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Abstract

Because of combining the genetic information of multiple loci, multilocus association studies (MLAS) are expected to be
more powerful than single locus association studies (SLAS) in disease genes mapping. However, some researchers found
that MLAS had similar or reduced power relative to SLAS, which was partly attributed to the increased degrees of freedom
(dfs) in MLAS. Based on partial least-squares (PLS) analysis, we develop a MLAS approach, while avoiding large dfs in MLAS.
In this approach, genotypes are first decomposed into the PLS components that not only capture majority of the genetic
information of multiple loci, but also are relevant for target traits. The extracted PLS components are then regressed on
target traits to detect association under multilinear regression. Simulation study based on real data from the HapMap
project were used to assess the performance of our PLS-based MLAS as well as other popular multilinear regression-based
MLAS approaches under various scenarios, considering genetic effects and linkage disequilibrium structure of candidate
genetic regions. Using PLS-based MLAS approach, we conducted a genome-wide MLAS of lean body mass, and compared it
with our previous genome-wide SLAS of lean body mass. Simulations and real data analyses results support the improved
power of our PLS-based MLAS in disease genes mapping relative to other three MLAS approaches investigated in this study.
We aim to provide an effective and powerful MLAS approach, which may help to overcome the limitations of SLAS in
disease genes mapping.
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Introduction

Association studies are widely used to identify genetic variants

underlying complex human diseases, such as osteoporosis [1,2],

obesity [3] and diabetes [4]. Association studies can be generally

classified into two classes: single locus association studies (SLAS)

and multiple loci association studies (MLAS) [5]. SLAS detect

associations between each individual locus and target traits.

Because of being simple to implement, SLAS are popular in

current association mapping of disease genes. However, there are

several limitations for SLAS. First, the performance of SLAS

largely depends on the linkage disequilibrium (LD) between testing

loci and potential causal loci. SLAS may have low power if the LD

between testing loci and potential causal loci is weak. Second, it is

well known that the risks of complex human diseases are usually

determined by the main and interactive effects of multiple genetic

and environmental factors [6]. Because SLAS conduct association

tests at each individual locus, it is difficult to detect genetic

interactive effects using SLAS. Third, association studies usually

request a multiple testing adjustment procedure to ensure overall

appropriate type I error rates, such as Bonferroni correction [7,8]

and false discovery rates [9,10,11]. These multiple testing

adjustment procedures are sometimes too strict, and may miss

real disease-gene associations in large scale SLAS.

The limitations of SLAS promote the development of MLAS

approaches. Because MLAS can simultaneously consider the

genetic information of multiple loci, it is expected that MLAS were

more powerful than SLAS in disease genes mapping. Multilinear

regression is one of the major multivariate analyses approaches,

and has been applied to MLAS [12,13]. In multilinear regression,

target trait values can be modeled as a function of independent

variable vector corresponding to the genotypes of multiple loci in

candidate genetic regions. Because of large degrees of freedom

(dfs) in statistical tests, it is difficult to directly apply multilinear

regression to large genetic regions for MLAS. Previous studies

found that multilinear regression had similar or reduced power

relative to SLAS in disease gene mapping [14,15,16]. The

increased power gained from combining the genetic information

of multiple loci may be compromised by increasing dfs in

multilinear regression. Additionally, the genotypes of multiple

densely spaced loci are usually correlated due to LD, which may

induce collinearity of genotype vectors, and decrease the power of

multilinear regression for MLAS [12].

Several methods have been proposed to deal with large dfs in

multilinear regression. The first one is tagSNPs-based multilinear

regression [14,15]. A set of tagSNPs capturing majority of the

genetic information of candidate genetic regions, and having no or

weak collinearity among each other, can be selected and included

PLoS ONE | www.plosone.org 1 February 2011 | Volume 6 | Issue 2 | e16739



into multilinear regression for MLAS. Although selecting tagSNPs can

decrease dfs in multilinear regression, it will result in the lost of genetic

information and therefore decrease the power of MLAS, especially in

the genetic regions with weak LD. Additionally, the power of tagSNPs-

based association studies is affected by the performance of tagSNPs

selection methods [17,18]. The second method applies dimension

reduction techniques, such as principle component analysis (PCA)

[12,19] and Fourier transformation [20], to genotype data and

produces a set of orthogonal predictors capturing majority of the

genetic information of candidate genetic regions. One can then detect

associations between the extracted orthogonal predictors and target

traits under multilinear regression [12,20]. Besides the multilinear

regression-based MLAS approaches mentioned above, other MLAS

approaches are also available, such as genetic similarity-based MLAS

[21,22] and Bayesian-based MLAS [23].

