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Abstract

The quantum-walk-based spatial search problem aims to find a marked vertex using a
quantum walk on a graph with marked vertices. We describe a framework for determining the
computational complexity of spatial search by continuous-time quantum walk on arbitrary
graphs by providing a recipe for finding the optimal running time and the success probability
of the algorithm. The quantum walk is driven by a Hamiltonian that is obtained from the
adjacency matrix of the graph modified by the presence of the marked vertices. The success of
our framework depends on the knowledge of the eigenvalues and eigenvectors of the adjacency
matrix. The spectrum of the modified Hamiltonian is then obtained from the roots of the
determinant of a real symmetric matrix, whose dimension depends on the number of marked
vertices. We show all steps of the framework by solving the spatial searching problem on the
Johnson graphs with fixed diameter and with two marked vertices. Our calculations show
that the optimal running time is O(

√
N) with asymptotic probability 1 + o(1), where N is

the number of vertices.

Keywords: Continuous-time quantum walk, spatial quantum search, Johnson graph, multiple
marked vertices

1 Introduction

Farhi and Gutmann [1] introduced the continuous-time quantum walk as a discrete-space version
of the Schrödinger equation, where the positions of the particle are the vertices of a graph,
more specifically, a tree whose nodes represent solutions to a decision problem [2]. Childs and
Goldstone [3] used the continuous-time quantum walk to address the spatial search problem with
one marked vertex, the goal of which is to find the marked vertex when the walk departs from
an initial state that is easy to prepare. The evolution is based on a modified Hamiltonian, which
has an extra term that depends on the location of the marked vertex and is different from the
one used by Farhi and Gutmann, which is based only on the graph’s adjacency matrix. Childs
and Goldstone analyzed the search on lattices, hypercubes, and the complete graph to determine
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whether the quantum-walk-based search algorithm is quicker than the random-walk-based one on
the same graphs, obtaining negative results in some cases, for instance, on d-dimensional lattices
with d 6 4. This cannot be taken as proof that it is impossible to find a quantum-walk-based
search algorithm that provides a speedup over the best random-walk-based case. Indeed, using
alternative discrete-time quantum walk models it is possible to achieve a quadratic speedup for
d-dimensional lattices with d > 2 [4, 5].

The origin of the quantum-walk-based spatial search problem is a combination of Farhi
and Gutmann’s proposal in 1998 of speeding up random walks on decision trees by using a
continuous-time quantum walk [1] together with Benioff’s proposal in 2000 of applying Grover’s
algorithm [6] with the goal of speeding up classical search algorithms for a marked vertex on the
two-dimensional lattice [7]. After the contribution of those authors, the area of quantum-walk-
based spatial search algorithms has split into two different formulations in the literature, both
of which are important because they reveal different computational and mathematical aspects
of quantum walks.

The first formulation asks whether the number of steps that a quantum walk on a graph G
takes to find a marked vertex is less than the number of steps that a classical random walk takes
on the same graph G. This formulation was introduced by Shenvi et al. [8], who showed that a
quantum walk on a hypercube finds a marked vertex quicker than a random walk. In a context
close to the spatial search algorithm, Childs et al. [9] showed that the propagation of a particle
between a particular pair of nodes is exponentially faster when driven by a continuous-time
quantum walk compared to a random walk. There are many papers in the literature addressing
this formulation in both the discrete-time [8, 10, 11, 12] and continuous-time [3, 13, 14, 15, 16,
17, 18, 19, 20, 21] cases. Experimental implementations of search algorithms by continuous-time
quantum walk are described in [22, 23, 24, 25].

The second formulation asks whether the number of steps that a classical random walk on
a graph G takes to find a marked vertex v ∈ V (G) can be improved by using a quantum walk
on any graph G′, so that the quantum walk on G′ would uncover the necessary information to
find the vertex v in the original graph G. This formulation was introduced by Szegedy [26], who
showed that the quantum hitting time of a quantum walk on the bipartite graph G′ obtained
from a graph G, where the random walk takes place, is quadratically less than the classical
hitting time. To find a marked vertex, it is still necessary to show that the success probability
is Ω(1). Many papers in the literature have addressed the second formulation in both the
discrete-time [27, 28, 29, 30] and continuous-time [31, 32] cases, and in all of those papers the
quantum walk takes place on a bipartite graph G′ obtained from G via a duplication process
and the random walk takes place on an almost arbitrary graph G with multiple marked vertices.
Ambainis et al. [30] provided a closure of Szegedy’s problem by showing that there is a quadratic
speedup for finding a marked vertex with success probability Ω̃(1) on an arbitrary graph G by
discrete-time quantum walk on G′. Apers et al. [32] go along the same line by continuous-time
quantum walk.

