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Abstract

Bidirectional long short-term memory (bi-

LSTM) networks have recently proven

successful for various NLP sequence mod-

eling tasks, but little is known about

their reliance to input representations, tar-

get languages, data set size, and label

noise. We address these issues and eval-

uate bi-LSTMs with word, character, and

unicode byte embeddings for POS tag-

ging. We compare bi-LSTMs to tradi-

tional POS taggers across languages and

data sizes. We also present a novel bi-

LSTM model, which combines the POS

tagging loss function with an auxiliary

loss function that accounts for rare words.

The model obtains state-of-the-art perfor-

mance across 22 languages, and works es-

pecially well for morphologically complex

languages. Our analysis suggests that bi-

LSTMs are less sensitive to training data

size and label corruptions (at small noise

levels) than previously assumed.

1 Introduction

Recently, bidirectional long short-term memory

networks (bi-LSTM) (Graves and Schmidhuber,

2005; Hochreiter and Schmidhuber, 1997) have

been used for language modelling (Ling et al.,

2015), POS tagging (Ling et al., 2015; Wang

et al., 2015), transition-based dependency pars-

ing (Ballesteros et al., 2015; Kiperwasser and

Goldberg, 2016), fine-grained sentiment analysis

(Liu et al., 2015), syntactic chunking (Huang et

al., 2015), and semantic role labeling (Zhou and

Xu, 2015). LSTMs are recurrent neural networks

(RNNs) in which layers are designed to prevent

vanishing gradients. Bidirectional LSTMs make a

backward and forward pass through the sequence

before passing on to the next layer. For further de-

tails, see (Goldberg, 2015; Cho, 2015).

We consider using bi-LSTMs for POS tagging.

Previous work on using deep learning-based meth-

ods for POS tagging has focused either on a sin-

gle language (Collobert et al., 2011; Wang et al.,

2015) or a small set of languages (Ling et al.,

2015; Santos and Zadrozny, 2014). Instead we

evaluate our models across 22 languages. In ad-

dition, we compare performance with represen-

tations at different levels of granularity (words,

characters, and bytes). These levels of represen-

tation were previously introduced in different ef-

forts (Chrupała, 2013; Zhang et al., 2015; Ling

et al., 2015; Santos and Zadrozny, 2014; Gillick

et al., 2016; Kim et al., 2015), but a comparative

evaluation was missing.

Moreover, deep networks are often said to re-

quire large volumes of training data. We investi-

gate to what extent bi-LSTMs are more sensitive

to the amount of training data and label noise than

standard POS taggers.

Finally, we introduce a novel model, a bi-LSTM

trained with auxiliary loss. The model jointly pre-

dicts the POS and the log frequency of the next

word. The intuition behind this model is that the

auxiliary loss, being predictive of word frequency,

helps to differentiate the representations of rare

and common words. We indeed observe perfor-

mance gains on rare and out-of-vocabulary words.

These performance gains transfer into general im-

provements for morphologically rich languages.

Contributions In this paper, we a) evaluate the

effectiveness of different representations in bi-

LSTMs, b) compare these models across a large

set of languages and under varying conditions

(data size, label noise) and c) propose a novel bi-

LSTM model with auxiliary loss (LOGFREQ).
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2 Tagging with bi-LSTMs

Recurrent neural networks (RNNs) (Elman, 1990)

allow the computation of fixed-size vector repre-

sentations for word sequences of arbitrary length.

An RNN is a function that reads in n vectors

x1, ..., xn and produces an output vector hn, that

depends on the entire sequence x1, ..., xn. The

vector hn is then fed as an input to some classi-

fier, or higher-level RNNs in stacked/hierarchical

models. The entire network is trained jointly such

that the hidden representation captures the impor-

tant information from the sequence for the predic-

tion task.