Recently, Taylor and Tibshirani proposed the tail strength

measure (TSM) for assessing the overall significance levels of

multiple hypotheses tests in microarray studies [24]. Using

simulated and real microarray datasets, Taylor and Tibshirani

illustrated the performance of TSM, and suggested that TSM

could be used to assess overall significance levels in microarray and

other genetic studies with a number of hypotheses tests [24]. TSM

may be able to evaluate overall association strength of multiple loci

in association studies. However, the performance of TSM for

MLAS remains unclear.

In this paper, we present a MLAS approach based on partial

least-squares (PLS) analysis, while avoiding large dfs. As an

extension of multiple linear regression, PLS generalizes and

combines the features of PCA and multilinear regression [25,26].

Through maximizing the covariance of denpendent and indenpen-

dent variables, PLS searches for the components capturing majority

of the information contained in indenpendent variables as well as in

the relations between denpendent and indenpendent variables. In

Materials and Methods section, we first formulate our PLS-based

MLAS. Using simulated data based on real data from the HapMap

project, we show that PLS-based MLAS are simple to implement,

and generally provides improved power in diseases genes mapping

relative to tagSNPs-based MLAS, PCA-based MLAS and TSM-

based MLAS. Finally, a real data is used to assess the performance

of PLS-based MLAS for genome-wide MLAS.

Results

Simulations
The type I error rates of the four MLAS approaches under

various scenarios investigated in this study are normal and not

shown to simplify our presentation. The power comparison results

of the four MLAS approaches under the epistatic model are

presented in Figure 1. As shown by the data, PLS-based MLAS

attained the highest power, followed by WTSM and PCA-based

MLAS across various parameter settings. TagSNPs-based MLAS

and FTSM appeared to perform less well than other MLAS

approaches in this study.

Figure 2 presents the power comparison results of the four

MLAS approaches under the additive model. In the simulation

study of genetic effect, PLS-based MLAS obtained higher power

than other MLAS approaches under various genetic effects except

for 0.01. WTSM and PCA-based MLAS showed similar power,

and outperformed tagSNPs-based MLAS and FTSM. In the

simulation study of D’, PLS-based MLAS appeared to significantly

perform better than other MLAS approaches investigated in this

study.

Genome-wide MLAS of Lean Body Mass
Figure 3 summarizes the genome-wide MLAS results of lean

body mass implemented by PLS-based MLAS. Beside TRHR

detected in previous genome-wide SLAS of lean body mass [27],

we identified 16 novel genes with significant association signals for

lean body mass. To evaluate the efficiency and robust of our PLS-

based MLAS, we further compared the MLAS and SLAS results

of the 17 genes detected in this study, as shown by Table 1.

Discussion

Large dfs is one of the major issues with MLAS. To deal with

this problem, we propose a PLS-based MLAS approach, while

avoiding large dfs. Simulation study based on real data from the

HapMap project suggests that our PLS-based MLAS generally

outperformed other three popular MLAS approaches under

various scenarios investigated in this study. PLS is suitable to

handle the data with many independent variables as well as

multicollinearity among the variables [28,29], which are common

in genotype data due to LD. It has been suggested that PLS might

provide more genetic information than PCA do, when interactive

effects [30] or multicollinearity [29] exist. In contrast, because

PCA only consider the characteristics of indenpendent variables,

the PCA components capturing major genetic information of

candidate genetic regions are not necessarily relevant for target

traits. Therefore, it is not surprising that PLS-based MLAS are

more powerful than PCA–based MLAS in this study.

