 in the appendix for this ranking. We can then ask whether this ranking correlates

with language properties which might be predictive of general helpfulness. We compare the univer-

sal helpfulness rankings10 to language rankings induced by tag-per-token ambiguity (the average

number of tags allowed by the dictionary per token in the corpus) as well as trigram entropy (the

entropy of the tag distribution given the previous two tags). In both cases we assign the highest

rank to the language with lowest value, as we expect lower entropy and ambiguity to correlate with

greater helpfulness. Contrary to expectations, the ranking induced by tag-per-token ambiguity actu-

ally correlates negatively with both universal helpfulness rankings by very small amounts (-0.28 for

the merged node model and -0.23 for the latent variable model). For both models, Hungarian, which

has the lowest tag-per-token ambiguity of all eight languages, had the worst universal helpfulness

ranking. The correlations with trigram entropy were only a little more predictable. In the case

of the latent variable model, there was no correlation at all between trigram entropy and universal

helpfulness (-0.01). In the case of the merged node model, however, there was moderate positive

correlation (0.43).

6.2 Adding Languages in the Latent Variable Model

While bilingual performance depends heavily on the choice of language pair, the latent variable

model can easily incorporate all available languages, obviating the need for any choice. To test

performance as the number of languages increases, we ran the latent variable model with all possi-

ble subsets of the eight languages in the full lexicon as well as all three reduced lexicon scenarios.

Figures 5, 6, 7, and 8 plot the average accuracy as the number of available languages varies for all

four lexicon scenarios (in decreasing order of the lexicon size). For comparison, the monolingual

and average bilingual baseline results are given. In all scenarios, our latent variable model steadily

gains in accuracy as the number of available languages increases, and in most scenarios sees an

appreciable uptick when going from seven to eight languages. In the full lexicon case, the gap be-

tween supervised and unsupervised performance is cut by nearly two thirds under the unsupervised

latent variable model with all eight languages.

Interestingly, as the lexicon is reduced in size, the performance of the bilingual merged node

model gains relative to the latent variable model on pairs. In the full lexicon case, the latent variable

model is clearly superior, whereas in the two moderately reduced lexicon cases, the performance

on pairs is more or less the same for the two models. In the case of the drastically reduced lexicon

10. We note that the universal helpfulness rankings obtained from each of the two multilingual models match each other

only roughly: their correlation coefficient with one another is 0.50. In addition, “universal” in this context refers only

to the eight languages under consideration and the rankings could very well change in a wider multilingual context.
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Figure 5: The performance of the latent variable model as the number of languages varies (averaged

over all subsets of the eight languages for each size). LEFT: Average performance across

all languages. Scores for monolingual and bilingual merged node models are given for

comparison. RIGHT: The Performance for each individual language as the number of

available languages varies.

(100 words), the merged node model is the clear winner. Thus, it seems that of the two models, the

performance gains of the latent variable model are more sensitive to the size of the lexicon.

The same four figures (5, 6, 7, and 8) also show the multilingual performance broken down by

language. All languages except for English tend to increase in accuracy as additional languages are

added to the mix. Indeed, in the two cases of moderately reduced lexicons (Figures 6 and 7) all lan-

guages except for English show steady large gains which actually increase in size when going from

seven to the full set of eight languages. In the full lexicon case (Figure 5), Estonian, Romanian, and

Slovene display steady increases until the very end. Hungarian peaks at two languages, Bulgarian

at three languages, and Czech and Serbian at seven languages. In the more drastic reduced lexicon

case (Figure 8), the performance across languages is less consistent and the gains when languages

are added are less stable. All languages report gains when going from one to two languages, but

only half of them increase steadily up to eight languages. Two languages seem to trend downward

after two or three languages, and the other two show mixed behavior.

In the full lexicon case (Figure 5), English is the only language which fails to improve. In the

other scenarios, English gains initially but these gains are partially eroded when more languages are

added. It is possible that English is an outlier since it has significantly lower tag transition entropy

than any of the other languages (see Table 3). Thus it may be that internal tag transitions are simply

more informative for English than any information that can be gleaned from multilingual context.
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Figure 6: The performance of the latent variable model for the reduced lexicon scenario (Counts >

5), as the number of languages varies (averaged over all subsets of the eight languages

for each size). LEFT: Average performance across all languages. Scores for monolingual

and bilingual merged node models are given for comparison. RIGHT: The Performance

for each individual language as the number of available languages varies.