In this work, we address the first formulation of the spatial search problem by continuous-time
quantum walk on arbitrary graphs with multiple marked vertices and we outline a framework
to determine the computational complexity of the search algorithm that is successful if the
evolution operator satisfies some asymptotic conditions. As an example of our framework, we
analyze in full detail the search algorithm on the Johnson graph with two marked vertices. The
framework is based on a real symmetric matrixM , which depends on the entries of the adjacency
matrix and on the locations of the marked vertices. The fact that the determinant of this matrix
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is zero allows us to find the spectrum of the modified Hamiltonian if we know the spectrum of
the adjacency matrix. Then, we are able to find the spectral gap and all quantities necessary
to determine the algorithm’s optimal running time and the success probability assuming that
the spectral gap tends to zero when the number of vertices increases. The relevant quantities
are basically the overlaps between the marked vertices with the eigenvectors of the modified
Hamiltonian.

The Johnson graph J(n, k) plays an important role in quantum walks because it is used in the
element distinctness algorithm [27] and in many spatial search algorithms [33, 34]. The vertices
of J(n, k) are k-subsets of a set with n elements and two vertices are adjacent if and only if the
intersection of these vertices is a (k− 1)-subset. In this work, we use the Johnson graph J(n, k)
with two marked vertices as an example of all steps of our framework for determining the time
complexity of the spatial search algorithm by continuous-time quantum walk. We show that
the optimal running time to find a marked vertex is πk

√
N/2

√
2 with asymptotic probability

1 + o(1) when k is fixed.
The structure of this paper is as follows. In Sec. 2, we outline a framework for determining

the computational complexity of the spatial search algorithm by continuous-time quantum walk
on graphs with multiple marked vertices. In Sec. 3, we apply our framework to analyze with
mathematical rigor the spatial search algorithm on the Johnson graph with two marked vertices.
In Sec. 4, we present our final remarks.

2 Multimarked framework

Let G(V,E) be a finite graph with vertex set V and edge set E. We associate G with a Hilbert
space H with computational basis {|v〉 : v ∈ V }, as is usually done in the definition of the
continuous-time quantum walk [1]. Let W be the set of marked vertices. We consider the
time-independent Hamiltonian of the form [3]

H = −γA−
∑

w∈W

∣

∣w
〉〈

w
∣

∣, (1)

where A denotes the adjacency matrix of G, and γ is a real and positive parameter. The spatial
search algorithm starts with the initial state

∣

∣ψ(0)
〉

, which is the uniform superposition of the
computational basis

∣

∣ψ(0)
〉

=
1√
N

∑

v∈V

|v〉,

where N is the number of vertices of G. The quantum state at time t is therefore given by

∣

∣ψ(t)
〉

= e−iHt
∣

∣ψ(0)
〉

.

The probability of finding a marked vertex at time t is

p(t) =
∑

w∈W

∣

∣

〈

w
∣

∣ψ(t)
〉
∣

∣

2
. (2)

The goal of the algorithm is to find the optimal values of parameters t and γ so that the success
probability is as high as possible.
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2.1 Spectrum of the Hamiltonian

For an operator U , we let σ(U) denote the spectrum of U . Suppose that the adjacency matrix
A of G(V,E) has exactly k + 1 distinct eigenvalues φ0 > φ1 > · · · > φk. For 0 6 ℓ 6 k, let Pℓ

denote the orthogonal projector onto the eigenspace of A in H for the eigenvalue φℓ, that is,

A =

k
∑

ℓ=0

φℓPℓ.

Let λ and
∣

∣λ
〉

be an eigenvalue and a normalized eigenvector of H, respectively, that is

H
∣

∣λ
〉

= λ
∣

∣λ
〉

and
〈

λ
∣

∣λ
〉

= 1. Hamiltonian H and operator −γA may share common eigenvalues and eigen-
vectors, as shown in the next Proposition.

Proposition 1. λ ∈ σ(−γA) and (−γA)
∣

∣λ
〉

= λ
∣

∣λ
〉

if and only if
〈

w
∣

∣λ
〉

= 0 for all w ∈W .

Proof. Using the definition of H, we obtain

∑

w∈W

∣

∣w
〉〈

w
∣

∣λ
〉

= −(γA+H)
∣

∣λ
〉

.

If λ ∈ σ(−γA) and (−γA)
∣

∣λ
〉

= λ
∣

∣λ
〉

, the right-hand side is zero and the entries of the vector
∑

w∈W

∣

∣w
〉〈

w
∣

∣λ
〉

must be zero. Then, we have
〈

w
∣

∣λ
〉

= 0 for all w ∈W . On the other hand, if
〈

w
∣

∣λ
〉

= 0 for all w ∈ W , the left-hand side is zero. Since H
∣

∣λ
〉

= λ
∣

∣λ
〉

, we have λ ∈ σ(−γA)
and (−γA)

∣

∣λ
〉

= λ
∣

∣λ
〉

.