A bidirectional recurrent neural network (bi-

RNN) (Graves and Schmidhuber, 2005) is an ex-

tension of an RNN that reads the input sequence

twice, from left to right and right to left, and the

encodings are concatenated. The literature uses

the term bi-RNN to refer to two related architec-

tures, which we refer to here as “context bi-RNN”

and “sequence bi-RNN”. In a sequence bi-RNN

(bi-RNNseq), the input is a sequence of vectors

x1:n and the output is a concatenation (◦) of a for-

ward (f ) and reverse (r) RNN each reading the

sequence in a different directions:

v = bi-RNNseq(x1:n) = RNNf (x1:n) ◦ RNNr(xn:1)

In a context bi-RNN (bi-RNNctx), we get an addi-

tional input i indicating a sequence position, and

the resulting vectors vi result from concatenating

the RNN encodings up to i:

vi = bi-RNNctx(x1:n, i) = RNNf (x1:i) ◦ RNNr(xn:i)

Thus, the state vector vi in this bi-RNN encodes

information at position i and its entire sequential

context. Another view of the context bi-RNN is

of taking a sequence x1:n and returning the corre-

sponding sequence of state vectors v1:n.

LSTMs (Hochreiter and Schmidhuber, 1997)

are a variant of RNNs that replace the cells of

RNNs with LSTM cells that were designed to pre-

vent vanishing gradients. Bidirectional LSTMs

are the bi-RNN counterpart based on LSTMs.

Our basic bi-LSTM tagging model is a context

bi-LSTM taking as input word embeddings ~w. We

incorporate subtoken information using an hierar-

chical bi-LSTM architecture (Ling et al., 2015;

Ballesteros et al., 2015). We compute subtoken-

level (either characters~c or unicode byte~b) embed-

dings of words using a sequence bi-LSTM at the

lower level. This representation is then concate-

nated with the (learned) word embeddings vector

~w which forms the input to the context bi-LSTM at

the next layer. This model, illustrated in Figure 1

(lower part in left figure), is inspired by Balles-

teros et al. (2015). We also test models in which

we only keep sub-token information, e.g., either

both byte and character embeddings (Figure 1,

right) or a single (sub-)token representation alone.

Figure 1: Right: bi-LSTM, illustrated with ~b + ~c

(bytes and characters), for ~w + ~c replace ~b with

words ~w. Left: FREQBIN, our multi-task bi-

LSTM that predicts at every time step the tag and

the frequency class for the next token.

In our novel model, cf. Figure 1 left, we train

the bi-LSTM tagger to predict both the tags of the

sequence, as well as a label that represents the log

frequency of the next token as estimated from the

training data. Our combined cross-entropy loss

is now: L(ŷt, yt) + L(ŷa, ya), where t stands for

a POS tag and a is the log frequency label, i.e.,

a = int(log(freqtrain(w)). Combining this log

frequency objective with the tagging task can be

seen as an instance of multi-task learning in which

the labels are predicted jointly. The idea behind

this model is to make the representation predictive

for frequency, which encourages the model to not

share representations between common and rare

words, thus benefiting the handling of rare tokens.

3 Experiments

All bi-LSTM models were implemented in

CNN/pycnn,1 a flexible neural network library.

For all models we use the same hyperparameters,

which were set on English dev, i.e., SGD train-

ing with cross-entropy loss, no mini-batches, 20

1https://github.com/clab/cnn
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epochs, default learning rate (0.1), 128 dimensions

for word embeddings, 100 for character and byte

embeddings, 100 hidden states and Gaussian noise

with σ=0.2. As training is stochastic in nature, we

use a fixed seed throughout. Embeddings are not

initialized with pre-trained embeddings, except

when reported otherwise. In that case we use off-

the-shelf polyglot embeddings (Al-Rfou et al.,

2013).2 No further unlabeled data is considered

in this paper. The code is released at: https:

//github.com/bplank/bilstm-aux

Taggers We want to compare POS taggers un-

der varying conditions. We hence use three dif-

ferent types of taggers: our implementation of a

bi-LSTM; TNT (Brants, 2000)—a second order

HMM with suffix trie handling for OOVs. We use

TNT as it was among the best performing taggers

evaluated in Horsmann et al. (2015).3 We comple-

ment the NN-based and HMM-based tagger with

a CRF tagger, using a freely available implemen-

tation (Plank et al., 2014) based on crfsuite.