Figure 7: The performance of the latent variable model for the reduced lexicon scenario (Counts >

10), as the number of languages varies (averaged over all subsets of the eight languages

for each size). LEFT: Average performance across all languages. Scores for monolingual

and bilingual merged node models are given for comparison. RIGHT: The Performance

for each individual language as the number of available languages varies.

374



MULTILINGUAL PART-OF-SPEECH TAGGING

Figure 8: The performance of the latent variable model for the reduced lexicon scenario (100

words), as the number of languages varies (averaged over all subsets of the eight lan-

guages for each size). LEFT: Average performance across all languages. Scores for

monolingual and bilingual merged node models are given for comparison. RIGHT: The

Performance for each individual language as the number of available languages varies.

6.3 Analysis of the Superlingual Tag Values

In this section we analyze the superlingual tags and their corresponding part-of-speech distributions,

as learned by the latent variable model. Recall that each superlingual tag intuitively represents

a discovered multilingual context and that it is through these tags that multilingual information

is propagated. More formally, each superlingual tag provides a complete distribution over parts-

of-speech for each language, allowing the encoding of both primary and secondary preferences

separately for each language. These preferences then interact with the language-specific context

(i.e. the surrounding parts-of-speech and the corresponding word). We place a Dirichlet process

prior on the superlingual tags, so the number of sampled values is dictated by the complexity of the

data. In fact, as shown in Table 12, the number of sampled superlingual tags steadily increases with

the number of languages. As multilingual contexts becomes more complex and diverse, additional

superlingual tags are needed.

Number of languages 2 3 4 5 6 7 8

Number of superlingual tag values 11.07 12.57 13.87 15.07 15.79 16.13 16.50

Table 12: Average number of sampled superlingual tag values as the number of languages increases.

Next we analyze the part-of-speech tag distributions associated with superlingual tag values.

Most superlingual tag values correspond to low entropy tag distributions, with a single dominant

part-of-speech tag across all languages. See, for example, the distributions associated with superlin-
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gual tag value 6 in Table 13, all of which favor nouns by large margins. Similar sets of distributions

occur favoring verbs, adjectives, and the other primary part-of-speech categories. In fact, among the

seventeen sampled superlingual tag values, nine belong to this type, and they cover 80% of actual

superlingual tag instances. The remaining superlingual tags correspond to more complex cross-

lingual patterns. The associated tag distributions in those cases favor different part-of-speech tags

in various languages and tend to have higher entropy, with the probability mass spread more evenly

over two or three tags. One such example is the set of distributions associated with the superlingual

tag value 14 in Table 13, which seems to be a mixed noun/verb class. In six out of eight languages

the most favored tag is verb, while a strong secondary choice in these cases is noun. However,

for Estonian and Hungarian, this preference is reversed, with nouns being given higher probability.

This superlingual tag may have captured the phenomenon of “light verbs,” whereby verbs in one

language correspond to a combination of a noun and verb in another language. For example the En-

glish verb whisper/V, when translated into Urdu, becomes the collocation whisper/N do/V. In these

cases, verbs and nouns will often be aligned to one another, requiring a more complex superlingual

tag. The analysis of these examples shows that the superlingual tags effectively learns both simple

and complex cross-lingual patterns

T
A
G
V
A
L
U
E

6

BG P (N) = 0.91, P (A) = 0.04, ...

T
A
G
V
A
L
U
E

14

BG P (V ) = 0.66, P (N) = 0.21, ...

CS P (N) = 0.92, P (A) = 0.03, ... CS P (V ) = 0.60, P (N) = 0.22, ...

EN P (N) = 0.97, P (V ) = 0.00, ... EN P (V ) = 0.55, P (N) = 0.25, ...

ET P (N) = 0.91, P (V ) = 0.03, ... ET P (N) = 0.52, P (V ) = 0.29, ...

HU P (N) = 0.85, P (A) = 0.06, ... HU P (N) = 0.44, P (V ) = 0.34, ...

RO P (N) = 0.90, P (A) = 0.04, ... RO P (V ) = 0.45, P (N) = 0.33, ...

SL P (N) = 0.94, P (A) = 0.03, ... SL P (V ) = 0.55, P (N) = 0.24, ...

SR P (N) = 0.92, P (A) = 0.03, ... SR P (V ) = 0.49, P (N) = 0.26, ...

Table 13: Part-of-speech tag distributions associated with two superlingual latent tag values. Prob-

abilities of only the two most probable tags for each language are shown.

6.3.1 PERFORMANCE WITH REDUCED DATA

One potential objection to the claims made in this section is that the improved results may be due

merely to the addition of more data, so that the multilingual aspect of the model may be irrelevant.