From Eq. (2), we see that the eigenvectors
∣

∣λ
〉

such that
〈

w
∣

∣λ
〉

= 0 for all w ∈ W play
no role in the calculation of the probability p(t) of finding a marked vertex. The eigenvalues λ
associated with those eigenvectors are in the spectrum of −γA. In the continuation, we assume
that

〈

w
∣

∣λ
〉

6= 0 for at least one marked vertex w. Then, λ 6∈ σ(−γA).
Using the definition of H, we obtain

PℓH
∣

∣λ
〉

= −Pℓ

(

γA+
∑

w∈W

∣

∣w
〉〈

w
∣

∣

)

∣

∣λ
〉

, (3)

and since we are assuming that λ 6∈ σ(−γA), we write the previous equation as

Pℓ

∣

∣λ
〉

= − 1

λ+ γφℓ

∑

w∈W

〈

w
∣

∣λ
〉

Pℓ

∣

∣w
〉

. (4)

The method that we describe for calculating an eigenvalue λ of H works only if λ 6∈ σ(−γA).
Since

∑k
ℓ=0 Pℓ = I, we have for a fixed marked vertex w

〈

w
∣

∣λ
〉

=

k
∑

ℓ=0

〈

w
∣

∣Pℓ

∣

∣λ
〉

.
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Then, using Eq. (4), we obtain

〈

w
∣

∣λ
〉

= −
k
∑

ℓ=0

1

λ+ γφℓ

(

∑

w′∈W

〈

w′
∣

∣λ
〉〈

w
∣

∣Pℓ

∣

∣w′
〉

)

,

which can be cast into the form
∑

w′∈W

Mλ
ww′

〈

w′
∣

∣λ
〉

= 0, (5)

where

Mλ
ww′ = δww′ +

k
∑

ℓ=0

〈

w
∣

∣Pℓ

∣

∣w′
〉

λ+ γφℓ
.

Since
〈

w
∣

∣λ
〉
∣

∣

w∈W
is a 0-eigenvector of the real symmetric matrix Mλ =

(

Mλ
ww′

)

w,w′∈W
, we have

det
(

Mλ
)

= 0,

which can be used to determine λ.
We have shown the following proposition:

Proposition 2. Let λ be an eigenvalue of H associated with eigenvector
∣

∣λ
〉

such that λ 6∈
σ(−γA) and

〈

w
∣

∣λ
〉

6= 0 for at least one w ∈ W . Define the real symmetric matrix Mλ =
(

Mλ
ww′

)

w,w′∈W
, where

Mλ
ww′ = δww′ +

k
∑

ℓ=0

〈

w
∣

∣Pℓ

∣

∣w′
〉

λ+ γφℓ
. (6)

Then, det(Mλ) = 0 and
〈

w
∣

∣λ
〉∣

∣

w∈W
is a nontrivial 0-eigenvector of Mλ.

To establish a method to find the eigenvalues of H, it is more important to us the inverse
of Proposition 2. Given a graph G(V,E) with a set W of marked vertices, we obtain the
Hamiltonian (1) and matrix Mλ′

for an unknown real number λ′. Numerical calculations with
random graph instances show that all roots λ′ of the equation det(Mλ′

) = 0 such that λ′ 6∈
σ(−γA) are eigenvalues of H. Indeed, the numerator of det(Mλ′

) is a polynomial P (λ′) of the
indeterminate λ′, whose degree is k|W |. There are at most k|W | roots of P (λ′) = 0 and some
of them may be in σ(−γA). Numerical calculations show that the remaining ones are in σ(H).

2.2 Asymptotic analysis

It is natural to expect that the spectral gap of the modified Hamiltonian tends to zero when the
number of vertices N increases. In this case, the analysis of the search algorithm is simpler in the
asymptotic regime. Besides, in the continuation we assume that the asymptotic computational
complexity of the search algorithm depends only on two eigenvalues λ± closest of −γφ0 so that

λ± = −γφ0 ± ǫ+ o(ǫ). (7)

In this case, the spectral gap is asymptotically 2ǫ > 0. Matrix Mλ simplifies to

Mλ±

ww′ = δww′ +
k
∑

ℓ=0

〈

w
∣

∣Pℓ

∣

∣w′
〉

γ(φℓ − φ0)± ǫ
.
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Up to second order in ǫ we obtain

Mλ±

ww′ = ±
〈

w
∣

∣P0

∣

∣w′
〉

ǫ
+ δww′ − S

(1)
ww′

γ
∓ ǫS

(2)
ww′

γ2
,

where

S
(1)
ww′ =

k
∑

ℓ=1

〈

w
∣

∣Pℓ

∣

∣w′
〉

φ0 − φℓ

and

S
(2)
ww′ =

k
∑

ℓ=1

〈

w
∣

∣Pℓ

∣

∣w′
〉

(φ0 − φℓ)2
.