PLS-based MLAS can easily be applied to genome-wide

association studies (GWAS). To investigate the performance of

Figure 1. Power comparing results of PLS-based MLAS (PLS_MLAS), PCA-based MLAS (PCA_MLAS), tagSNPs-based MLAS
(tagSNPs_MLAS), TSM-based MLAS using F test (FTSM) and TSM-based MLAS using Wald test (WTSM) under the epistatic model.
doi:10.1371/journal.pone.0016739.g001

PLS-Based Multilocus Association Testing
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PLS-based MLAS for GWAS, we conducted a genome-wide

MLAS of lean body mass using a real sample consisting of 973

unrelated USA whites. To the best of our knowledge, this is the

first multilocus GWAS of lean body mass. Besides TRHR detected

in previous genome-wide SLAS of lean body mass [27], PLS-based

MLAS identified 16 novel genes that may be missed by previous

study. Although the 16 genes did not achieve genome-wide

significance level (1.3261027) in previous genome-wide SLAS of

lean body mass, most of them still attained small p values (Table 1).

Biological studies of these genes may provide some evidences for

their roles in the genetic regulation of lean body mass. For

instance, it has been found that serum TNFSF10 (also named

TRAIL) concentration was significantly correlated with lean body

mass [31]. TNFSF10 might play an important role in skeletal

myoblast differentiation [32]. Rat experiments observed that

ADAMTS1 was highly expressed in skeletal muscle [33], and

muscular development appeared to rely on ADAMTS1 [34].

Replication studies are needed to validate the associations between

the 17 genes and lean body mass detected in this study.

To illustrate the performance of our approach, we developed

PLS-based MLAS for quantitative traits in this study. However,

PLS-based MLAS can easily be extended to qualitative traits

under logistic regression model. Covariates can also be incorpo-

rated into PLS-based MLAS due to the flexibility of regression

analyses. Additionally, because permutations are used to evaluate

the significance level of testing statistic, our PLS-based MLAS do

not depend on specific statistical assumption, for instance the

normality assumption of target traits. The computational cost of

PLS-based MLAS is also acceptable for real studies. For instance,

our genome-wide MLAS of lean body mass using PLS-based

MLAS needed about 21 days (running on Dell computer cluster

with four Intel Xeon 1.6 GHz processors and 4G memory).

An issue with PLS-based MLAS is how many PLS compoments

we should include into analyses. Some methods developed for

PCA can be used here. For instance, we can select top m of the

ordered PLS components that explain certain proportions of total

genotypic variance (for example, selecting top m PLS components

explaining 80% of total genotypic variance) [12]. It should be

noted that using too many components in PLS-based MLAS and

PCA-based MLAS may also decrease the power of MLAS due to

increasing dfs.

Taylor and Tibshirani originally proposed TSM to assess the

overall significance levels of multiple hypotheses tests in micro-

array studies [24]. Here, we applied TSM to MLAS, and

implemented a permutation procedure to estimate the empirical

p value of TSM statistic. Although TSM-based MLAS performed

less well than PLS-based MLAS, TSM is easy to calculate and may

provide a simple alternative for MLAS. Additionally, we found

that WTSM significantly outperformed FTSM in our simulation

study, which suggest the impact of statistical tests used for

calculating TSM on the performance of TSM-based MLAS.

Based on our simulation study results, we suggest that it was better

Figure 2. Power comparing results of PLS-based MLAS (PLS_MLAS), PCA-based MLAS (PCA_MLAS), tagSNPs-based MLAS
(tagSNPs_MLAS), TSM-based MLAS using F test (FTSM) and TSM-based MLAS using Wald test (WTSM) under the additive model.
doi:10.1371/journal.pone.0016739.g002

Figure 3. Plot of genome-wide MLAS results of lean body mass implemented by PLS-based MLAS. Significant genes are highlighted in
red.
doi:10.1371/journal.pone.0016739.g003
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to use powerful statistical tests in TSM-based MLAS, such as Wald

test and likelihood ratio test.

In summary, we present a simple and flexible MLAS approach

with small dfs. Simulation study and real GWAS data analyses

results support the improved performance of our PLS-based

MLAS in disease genes mapping relative to other popular MLAS

approaches investigated in this study. We aim to provide an

effective and powerful MLAS approach, which may help to

overcome the limitations of SLAS in disease genes mapping.

Materials and Methods

Ethics Statement
All studies were approved by the Institutional Review Boards of

University of Missouri-Kansas City. Informed-consent documents

were written by all study participants.