We test this idea by evaluating the monolingual, merged node, and latent variable systems on train-

ing sets in which the number of examples is reduced by half. The multilingual models in this setting

have access to exactly half as much data as the monolingual model in the original experiment. As

shown in Table 14, both the monolingual baseline and our models are quite insensitive to this drop

in data. In fact, both of our models, when trained on half of the corpus, still outperform the mono-

lingual model trained on the entire corpus. This indicates that the performance gains demonstrated

by multilingual learning cannot be explained merely by the addition of more data.
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Avg BG CS EN ET HU RO SL SR

MONOLINGUAL: full data 91.2 88.7 93.9 95.8 92.7 95.3 91.1 87.4 84.5

MONOLINGUAL: half data 91.0 88.8 93.8 95.7 92.6 95.3 90.2 87.5 84.5

MERGEDNODE: (avg.) full data 93.2 91.3 96.9 95.9 93.3 96.7 91.9 89.3 90.2

MERGEDNODE: (avg.) half data 93.0 91.1 96.6 95.7 92.7 96.7 92.0 88.9 89.9

LATENTVARIABLE: full data 95.0 92.6 98.2 95.0 94.6 96.7 95.1 95.8 92.3

LATENTVARIABLE: half data 94.7 92.6 97.8 94.7 93.9 96.7 94.4 95.4 92.2

Table 14: Tagging accuracy on reduced training dataset, with complete tag dictionaries; results

on the full training dataset are repeated here for comparison. The first column reports

average results across all languages (see Table 3 for language name abbreviations).

7. Conclusions

The key hypothesis of multilingual learning is that by combining cues from multiple languages, the

structure of each becomes more apparent. We considered two ways of applying this intuition to the

problem of unsupervised part-of-speech tagging: a model that directly merges tag structures for a

pair of languages into a single sequence and a second model which instead incorporates multilingual

context using latent variables.

Our results demonstrate that by incorporating multilingual evidence we can achieve impressive

performance gains across a range of scenarios. When a full lexicon is available, our two models

cut the gap between unsupervised and supervised performance by nearly one third (merged node

model, averaged over all pairs) and two thirds (latent variable model, using all eight languages). For

all but one language, we observe performance gains as additional languages are added. The sole

exception is English, which only gains from additional languages in reduced lexicon settings.

In most scenarios, the latent variable model achieves better performance than the merged node

model, and has the additional advantage of scaling gracefully with the number of languages. These

observations suggest that the non-parametric latent variable structure provides a more flexible paradigm

for incorporating multilingual cues. However, the benefit of the latent variable model relative to the

merged node model (even when running both models on pairs of languages) seems to decrease with

the size of the lexicon. Thus, in practical scenarios where only a small lexicon or no lexicon is

available, the merged node model may represent a better choice.

Our experiments have shown that performance can vary greatly depending on the choice of

additional languages. It is difficult to predict a prioriwhich languages constitute good combinations.

In particular, language relatedness itself cannot be used as a consistent predictor as sometimes

closely related languages constitute beneficial couplings and sometimes unrelated languages are

more helpful. We identify a number of features which correlate with bilingual performance, though

we observe that these features interact in complex ways. Fortunately, our latent variable model

allows us to bypass this question by simply using all available languages.

In both of our models, lexical alignments play a crucial role as they determine the typology

of the model for each sentence. In fact, we observed a positive correlation between alignment

density and bilingual performance, indicating the importance of high quality alignments. In our

experiments, we considered the alignment structure an observed variable, produced by standard MT
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tools which operate over pairs of languages. An interesting alternative would be to incorporate

alignment structure into the model itself, to find alignments best tuned for tagging accuracy based

on the evidence of multiple languages rather than pairs.

Another limitation of the two models is that they only consider one-to-one lexical alignments.

When pairing isolating and synthetic languages11 it would be beneficial to align short analytical

phrases consisting of multiple words to single morpheme-rich words in the other language. To

do so would involve flexibly aligning and chunking the parallel sentences throughout the learning

process.

An important direction for future work is to incorporate even more sources of multilingual

information, such as additional languages and declarative knowledge of their typological properties

(Comrie, 1989). In this paper we showed that performance improves as the number of languages

increases. We were limited by our corpus to eight languages, but we envision future work on

massively parallel corpora involving dozens of languages as well as learning from languages with

non-parallel data.
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Appendix A. Alignment Statistics

BG CS EN ET HU RO SL SR

BG 42163 51098 33849 31673 42017 45969 46434

CS 42163 43067 40207 31537 32559 57789 49740

EN 51098 43067 40746 39012 50289 52869 48394

ET 33849 40207 40746 32056 27709 42499 37681

HU 31673 31537 39012 32056 26455 34072 29797

RO 42017 32559 50289 27709 26455 36442 38004

SL 45969 57789 52869 42499 34072 36442 59865

SR 46434 49740 48394 37681 29797 38004 59865

Table 15: Number of alignments per language pair

BG CS EN ET HU RO SL SR Avg.