The goal is to find ǫ. Using det(Mλ) = 0 and considering the numerator of up to order ǫ2,
we obtain a quadratic equation ǫ2 + a(γ)ǫ − b(γ) = O(ǫ3), which cannot have the linear term
because that is the only way to have the ±ǫ term in Eq. (7). Then, we use the equation a(γ) = 0
to determine the optimal value of γ and then ǫ is given by

√

b(γ).

2.3 Calculation of the computational complexity

Using an orthonormal set
{
∣

∣λ
〉}

of eigenvectors of H, the probability of finding a marked vertex
as a function of t (see Eq. (2)) is given by

p(t) =
∑

w∈W

∣

∣

∣

∣

∣

∑

λ

e−iλt
〈

w
∣

∣λ
〉〈

λ
∣

∣ψ(0)
〉

∣

∣

∣

∣

∣

2

.

The exact eigenvalues λ are the roots of det(Mλ) = 0, but usually the calculation of those
roots is too complicated. In the continuation, we analyze the computational complexity of
quantum walks on graphs that satisfy very restrictive conditions. Let us assume again that the
spectral gap tends to zero when the number of vertices increases and the asymptotic success
probability depends only on λ± and their associated eigenvectors

∣

∣λ±
〉

. Besides, let us assume
that asymptotically

〈

λ+
∣

∣ψ(0)
〉〈

w
∣

∣λ+
〉

= −
〈

λ−
∣

∣ψ(0)
〉〈

w
∣

∣λ−
〉

+ o(1) (8)

for all w ∈ W , which is true for the quantum walk on the Johnson graph with two marked
vertices, as we show in the next Section. Under those assumptions, the probability of finding a
marked vertex reduces to

p(t) = 4
∣

∣

〈

λ+
∣

∣ψ(0)
〉
∣

∣

2
∑

w∈W

∣

∣

〈

w
∣

∣λ+
〉
∣

∣

2
sin2 ǫt+ o(1) + o(ǫt). (9)

Then, the optimal running time is

trun =
π

2ǫ
(10)

and the success probability is

psucc = 4
∣

∣

〈

λ+
∣

∣ψ(0)
〉∣

∣

2
∑

w∈W

∣

∣

〈

w
∣

∣λ+
〉∣

∣

2
+ o(1). (11)
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Although we have imposed many restrictions in order to obtain Eq. (9), there are many examples
with one marked vertex [3, 34] and multimarked vertices [35] that obey all those restrictions.

Now let us focus on the calculation of
∣

∣

〈

w
∣

∣λ+
〉
∣

∣ and
∣

∣

〈

λ+
∣

∣ψ(0)
〉
∣

∣. Recall that
〈

w
∣

∣λ+
〉
∣

∣

w∈W

is a 0-eigenvector of Mλ+

with entries
〈

w
∣

∣λ+
〉

for w ∈ W . Since Mλ+

is known, we are able to

find a normalized 0-eigenvector of Mλ+

, which we call
∣

∣u
〉

. Our numerical calculations support
the conjecture that eigenvalue 0 has multiplicity one. Then vectors

〈

w
∣

∣λ+
〉
∣

∣

w∈W
and

∣

∣u
〉

satisfy

〈

w
∣

∣λ+
〉∣

∣

w∈W
= c+

∣

∣u
〉

,

where c+ is a complex number. Using

k
∑

ℓ=0

∥

∥Pℓ

∣

∣λ+
〉
∥

∥

2
= 1,

〈

w
∣

∣λ+
〉

= c+ u(w)
(

u(w) is the entry of
∣

∣u
〉

associated with w
)

, and Eq. (4), we obtain

1

|c+|2
=

k
∑

ℓ=0

1

|λ+ + γφℓ|2

∥

∥

∥

∥

∥

∑

w∈W

u(w)Pℓ

∣

∣w
〉

∥

∥

∥

∥

∥

2

.