Extended Tukey’s 1-df interaction model
Consider a sample of n unrelated subjects with k genotyped

SNPs. Let Yi denote the quantitative trait value for subject i

(i = 1,…,n), and Xij denote the genotype of subject i at SNP j

(j = 1,…,k). In this study, we coded Xij to be 0, 1 or 2, representing

the copy number of minor allele for subject i at SNP j. Other

genotype coding scenarios can also be used, such as Xij = 0 or 1

for genetic dominant or recessive models, if desired. The extended

Tukey’s 1-df interaction model proposed by Chatterjee N et al.

[13] was implemented here to model the relationship between

individual trait value Yi and genotype Xij. In this model, the SNPs

with large marginal genetic effects are assumed to have large

interactive genetic effects. Total interactive effects of all SNPs are

measured by weighted sum of the product of marginal effects of

each pair of SNPs through an interaction parameter c in the

extended Tukey’s 1-df interaction model, defined by

Yi~az
Xk

j~1

bjXijzc
X

1ƒjvuƒk

bjbuXijXiuzei ð1Þ

where a is intercept. bj denotes the regression coefficient for SNP j.

c measures total interactive effects of all SNPs within candidate

genetic regions. ei denotes the residual environmental effect for

subject i, and is assumed to follow a normal distributation with

mean 0 and variance s2
e . A global test of associations between

candidate genetic regions and target traits equates testing the null

hypothesis H0: b= 0 (b= b1,…, bk) under multilinear regression.

Although the interactive effects of multiple SNPs are modeled as

an interaction parameter c in the extended Tukey’s 1-df

interaction model [13], it is still difficult to apply this model to

large genetic regions with many SNPs. The parameters needed for

large genetic regions in the extended Tukey’s 1-df interaction

model will become too many to implement.

PLS-based MLAS
Instead of directly using genotypes as regressor, we propose to

regress the PLS components derived from genotypes on target

traits under multilinear regression model. A standard iterative

process implemented by the pls package of R was used to derive

PLS components from genotypes in this study [35,36]. Briefly, let

Yj denote the residual phenotype vector, and Xj denote the

residual genotype matrix for the jth PLS component. wj represents

the first left singular vector of crossproduct matrix Sj = Xj
TYj . uj

denotes the scores of Xj along the jth PLS component. During

each iteration, the scores uj was first calculated by

uj~X jwj ð2Þ

The loading aj of Yj and loading bj of Xj at the jth PLS

component were then defined by

aj~Yj
Tuj and bj~Xj

Tuj ð3Þ

Finally, the residual phenotype vector Yj+1 and genotype matrix

Xj+1 for j+1 PLS component were calculated by

Yjz1~Yj - ujaj
T and Xjz1~Xj - ujbj

T ð4Þ

Suppose top m of ordered PLS components were further

included into multilinear regression analysis. Let Pij (j = 1,…,m)

denote the score of subject i at the jth PLS component. PLS-based

multilinear regression can be defined as

Yi~az
Xm

j~1

bjPijzei, ð5Þ

Where a is intercept. bj denotes the regression coefficient for the

jth PLS component. ei denotes the residual environmental effect

for subject i, and is assumed to follow a zero mean normal

distributation with variance s2
e . We can detect associations

between target traits and candidate genetic regions under multi-

linear regression. For statistical tests, a permutation procedure is

Table 1. Comparison of MLAS and SLAS results of the 17
genes detected by PLS-based MLAS of lean body mass.

Genes PLS-based MLAS SLAS

P values FDR P valuesa FDR

ADAMTS1 1.0061025 0.045 3.3161025 0.514

ANGPT2 2.0061025 1.0061025 4.7661024 0.906

ATP8A2 1.3061024 0.045 0.016 0.919

DKK2 3.0061025 0.037 5.6661023 0.910

FAM13A1 8.1061024 0.022 5.6461024 0.906

FGF10 1.0061025 0.037 1.1661024 0.753

GPR158 4.0061025 1.0061025 1.5661024 0.798

PTPRM 3.0061025 2.0061025 6.4061023 0.910

SDK2 7.0061025 3.0061025 0.029 0.935

SLC28A3 3.6061024 5.0061025 1.3661023 0.909

TNFRSF21 0.020 6.6861023 1.7461024 0.811

TNFSF10 3.0061025 0.039 0.020 0.919

TRHR 2.2061023 0.021 7.5561028 0.029

TRPC6 1.2461023 0.013 2.9761023 0.910

TSPYL5 1.9061024 0.016 1.6261023 0.910

ZBTB43 1.0061025 0.018 3.5361023 0.910

ZFP37 3.0061025 0.028 0.011 0.910

adenote the smallest P value of each gene obtained from our previous genome-
wide SLAS of lean body mass.