BG 2.77 6.13 3.36 4.04 4.52 2.95 3.48 3.89

CS 2.77 3.67 1.92 2.73 3.61 2.59 2.64 2.85

EN 6.13 3.67 4.35 6.12 5.59 3.54 3.86 4.75

ET 3.36 1.92 4.35 2.88 3.88 2.44 2.21 3.01

HU 4.04 2.73 6.12 2.88 4.13 3.09 3.06 3.72

RO 4.52 3.61 5.59 3.88 4.13 3.78 3.92 4.20

SL 2.95 2.59 3.54 2.44 3.09 3.78 4.11 3.22

SR 3.48 2.64 3.86 2.21 3.06 3.92 4.11 3.33

Table 16: Percentage of alignments removed per language pair
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Appendix B. Tag Repository

BG CS EN ET HU RO SL SR

Adjective x x x x x x x x

Conjunction x x x x x x x x

Determiner - - x - - x - -

Interjection x x x x x x x x

Numeral x x x x x x x x

Noun x x x x x x x x

Pronoun x x x x x x x x

Particle x x - - - x x x

Adverb x x x x x x x x

Adposition x x x x x x x x

Article - - - - x x - -

Verb x x x x x x x x

Residual x x x x x x x x

Abbreviation x x x x x x x x

Table 17: Tag repository for each language

Appendix C. Stanford Tagger Performance

Language Accuracy

BG 96.1

CS 97.2

EN 97.6

ET 97.1

HU 96.3

RO 97.6

SL 96.6

SR 95.5

Avg. 96.7

Table 18: Performance of the (supervised) Stanford tagger for the full lexicon scenario
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Appendix D. Rank Correlation

Performance correlates for MERGEDNODE model

Language Cross-lingual entropy Alignment density LATENTVARIABLE performance

BG -0.29 0.09 -0.09

CS 0.39 0.34 0.24

EN 0.28 0.77 0.42

ET 0.46 0.56 0.56

HU 0.31 -0.02 0.29

RO 0.34 0.83 0.89

SL 0.59 0.66 0.95

SR 0.21 0.13 0.63

Avg. 0.29 0.42 0.49

Performance correlates for LATENTVARIABLE model

Language Cross-lingual entropy Alignment density MERGEDNODE performance

BG 0.58 0.44 -0.09

CS -0.40 -0.44 0.24

EN 0.67 0.41 0.42

ET 0.14 0.32 0.56

HU -0.14 -0.72 0.29

RO 0.04 0.68 0.89

SL 0.57 0.54 0.95

SR 0.18 0.10 0.68

Avg. 0.21 0.17 0.49

Table 19: Pearson correlation coefficients between bilingual performance on the target language

and various rankings of the supplementary language. For both models and for each tar-

get language, we obtain a ranking over all supplementary languages based on bilingual

performance in the target language. These rankings are then correlated with other charac-

teristics of the bilingual pairing: cross-lingual entropy (the entropy of tag distributions

in the target language given aligned tags in the supplementary language); alignment

density (the percentage of words in the target language aligned to words in the auxiliary

language); and performance in the alternative model (target language performance when

paired with the same supplementary language in the alternative model).
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Appendix E. Universal Helpfulness

MERGEDNODE model LATENTVARIABLE model

ET 2.43 BG 1.86

EN 2.57 SR 3.00

SL 3.14 ET 3.14

BG 3.43 CS 3.71

SR 3.43 EN 3.71

RO 4.71 SL 3.71

CS 5.00 RO 4.14

HU 5.71 HU 6.00

Table 20: Average helpfulness rank for each language under the two models

382



MULTILINGUAL PART-OF-SPEECH TAGGING

References

Baker, J. (1979). Trainable grammars for speech recognition. In Proceedings of the Acoustical

Society of America.

Banko, M., & Moore, R. C. (2004). Part-of-speech tagging in context. In Proceedings of the

COLING, pp. 556–561.

Bertoldi, N., Barbaiani, M., Federico, M., & Cattoni, R. (2008). Phrase-based statistical machine

translation with pivot languages. In International Workshop on Spoken Language Translation

Evaluation Campaign on Spoken Language Translation (IWSLT), pp. 143–149.