We still have the problem of finding c+ instead of the absolute value of c+. What we have to do
is to rescale

∣

∣λ+
〉

with a unit complex number
∣

∣λ+
〉

→ eiθ
∣

∣λ+
〉

so that c+e−iθ is a positive real
number. After calculating c+ and

∣

∣u
〉

, we are able to find
∣

∣

〈

w
∣

∣λ+
〉∣

∣ because
〈

w
∣

∣λ+
〉

= c+u(w).
The last missing quantity is

∣

∣

〈

λ+
∣

∣ψ(0)
〉∣

∣. If graph G(V,E) is regular and connected, the
uniform superposition is an eigenvector of exp(−iγA) and exp(−iγφ0) is the eigenvalue, where
φ0 is the graph degree, with multiplicity one. In this case, using Eq. (4) taking ℓ = 0 we obtain

〈

ψ(0)
∣

∣λ+
〉

= − 1

λ+ + γφ0

∑

w∈W

〈

w
∣

∣λ+
〉〈

ψ(0)
∣

∣w
〉

.

Since all terms on the right-hand side are supposedly known, this means that we have a recipe
to calculate

∣

∣

〈

λ+
∣

∣ψ(0)
〉
∣

∣ if G(V,E) is regular. If G(V,E) is not regular, we take the initial state
∣

∣ψ(0)
〉

as an eigenvector of −γA associated with the largest eigenvalue of A. In this case, we
also use Eq. (4) to obtain

〈

ψ(0)
∣

∣λ+
〉

in terms of known quantities.
The most straightforward extension of the method outlined above is to replace Eq. (7)

by λ+ = −γφ0 + ǫ1 + o(ǫ1) and λ− = −γφ0 − ǫ2 + o(ǫ2), where ǫ1 6= ǫ2(1 + o(1)). The
asymptotic analysis is performed assuming that ǫ1 and ǫ2 tend to zero when the number of
vertices increases. This extension may include the cases in which the dynamical evolution in the
asymptotic limit depends on eigenvectors different from the ground state and the first excited
state. The probability of finding a marked vertex as a function of t may not be the square of a
sinusoidal function, such as a2 sin2 ǫt, but instead something like a2 + b2 sin2 t(ǫ1 + ǫ2)/2, from
which we obtain the optimal running time t = π/(ǫ1 + ǫ2) and psucc = a2 + b2.

3 Johnson graphs

For the rest of this paper, we apply the general recipe given in the previous Section to the
Johnson graph G(V,E) = J(n, k). The vertex set V is the set of k-subsets of [n] = {1, 2, . . . , n},
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and two vertices v, v′ ∈ V are adjacent if and only if |v ∩ v′| = k − 1. Note that J(n, 1) is the
complete graph Kn, and that J(n, 2) is the triangular graph Tn, which is strongly regular. We
will assume that W = {w1, w2}, where we fix k and let n → ∞. In this case, the matrix Mλ

from Eq. (6) is a two-dimensional matrix denoted by

Mλ =

[

m1 m3

m3 m2

]

,

where

m1 =

k
∑

ℓ=0

∥

∥Pℓ

∣

∣w1

〉
∥

∥

2

λ+ γφℓ
+ 1,

m2 =
k
∑

ℓ=0

∥

∥Pℓ

∣

∣w2

〉
∥

∥

2

λ+ γφℓ
+ 1,

m3 =

k
∑

ℓ=0

〈

w1

∣

∣Pℓ

∣

∣w2

〉

λ+ γφℓ
.

The eigenvalues λ of H are obtained from det(Mλ) = m1m2 −m2
3 = 0.

The number of vertices of J(n, k) is N =
(

n
k

)

. The k+1 distinct eigenvalues φ0 > φ1 > · · · >
φk of J(n, k) are given by

φℓ = (k − ℓ)(n− k − ℓ)− ℓ, (12)

and the multiplicity of φℓ is
(

n
ℓ

)

−
(

n
ℓ−1

)

(with the convention that
(

n
−1

)

= 0). See [36, 37, 38].
For the Johnson graph J(n, k), it important to remark that Pℓ has constant diagonal entries
((

n
ℓ

)

−
(

n
ℓ−1

))

/
(

n
k

)

, so that

∥

∥Pℓ

∣

∣w1

〉
∥

∥

2
=
∥

∥Pℓ

∣

∣w2

〉
∥

∥

2
=

(

n
ℓ

)

−
(

n
ℓ−1

)

(

n
k

) =
k!(n − k)!(n − 2ℓ+ 1)

ℓ!(n − ℓ+ 1)!
. (13)

In particular, we have m1 = m2. Let

δ = k − |w1 ∩ w2|,

which is the distance between w1 and w2. We note that m3 depends on δ. More specifically, it
is known that

〈

w1

∣

∣Pℓ

∣

∣w2

〉

is written in terms of a terminating 3F2 hypergeometric series:

〈

w1

∣

∣Pℓ

∣

∣w2

〉

=
∥

∥Pℓ

∣

∣w1

〉∥

∥

2
3F2

(

−ℓ,−δ, ℓ− n− 1
k − n,−k

∣

∣

∣

∣

1

)

. (14)

See, e.g., [36, pp. 219–220] and [39, Example 2.3]. From now on, we assume that δ is known
in advance. After analyzing the search algorithm under this assumption, we will discuss the
unrestricted case, in which δ is unknown.

