Multiloop integrals in dimensional regularization made simple

based on arXiv:I304.I806

Johannes M. Henn

Institute for Advanced Study

Analytic computation of (Feynman) loop integrals

- what functions are needed?
- how do they depend on the kinematical variables?
- how do they depend on $\mathrm{D}=4-2 \mathrm{eps}$?
- how can we compute the integrals?

Integral functions

Experience shows: many processes described by iterated integrals

- simple case: logarithms, polylogarithms Li
- generalization: harmonic polylogarithms
- more general: Goncharov polylogarithms
- multiple masses -> Elliptic functions

May 14, 2013 LoopFest XII Johannes M. Henn, IAS

Harmonic polylogarithms

- defined iteratively

$$
H_{1}(x)=-\log (1-x), \quad H_{0}(x)=\log (x)
$$

$H_{a_{1}, a_{2}, \ldots a_{n}}(x)=\int_{0}^{x} f_{a_{1}}(y) H_{a_{2}, \ldots, a_{n}}(y) d y$
kernels: $\quad f_{1}(y)=\frac{1}{1-y}, \quad f_{0}(y)=\frac{1}{y}, \quad f_{-1}(y)=\frac{1}{1+y}$

- naturally arise in differential equations
- weight: number of integrations
"transcendentality"
- more general integration kernels:

Goncharov polylogarithms

Integration by parts identities (IBP)

[Chetyrkin,Tkachov, I98I]
public computer codes [Anastasiou, Lazopoulos] [Smirnov, Smirnov] [Studerus, von Manteuffel]

- IBP relates integrals with different indices

- for a given topology, finite number of master integrals needed
- how to choose a 'good' integral basis?

May 14, 2013 LoopFest XII Johannes M. Henn, IAS

Differential equation technique

[Kotikov, 1991] [Gehrmann, Remiddi, I999]
[Bern, Dixon, Kosower, 1993]

- differentiate master integrals w.r.t. momenta and masses
- use IBP to re-express RHS in terms of master integrals
- system of differential equations

$$
\partial_{i} f\left(x_{j}, \epsilon\right)=A_{i}\left(x_{j}, \epsilon\right) f\left(x_{j}, \epsilon\right)
$$

- change of integral basis:

$$
\begin{aligned}
& f \longrightarrow B f \\
& A_{j} \longrightarrow B^{-1} A_{j} B-B^{-1}\left(\partial_{j} B\right)
\end{aligned}
$$

May 14, 2013 LoopFest XII Johannes M. Henn, IAS

Pure functions of uniform weight

- uniform weight ("transcendentality") \mathcal{T}

$$
\begin{array}{ll}
f_{1}(x)=\operatorname{Li}_{3}(x)+\frac{1}{2} \log ^{3} x & \mathcal{T}\left(f_{1}\right)=3 \\
f_{2}(x, y)=\operatorname{Li}_{4}(x / y)+3 \log x \operatorname{Li}_{3}(1-y) & \mathcal{T}\left(f_{2}\right)=4
\end{array}
$$

- pure functions: derivative reduces weight

$$
\mathcal{T}(f)=n \quad \longrightarrow \quad \mathcal{T}(d f)=n-1
$$

$f_{1}, f_{2} \quad$ are pure functions of uniform weight
$f_{3}=\frac{1}{x} \log ^{2} x+\frac{1}{1+x} \operatorname{Li}_{2}(1-x) \quad$ has uniform weight 2 , but is not pure functions with unique normalization

- dimensional regularization

$$
x^{\epsilon}=1+\epsilon \log (x)+\ldots \quad \text { assign weight }-1 \text { to } \epsilon
$$

Optimal choice of integral basis

- idea: use transcendentality as guiding principle
- how to find such integrals?
- unitarity cuts, leading singularities
- ‘d-log' representations
[Cachazo]
[Arkani-Hamed et al.]
- explicit parameter integrals

Conjecture

[J.M.H., 20I3]

- all basis integrals can be chosen to be pure functions of uniform weight
- leads to simplified form of differential equations

$$
\partial_{i} f\left(x_{j}, \epsilon\right)=\epsilon A_{i}\left(x_{j}\right) f\left(x_{j}, \epsilon\right)
$$

May 14, 2013 LoopFest XII Johannes M. Henn, IAS

Example: massless 2->2 scattering

[Smirnov, 1999][Gehrmann, Remiddi, I999]

- good choice of master integrals
[J.M.H., 20I3]

- Knizhnik-Zamolodchikov equations

$$
\begin{aligned}
& \partial_{x} f=\epsilon\left[\frac{a}{x}+\frac{b}{1+x}\right] f \\
& x=t / s
\end{aligned}
$$

- singular points

$$
s=0, \quad t=0, \quad u=-s-t=0
$$

May 14, 2013 LoopFest XII Johannes M. Henn, IAS

Solution of differential equations

- equation(s) in differential form

$$
d f\left(\epsilon, x_{n}\right)=\epsilon d \tilde{A}\left(x_{n}\right) f\left(\epsilon, x_{n}\right)
$$

- specifies class of functions (symbol alphabet can be read off) massless 2->2 case: harmonic polylogarithms
- solution in terms of iterated integrals

$$
f=P e^{\epsilon \int_{\mathcal{C}} d \tilde{A}} f(\epsilon=0)
$$

here \mathcal{C} is a contour in the kinematical space boundary conditions at base point from physical limits

- transcendentality properties manifest

$$
f=f^{(0)}+\epsilon f^{(1)}+\ldots
$$

higher orders in ϵ trivial to obtain
May 14, 2013 LoopFest XII Johannes M. Henn, IAS

Generalizations

- all planar 2->2 three-loop master integrals

> [J.M.H.,A.V. Smirnov, V.A. Smirnov, to appear]

(26 master integrals) (41 master integrals)
$\partial_{x} f=\epsilon\left[\frac{a}{x}+\frac{b}{1+x}\right] f \quad x=t / s$
boundary conditions from $x=-1$ and Mellin-Barnes

- non-planar integrals, masses

May 14, 2013 LoopFest XII Johannes M. Henn, IAS

Conclusions

- criteria for finding optimal integral basis
- pure functions of uniform weight
- simplified diff. eqs. trivial to solve

Outlook

- further applications: masses, non-planar integrals, phase space integrals, ...
- multi-leg processes: study new classes of functions
- other dimensions