Bhattacharya, I., Getoor, L., & Bengio, Y. (2004). Unsupervised sense disambiguation using bilin-

gual probabilistic models. In ACL ’04: Proceedings of the 42nd Annual Meeting on Associa-

tion for Computational Linguistics, p. 287, Morristown, NJ, USA. Association for Computa-

tional Linguistics.

Brill, E. (1995). Transformation-based error-driven learning and natural language processing: A

case study in part-of-speech tagging. Computational Linguistics, 21(4), 543–565.

Brown, P. F., Pietra, S. A. D., Pietra, V. J. D., & Mercer, R. L. (1991). Word-sense disambiguation

using statistical methods. In Proceedings of the ACL, pp. 264–270.

Chen, Y., Eisele, A., & Kay, M. (2008). Improving statistical machine translation efficiency by

triangulation. In Proceedings of LREC.

Chiang, D. (2005). A hierarchical phrase-based model for statistical machine translation. In Pro-

ceedings of the ACL, pp. 263–270.

Cohn, T., & Lapata, M. (2007). Machine translation by triangulation: Making effective use of multi-

parallel corpora. In Proceedings of ACL.

Comrie, B. (1989). Language universals and linguistic typology: Syntax and morphology. Oxford:

Blackwell.

Dagan, I., Itai, A., & Schwall, U. (1991). Two languages are more informative than one. In Pro-

ceedings of the ACL, pp. 130–137.

Diab, M., & Resnik, P. (2002). An unsupervised method for word sense tagging using parallel

corpora. In Proceedings of the ACL, pp. 255–262.

Erjavec, T. (2004). MULTEXT-East version 3: Multilingual morphosyntactic specifications, lexi-

cons and corpora. In Fourth International Conference on Language Resources and Evalua-

tion, LREC, Vol. 4, pp. 1535–1538.

Escobar, M., &West, M. (1995). Bayesian density estimation and inference using mixtures. Journal

of the american statistical association, 90(230), 577–588.

Ferguson, T. (1973). A bayesian analysis of some nonparametric problems. The annals of statistics,

1, 209–230.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis. Chapman

and Hall/CRC.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

6, 721–741.

383



NASEEM, SNYDER, EISENSTEIN & BARZILAY

Genzel, D. (2005). Inducing a multilingual dictionary from a parallel multitext in related languages.

In Proceedings of HLT/EMNLP, pp. 875–882.

Gilks, W., Richardson, S., & Spiegelhalter, D. (1996). Markov chain Monte Carlo in practice.

Chapman & Hall/CRC.

Goldwater, S., & Griffiths, T. L. (2007). A fully Bayesian approach to unsupervised part-of-speech

tagging. In Proceedings of the ACL, pp. 744–751.

Haghighi, A., & Klein, D. (2006). Prototype-driven learning for sequence models. In Proceedings

of HLT-NAACL, pp. 320–327.

Hinton, G. E. (1999). Products of experts. In Proceedings of the Ninth International Conference on

Artificial Neural Networks, Vol. 1, pp. 1–6.

Johnson, M. (2007). Why doesn’t EM find good HMM POS-taggers?. In Proceedings of

EMNLP/CoNLL, pp. 296–305.

Kuhn, J. (2004). Experiments in parallel-text based grammar induction. In Proceedings of the ACL,

p. 470.

Li, C., & Li, H. (2002). Word translation disambiguation using bilingual bootstrapping. In Pro-

ceedings of the ACL, pp. 343–351.

Liu, J. S. (1994). The collapsed Gibbs sampler in Bayesian computations with applications to a

gene regulation problem. Journal of the American Statistical Association, 89(427), 958–966.

Merialdo, B. (1994). Tagging english text with a probabilistic model. Computational Linguistics,

20(2), 155–171.

Mihalcea, R. (2004). Current Issues in Linguistic Theory: Recent Advances in Natural Language

Processing, chap. Unsupervised Natural Language Disambiguation Using Non-Ambiguous

Words. John Benjamins Publisher.

Myers, J. L., & Well, A. D. (2002). Research Design and Statistical Analysis (2nd edition).

Lawrence Erlbaum.

Ng, H. T., Wang, B., & Chan, Y. S. (2003). Exploiting parallel texts for word sense disambiguation:

an empirical study. In Proceedings of the ACL, pp. 455–462.

Och, F. J., & Ney, H. (2001). Statistical multi-source translation. InMT Summit 2001, pp. 253–258.

Och, F. J., & Ney, H. (2003). A systematic comparison of various statistical alignment models.

Computational Linguistics, 29(1), 19–51.
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