3.1 An invariant subspace

For the single-marked case discussed in [34], a (k + 1)-dimensional invariant subspace of H
played an important role. For the present case, we can again make use of a similar but more
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complicated invariant subspace. For integers a, b, c such that 0 6 a 6 k − δ, a 6 b 6 c, and
2k − n+ δ + a− b 6 c 6 min{k + a− b, δ + a}, let

νa,b,c =
{

v ∈ V : |v ∩ w1 ∩ w2| = a, {|v ∩w1|, |v ∩ w2|} = {b, c}
}

,

and set
∣

∣νa,b,c
〉

=
∑

v∈νa,b,c

∣

∣v
〉

.

Then these (unnormalized) vectors
∣

∣νa,b,c
〉

span an invariant subspace Hinv of H. This can
be shown manually, but the group-theoretic interpretation is as follows. When n > 2k, the
automorphism group of J(n, k) is isomorphic to the symmetric group Sn on n letters [n] =
{1, 2, . . . , n}. Consider the subgroup G of Sn consisting of the elements that fixW setwise. The
elements of G fix each of the sets w1 ∩w2 and [n] \ (w1 ∪w2), and either fix or swap the two sets
w1 \w2 and w2 \w1. Hence, the order of G is |G| = (k− δ)!× (n− k− δ)!× (δ!)2 × 2. The νa,b,c
are the orbits of G on the vertex set V , and hence give rise to an invariant subspace. Indeed,
since Ag = gA for every g ∈ Sn, we have

A
∣

∣νa,b,c
〉

= A · 1

|G|
∑

g∈G

g
∣

∣νa,b,c
〉

=
1

|G|
∑

g∈G

g
(

A
∣

∣νa,b,c
〉)

,

and the right-hand side is invariant under G and thus written in the form
∑

a′,b′,c′ κa′,b′,c′
∣

∣νa′,b′,c′
〉

for some scalars κa′,b′,c′. Moreover, since W = νk−δ,k−δ,k, we have
(

∑

w∈W

∣

∣w
〉〈

w
∣

∣

)

∣

∣νa,b,c
〉

= δk−δ,aδk−δ,bδk,c
∣

∣νk−δ,k−δ,k

〉

.

Hence, it follows that Hinv is invariant under H and thus also e−iHt. Note also that the sum of
the

∣

∣νa,b,c
〉

equals
√
N
∣

∣ψ(0)
〉

, so that
∣

∣ψ(0)
〉

belongs to Hinv.
From now on, we will always consider eigenvectors

∣

∣λ
〉

in Hinv. This assumption provides
us with the following strong constraint:

〈

w1

∣

∣λ
〉

=
〈

w2

∣

∣λ
〉

=

〈

νk−δ,k−δ,k

∣

∣λ
〉

2
.

For the rest of this Section, let us call this common value α. The following is a strengthening of
Proposition 1 in this case.

Proposition 3. The following are equivalent: (i) λ ∈ σ(−γA); (ii) −γA
∣

∣λ
〉

= λ
∣

∣λ
〉

; (iii) α = 0.

Proof. (iii)⇒(ii): Note that −γA
∣

∣λ
〉

= H
∣

∣λ
〉

= λ
∣

∣λ
〉

by the definition of H.
(ii)⇒(i): Clear.
(i)⇒(iii): Suppose that λ = −γφℓ. Then, by Eq. (3), we have

α
(

Pℓ

∣

∣w1

〉

+ Pℓ

∣

∣w2

〉)

= 0,

where we note that PℓA = APℓ = φℓPℓ. If ℓ = 0 then P0

∣

∣w1

〉

= P0

∣

∣w2

〉

= (1/
√
N)
∣

∣ψ(0)
〉

,
so α = 0. If ℓ > 0 then it follows from the fact that J(n, k) is a primitive1 distance-regular
graph (provided n > 2k) that Pℓ

∣

∣w1

〉

and Pℓ

∣

∣w2

〉

are linearly independent (cf. [37, Sec. 9.1], [36,
p. 137]), so again we have α = 0, whence (iii).

1A distance-regular graph with diameter k is called primitive if all the distance-i graphs (i = 1, 2, . . . , k) are
connected.
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Corollary 4. −γφ0 is not an eigenvalue of H on Hinv.