3.1 Datasets

For the multilingual experiments, we use the

data from the Universal Dependencies project

v1.2 (Nivre et al., 2015) (17 POS) with the canon-

ical data splits. For languages with token segmen-

tation ambiguity we use the provided gold seg-

mentation. If there is more than one treebank

per language, we use the treebank that has the

canonical language name (e.g., Finnish instead of

Finnish-FTB). We consider all languages that have

at least 60k tokens and are distributed with word

forms, resulting in 22 languages. We also re-

port accuracies on WSJ (45 POS) using the stan-

dard splits (Collins, 2002; Manning, 2011). The

overview of languages is provided in Table 1.

3.2 Results

Our results are given in Table 2. First of all, no-

tice that TNT performs remarkably well across the

22 languages, closely followed by CRF. The bi-

LSTM tagger (~w) without lower-level bi-LSTM

for subtokens falls short, outperforms the tradi-

tional taggers only on 3 languages. The bi-LSTM

2https://sites.google.com/site/rmyeid/

projects/polyglot
3They found TreeTagger was closely followed by Hun-

Pos, a re-implementation of TnT, and Stanford and ClearNLP
were lower ranked. In an initial investigation, we compared
Tnt, HunPos and TreeTagger and found Tnt to be consistently
better than Treetagger, Hunpos followed closely but crashed
on some languages (e.g., Arabic).

COARSE FINE COARSE FINE

ar non-IE Semitic he non-IE Semitic

bg Indoeuropean Slavic hi Indoeuropean Indo-Iranian

cs Indoeuropean Slavic hr Indoeuropean Slavic

da Indoeuropean Germanic id non-IE Austronesian

de Indoeuropean Germanic it Indoeuropean Romance

en Indoeuropean Germanic nl Indoeuropean Germanic

es Indoeuropean Romance no Indoeuropean Germanic

eu Language isolate pl Indoeuropean Slavic

fa Indoeuropean Indo-Iranian pt Indoeuropean Romance

fi non-IE Uralic sl Indoeuropean Slavic

fr Indoeuropean Romance sv Indoeuropean Germanic

Table 1: Grouping of languages.

model clearly benefits from character representa-

tions. The model using characters alone (~c) works

remarkably well, it improves over TNT on 9 lan-

guages (incl. Slavic and Nordic languages). The

combined word+character representation model is

the best representation, outperforming the baseline

on all except one language (Indonesian), provid-

ing strong results already without pre-trained em-

beddings. This model (~w + ~c) reaches the biggest

improvement (more than +2% accuracy) on He-

brew and Slovene. Initializing the word embed-

dings (+POLYGLOT) with off-the-shelf language-

specific embeddings further improves accuracy.

The only system we are aware of that evaluates on

UD is Gillick et al. (2016) (last column). However,

note that these results are not strictly comparable

as they use the earlier UD v1.1 version.

The overall best system is the multi-task bi-

LSTM FREQBIN (it uses ~w + ~c and POLYGLOT

initialization for ~w). While on macro average it

is on par with bi-LSTM ~w + ~c, it obtains the best

results on 12/22 languages, and it is successful in

predicting POS for OOV tokens (cf. Table 2 OOV

ACC columns), especially for languages like Ara-

bic, Farsi, Hebrew, Finnish.

We examined simple RNNs and confirm the

finding of Ling et al. (2015) that they performed

worse than their LSTM counterparts. Finally, the

bi-LSTM tagger is competitive on WSJ, cf. Ta-

ble 3.