doi:10.1371/journal.pone.0016739.t001

PLS-Based Multilocus Association Testing

PLoS ONE | www.plosone.org 4 February 2011 | Volume 6 | Issue 2 | e16739



implemented here to obtain the empirical distribution of testing

statistic of PLS-based MLAS in each replicate. The significance

level of testing statistic of PLS-based MLAS can be evaluated

according to the obtained empirical distribution.

TSM-based MLAS
We also investigated the performance of TSM for MLAS.

Suppose k genotyped SNPs within a candidate genetic region.

Association tests can be conducted at each SNP, and p(1)#p(2)

#…#p(k) denote the ordered p values of the k SNPs. TSM can be

defined as

TSM~
1

k

Xk

i~1

(1{p(i)
kz1

i
) ð6Þ

If none of SNPs within the candidate genetic region is associated

with target traits, p(i) should follow a beta distribution with

expected value i/(k+1), and TSM should have an expected value

0. Otherwise, p(i) will deviate from its expected value i/(k+1), and

result in a positive value of (1{p(i)
kz1

i
). Large positive TSM

value support the association between the candidate genetic region

and target traits [24].

Taylor and Tibshirani showed that TSM approached normal

distribution under large k (Equation 6), which could be used to

determine the significance level of TSM statistic [24]. However, in

a typical MLAS, the number of hypothesis test k (Equation 6)

within a candidate genetic region is usually not large enough to

approach normal distribution for TSM. In this study, we

implemented a permutation procedure to estimate the empirical

p value of TSM statistic.

Simulations
Simulation study was used to assess the performance of our

PLS-based MLAS as well as tagSNPs-based MLAS, PCA-based

MLAS and TSM-based MLAS. HAPGEN program was used for

genotype simulations [37,38]. Based on known haplotype data,

HAPGEN can simulate whole genome genotype data by

implementing a hidden Markov model. Specific for this study,

the phased haplotype data, minor allele frequencies (MAF) and D’

of chromosome 6 of Caucasian were downloaded from the

HapMap website (http://hapmap.ncbi.nlm.nih.gov/downloads/

index.html.en). There were total 262,658 SNPs at chromosome 6.

To simulate genes with various genetic structures, we randomly

selected 10,000 genetic regions from chromosome 6. Each region

contained 14 consecutive SNPs with 0.2#MAF#0.5 and pre-

assigned ranges of D’ between adjacent SNPs (Table 2). During

each replicate, one of the 10,000 genetic regions was first

randomly selected. HAPGEN was then used to simulate the

genotype data of the selected genetic region with default running

parameters recommended by HAPGEN developers [37,38].

Genetic epistatic and additive models were used for quantitative

phenotype simulations. Let Yi denote the trait value of subject i,

defined by

Yi~az
Xk

j~1

bjXijz
X

1ƒjvuƒk

cjuXijuzei ð7Þ

where a is intercept. bj denotes the additive effect of SNP j. Xij (Xij

= 0,1 or 2) denotes the copy number of high risk allele for subject i

at SNP j. Without loss of generality, we supposed that there was an

interactive effect between the high risk alleles of SNP j and SNP u

under the epistatic model.cju denotes the interactive effect between

SNP j and SNP u, and equate 0 in the additive model. For the

epistatic model, Xiju was assigned 1 if the genotype vector of SNP j

and SNP u was either of (2,2), (2,1) or (1,2), and 0 otherwise. ei

denotes the residual environmental effect of subject i, and follow a

zero-mean normal distribution with variance s2
e . Under the epistatic

model, SNP 6 and SNP 10 of the 14 SNPs were simulated as causal

loci with additive effects and an interactive effect between SNP 6

and SNP 10. Under the additive model, SNP 8 of the 14 SNPs

within selected genetic region was simulated as causal locus with

additive genetic effect. Phenotypic variances and D’ of the simulated

genes were controlled to simulate various scenarios of association

studies. Detailed parameter designs are presented in Table 2.