Proof. If λ = −γφ0 then
∣

∣ψ(0)
〉

and
∣

∣λ
〉

are linearly independent eigenvectors of A with eigen-

value φ0. (The linear independence follows from
〈

w1

∣

∣ψ(0)
〉

=
〈

w2

∣

∣ψ(0)
〉

= 1/
√
N 6= 0 and

α = 0.) But φ0 has multiplicity one since J(n, k) is connected, a contradiction.

Corollary 5. Suppose that λ 6∈ σ(−γA). Then we have m1 +m3(= m2 +m3) = 0.

Proof. Immediate from Eq. (5) and
〈

w1

∣

∣λ
〉

=
〈

w2

∣

∣λ
〉

= α 6= 0.

This corollary simplifies the discussions of the calculations of λ± because we can forget about
the case where m1 −m3 = 0, which results in a “bad” (but putative) eigenvalue. We also note
that the results of this Subsection can be generalized to other families of distance-transitive
graphs, such as the Hamming graphs.

3.2 Calculation of λ± and related quantities

First, we find the eigenvalue λ− of the ground state of H. Note that the adjacency matrix A
and the oracle

∑

w∈W

∣

∣w
〉〈

w
∣

∣ are both nonnegative matrices with respect to the computational
basis, and hence so are their matrix representations with respect to the

∣

∣νa,b,c
〉

on Hinv. Since
γ > 0, it follows from the Perron–Frobenius theorem (see, e.g., [37, Sec. 3.1], [40, Sec. 2.2]) that
the eigenvalue λ− is in the interval (−∞,−γφ0) and has multiplicity one. Moreover, observe
that m1 +m3, as a function of λ, is monotone decreasing on (−∞,−γφ0) since

∣

∣

〈

w1

∣

∣Pℓ

∣

∣w2

〉
∣

∣ 6
∥

∥Pℓ

∣

∣w1

〉
∥

∥

2
=
∥

∥Pℓ

∣

∣w2

〉
∥

∥

2
by the Cauchy–Schwarz inequality and Eq. (13). Hence, it follows from

Corollary 5 that λ− is the unique eigenvalue of H on Hinv in (−∞,−γφ0).
We write

S1 = S(1)
w1w1

= S(1)
w2w2

, S′
1 = S(1)

w1w2
= S(1)

w2w1
,

S2 = S(2)
w1w1

= S(2)
w2w2

, S′
2 = S(2)

w1w2
= S(2)

w2w1
,

and
λ = −γφ0 + ǫ.

We choose γ so that ǫ(m1 +m2) has no linear term in ǫ, i.e.,

γ = S1 + S′
1. (15)

We note that S′
1 depends on the distance δ, which we currently assume is known in advance.

To proceed with the calculations, we need the following expressions for the sums S1, S2, S
′
1,

and S′
2:

S1 =
1

kn
+O

(

1

n2

)

, S2 =
1

k2n2
+O

(

1

n3

)

, (16)

S′
1 = O

(

1

nδ+1

)

, S′
2 = O

(

1

nδ+2

)

. (17)

Eq. (16) follows easily from Eqs. (12) and (13). The proof of Eq. (17) is deferred to Appendix
A. From Eqs. (16) and (17) it follows that

γ =
1

kn
+O

(

1

n2

)

. (18)
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For convenience, set

η =
1

n
.

By Eq. (13), we have

∥

∥Pℓ

∣

∣w1

〉∥

∥

2
=

k!ηk−ℓ(1− (2ℓ− 1)η)

ℓ!(1− (ℓ− 1)η) · · · (1− (k − 1)η)
(0 6 ℓ 6 k),

which is analytic around η = 0. Moreover, it follows from Eq. (14) that
〈

w1

∣

∣Pℓ

∣

∣w2

〉

is also
analytic around η = 0. By Eqs. (12) and (18), we have

γ(φ0 − φℓ) =
ℓ

k
+O(η) (1 6 ℓ 6 k), (19)

and this is also analytic around η = 0. Since the constant term of the right-hand side is nonzero,
it follows from the above comments that ǫ(m1+m3), as a bivariate function of η and ǫ = λ+γφ0,
is analytic around the origin (η, ǫ) = (0, 0). Hence, the power series expansion of ǫ(m1 +m3)
centered at the origin converges absolutely and uniformly on some neighborhood of the origin
(see [41, Sec. 2.3]), and expressed in the form

ǫ(m1 +m3) =
2

N
− S2 + S′

2

γ2
ǫ2 +O(ǫ3)

with respect to ǫ, where we recall that the linear term in ǫ vanishes, and that

2

N
= 2k!ηk +O(ηk+1),

S2 + S′
2

γ2
= 1 + o(1)

by Eqs. (16) and (17). We note that the expression O(ǫ3) in the above expansion is evaluated
uniformly in η on this neighborhood. Now, set

ǫ−0 = −
√
2 γ

√

N(S2 + S′
2)

= −
√
2√
N

(1 + o(1)).