Rare words In order to evaluate the effect of

modeling sub-token information, we examine ac-

curacy rates at different frequency rates. Figure 2

shows absolute improvements in accuracy of bi-

LSTM ~w + ~c over mean log frequency, for dif-

ferent language families. We see that especially

for Slavic and non-Indoeuropean languages, hav-

ing high morphologic complexity, most of the im-

provement is obtained in the Zipfian tail. Rare to-

kens benefit from the sub-token representations.
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BASELINES BI-LSTM using: ~w + ~c +POLYGLOT OOV ACC BTS

TNT CRF ~w ~c ~c +~b ~w + ~c bi-LSTM FREQBIN bi-LSTM FREQBIN

avg 94.61 94.27 92.37 94.29 94.01 96.08† 96.50 96.50 87.80 87.98 95.70

Indoeur. 94.70 94.58 92.72 94.58 94.28 96.24† 96.63 96.61 87.47 87.63 –

non-Indo. 94.57 93.62 91.97 93.51 93.16 95.70† 96.21 96.28 90.26 90.39 –

Germanic 93.27 93.21 91.18 92.89 92.59 94.97† 95.55 95.49 85.58 85.45 –

Romance 95.37 95.53 94.71 94.76 94.49 95.63† 96.93 96.93 85.84 86.07 –

Slavic 95.64 94.96 91.79 96.45 96.26 97.23† 97.42 97.43 91.48 91.69 –

ar 97.82 97.56 95.48 98.68 98.43 98.89 98.87 98.91 95.90 96.21 –

bg 96.84 96.36 95.12 97.89 97.78 98.25 98.23 90.06 90.06 90.56 97.84

cs 96.82 96.56 93.77 96.38 96.08 97.93 98.02 97.89 91.65 91.30 98.50

da 94.29 93.83 91.96 95.12 94.88 95.94 96.16 96.35 86.13 86.35 95.52

de 92.64 91.38 90.33 90.02 90.11 93.11 93.51 93.38 85.37 86.77 92.87

en 92.66 93.35 92.10 91.62 91.57 94.61 95.17 95.16 80.28 80.11 93.87

es 94.55 94.23 93.60 93.06 92.29 95.34 95.67 95.74 79.26 79.27 95.80

eu 93.35 91.63 88.00 92.48 92.72 94.91 95.38 95.51 83.55 84.30 –

fa 95.98 95.65 95.31 95.82 95.03 96.89 97.60 97.49 88.82 89.05 96.82

fi 93.59 90.32 87.95 90.25 89.15 95.18 95.74 95.85 88.35 88.85 95.48

fr 94.51 95.14 94.44 94.39 93.69 96.04 96.20 96.11 82.79 83.54 95.75

he 93.71 93.63 93.97 93.74 93.58 95.92 96.92 96.96 88.75 88.83 –

hi 94.53 96.00 95.99 93.40 92.99 96.64 96.97 97.10 83.98 85.27 –

hr 94.06 93.16 89.24 95.32 94.47 95.59 96.27 96.82 90.50 92.71 –

id 93.16 92.96 90.48 91.37 91.46 92.79 93.32 93.41 88.03 87.67 92.85

it 96.16 96.43 96.57 95.62 95.77 97.64 97.90 97.95 89.15 89.15 97.56

nl 88.54 90.03 84.96 89.11 87.74 92.07 92.82 93.30 78.61 75.95 –

no 96.31 96.21 94.39 95.87 95.75 97.77 98.06 98.03 93.56 93.75 –

pl 95.57 93.96 89.73 95.80 96.19 96.62 97.63 97.62 95.00 94.94 –

pt 96.27 96.32 94.24 95.96 96.2 97.48 97.94 97.90 92.16 92.33 –

sl 94.92 94.77 91.09 96.87 96.77 97.78 96.97 96.84 90.19 88.94 –

sv 95.19 94.45 93.32 95.57 95.5 96.30 96.60 96.69 89.53 89.80 95.57

Table 2: Tagging accuracies on UD 1.2 test sets. ~w: words, ~c: characters, ~b: bytes. Bold/†: best

accuracy/representation; +POLYGLOT: using pre-trained embeddings. FREQBIN: our multi-task model.

OOV ACC: accuracies on OOVs. BTS: best results in Gillick et al. (2016) (not strictly comparable).

Figure 2: Absolute improvements of bi-LSTM

(~w + ~c) over TNT vs mean log frequency.