The simulated genotype (excluding causal SNP 6 and SNP 10 in

the epistatic model and causal SNP 8 in the additive model) and

phenotype data were simultaneously analyzed by tagSNPs-based

MLAS, PLS-based MLAS, PCA-based MLAS and TSM-based

MLAS. The F test was used here to compare the performance of

various MLAS approaches. For tagSNPs-based MLAS, 3 of 12

SNPs (in the epistatic model) or 13 SNPs (in the additive model)

were first selected as tagSNPs using hmmlsselect program [39].

The selected 3 tagSNPs were then included into the extended

Tukey’s 1-df interaction model (Equation 1) for MLAS using F

test. For PLS-based MLAS and PCA-based MLAS, the first PLS

and PCA components with the largest genotype variance in PLS

and PCA analyses were included into multilinear regression

analyses for MLAS in this study. For TSM-based MLAS, F test

was first conducted at each SNP to obtain SLAS P values. The

TSM statistic based on F test (FTSM) was then calculated for each

gene (Equation 6). Additionally, the TSM statistic based on Wald

test (WTSM) (implemented by PLINK [40]) was also calculated,

and compared with FTSM to investigate potential impact of

statistical tests on the performance of TSM-based MLAS. 2,000

permutations were conducted in each replicate to estimate the

empirical p values of testing statistics of PLS-based MLAS, PCA-

based MLAS and TSM-based MLAS.

Table 2. Parameter configurations used in our simulation
study.

Genetic effecta

Epistatic model D’ SNP6 SNP10 SNP66SNP10

0.9,1.0 0.020 0.010 0.000

0.8,0.9 0.018 0.008 0.004

0.7,0.8 0.016 0.006 0.008

0.6,0.7 0.014 0.004 0.012

Genetic effectb

Additive model D’ SNP8

0.9,1.0 0.01

0.8,0.9 0.02

0.7,0.8 0.03

0.6,0.7 0.04

adenote the phenotypic variance explained by additive effects of causal SNP 6
and SNP 10 as well as interactive effect between SNP 6 and SNP 10,
respectively.

bdenote the phenotypic variance explained by additive effect of causal SNP 8.
cthe basic parameter configuration is highlighted in bold. Each possible
parameter setting can be obtained by replacing one entry of the basic
parameter configuration with a different entry of corresponding parameter.

doi:10.1371/journal.pone.0016739.t002

PLS-Based Multilocus Association Testing
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5,000 replicates were conducted for each parameter setting. In

each replicate, 800 individuals were simulated. Power and type I

error rates were calculated respectively as the proportions of

positive association results (P values # 0.05) obtained from the

simulated genes with and without genetic effects in 5,000

replicates. All our data simulations and analyses were implement-

ed with statistical package R [35] except for WTSM (implemented

by PLINK [40]).

Application to Lean Body Mass GWAS Data
To investigate the efficiency of PLS-based MLAS, we applied it

to a real GWAS data consisting of 1,000 unrelated US whites. The

characteristics of this sample have been detailed in previous single

locus GWAS of lean body mass [27]. Affymetrix 500 k SNP arrays

were used to genotype a total of 500,568 SNPs. After quality

control, 973 subjects and 379,319 SNPs relating to 12,828 genes

were retained for our genome-wide MLAS of lean body mass.

PLS-based MLAS approach was used to detect associations

between each gene and lean body mass. 100,000 permutations

were conducted to evaluate the empirical p value of each gene. To

correct for multiple testing, false discovery rate (FDR) q value was

also calculated from 100,000 permutations [41,42]. Briefly, let

Sobserve denote the observed PLS statistic vector with element

Si
observe (i = 1,2,3…,12,828) in the lean body mass data. Snull

denotes the PLS statistic matrix with element S
ij
null

(i = 1,2,3…,12,828 and j = 1,2,3…,100,000), derived from

100,000 permutations. The FDR q value of gene m (denoted as

qm, m = 1,2,3…,12,828) was calculated by

qm~
fnull

fobserve

ð8Þ

where fnull denotes the proportion of Snull with S
ij
null$Sm

observe, and

fobserve denotes the proportion of Sobserve with Si
observe$Sm

observe

[41,42]. Significant associations were defined by FDR q

values#0.05. Additionally, the FDR q value of each gene in

previous single locus GWAS of lean body mass was also calculated

with the qvalue package of R [35,43,44].
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