Data set size Prior work mostly used large

data sets when applying neural network based

approaches (Zhang et al., 2015). We evaluate

how brittle such models are with respect to their

more traditional counterparts by training bi-LSTM

(~w + ~c without Polyglot embeddings) for increas-

WSJ Accuracy

Convnet (Santos and Zadrozny, 2014) 97.32
Convnet reimplementation (Ling et al., 2015) 96.80
Bi-RNN (Ling et al., 2015) 95.93
Bi-LSTM (Ling et al., 2015) 97.36

Our bi-LSTM ~w+~c 97.22

Table 3: Comparison POS accuracy on WSJ; bi-

LSTM: 30 epochs, σ=0.3, no POLYGLOT.

ing amounts of training instances (number of sen-

tences). The learning curves in Figure 3 show

similar trends across language families.4 TNT

is better with little data, bi-LSTM is better with

more data, and bi-LSTM always wins over CRF.

The bi-LSTM model performs already surpris-

ingly well after only 500 training sentences. For

non-Indoeuropean languages it is on par and above

4We observe the same pattern with more, 40, iterations.
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Figure 3: Amount of training data (number of sen-

tences) vs tagging accuracy.

the other taggers with even less data (100 sen-

tences). This shows that the bi-LSTMs often needs

more data than the generative markovian model,

but this is definitely less than what we expected.

Label Noise We investigated the susceptibility

of the models to noise, by artificially corrupting

training labels. Our initial results show that at low

noise rates, bi-LSTMs and TNT are affected sim-

ilarly, their accuracies drop to a similar degree.

Only at higher noise levels (more than 30% cor-

rupted labels), bi-LSTMs are less robust, showing

higher drops in accuracy compared to TNT. This

is the case for all investigated language families.

4 Related Work

Character embeddings were first introduced

by Sutskever et al. (2011) for language model-

ing. Early applications include text classifica-

tion (Chrupała, 2013; Zhang et al., 2015). Re-

cently, these representations were successfully ap-

plied to a range of structured prediction tasks. For

POS tagging, Santos and Zadrozny (2014) were

the first to propose character-based models. They

use a convolutional neural network (CNN; or con-

vnet) and evaluated their model on English (PTB)

and Portuguese, showing that the model achieves

state-of-the-art performance close to taggers us-

ing carefully designed feature templates. Ling et

al. (2015) extend this line and compare a novel

bi-LSTM model, learning word representations

through character embeddings. They evaluate

their model on a language modeling and POS tag-

ging setup, and show that bi-LSTMs outperform

the CNN approach of Santos and Zadrozny (2014).

Similarly, Labeau et al. (2015) evaluate character

embeddings for German. Bi-LSTMs for POS tag-

ging are also reported in Wang et al. (2015), how-

ever, they only explore word embeddings, ortho-

graphic information and evaluate on WSJ only. A

related study is Cheng et al. (2015) who propose a

multi-task RNN for named entity recognition by

jointly predicting the next token and current to-

ken’s name label. Our model is simpler, it uses

a very coarse set of labels rather then integrating

an entire language modeling task which is compu-

tationally more expensive. An interesting recent

study is Gillick et al. (2016), they build a single

byte-to-span model for multiple languages based

on a sequence-to-sequence RNN (Sutskever et al.,

2014) achieving impressive results. We would like

to extend this work in their direction.

5 Conclusions

We evaluated token and subtoken-level representa-

tions for neural network-based part-of-speech tag-

ging across 22 languages and proposed a novel

multi-task bi-LSTM with auxiliary loss. The aux-

iliary loss is effective at improving the accuracy of

rare words.

Subtoken representations are necessary to ob-

tain a state-of-the-art POS tagger, and charac-

ter embeddings are particularly helpful for non-

Indoeuropean and Slavic languages.

Combining them with word embeddings in a hi-

erarchical network provides the best representa-

tion. The bi-LSTM tagger is as effective as the

CRF and HMM taggers with already as little as

500 training sentences, but is less robust to label

noise (at higher noise rates).
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