Pick any scalar ν ∈ (1, 2), and let c ∈ (0, 1) be such that O(ǫ3) above is bounded as

|O(ǫ3)| < |ǫ|1+ν2−ν

for every ǫ ∈ (−c, c). Let n be large enough so that |ǫ−0 | < c/2 and (S2 + S′
2)/γ

2 > 2/3. Then
ǫ−0 ± |ǫ−0 |ν ∈ (−c, c) and we have

∣

∣O
(

(ǫ−0 ± |ǫ−0 |ν)3
)
∣

∣ <
∣

∣ǫ−0 ± |ǫ−0 |ν
∣

∣

1+ν
2−ν

< |ǫ−0 |ν
∣

∣ǫ−0 ± |ǫ−0 |ν
∣

∣

< |ǫ−0 |ν
∣

∣2ǫ−0 ± |ǫ−0 |ν
∣

∣ · 2
3

<
S2 + S′

2

γ2
|ǫ−0 |ν

∣

∣2ǫ−0 ± |ǫ−0 |ν
∣

∣.

Note that the right-hand side equals the absolute value of 2/N−(S2+S
′
2)ǫ

2/γ2 for ǫ = ǫ−0 ±|ǫ−0 |ν .
Hence, for such large n, we have ǫ(m1 +m3) < 0 for ǫ = ǫ−0 − |ǫ−0 |ν and ǫ(m1 +m3) > 0 for ǫ =
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ǫ−0 + |ǫ−0 |ν . By the mean value theorem, this shows that there exists ǫ− ∈ (ǫ−0 −|ǫ−0 |ν , ǫ−0 + |ǫ−0 |ν)
such that m1 +m3 = 0 for ǫ = ǫ−. In view of our previous comments, such ǫ− is unique and we
must have

λ− = −γφ0 + ǫ−.

This also establishes

ǫ− = −
√
2√
N

(1 + o(1)). (20)

Recall the scalar α = α− for the eigenvalue λ−, which is nonzero by Proposition 3. We
assume that α− > 0 after a rescaling of

∣

∣λ−
〉

. By Eq. (4) and
∑k

ℓ=0

∥

∥Pℓ

∣

∣λ−
〉∥

∥

2
= 1, we routinely

obtain

1 = (α−)2
(

4

N(ǫ−)2
+ 2(S2 + S′

2) +O(ǫ−)

)

,

so that from Eqs. (16), (17), and (20) it follows that

α− =
1

2
+ o(1). (21)

Recall that
∣

∣ψ(0)
〉

is a φ0-eigenvector of A. By Eq. (4) with ℓ = 0, we also obtain

〈

ψ(0)
∣

∣λ−
〉

= − 2α−

√
N ǫ−

=
1√
2
+ o(1), (22)

where we have also used Eqs. (20) and (21).
We next find the eigenvalue λ+ for the first excited state of H. On the one hand, by the

definition of H and
∣

∣ψ(0)
〉

, we have

〈

ψ(0)
∣

∣H
∣

∣ψ(0)
〉

= −γφ0 −
1

N
.

On the other hand, we also have

〈

ψ(0)
∣

∣H
∣

∣ψ(0)
〉

= λ−
∣

∣

〈

ψ(0)
∣

∣λ−
〉
∣

∣

2
+
∑

λ6=λ−

λ
∣

∣

〈

ψ(0)
∣

∣λ
〉
∣

∣

2
,

where the sum on the right-hand side is over the eigenvalues of H on Hinv other than λ−. By
Eqs. (20) and (22), we have

λ−
∣

∣

〈

ψ(0)
∣

∣λ−
〉∣

∣

2
= −γφ0

2
+ o(1).

Suppose now that λ+ > −γφ1. Then, since
∑

λ

∣

∣

〈

ψ(0)
∣

∣λ
〉
∣

∣

2
= 1, it follows from Eqs. (19) with

ℓ = 1 and (22) that

∑

λ6=λ−

λ
∣

∣

〈

ψ(0)
∣

∣λ
〉
∣

∣

2
> −γφ1

∑

λ6=λ−

∣

∣

〈

ψ(0)
∣

∣λ
〉
∣

∣

2
= −γφ1

2
+ o(1) = −γφ0

2
+

1

2k
+ o(1).

However, this implies that

〈

ψ(0)
∣

∣H
∣

∣ψ(0)
〉

> −γφ0 +
1

2k
+ o(1) > −γφ0 −

1

N
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for large n, which is a contradiction. (Recall that k is fixed.) Hence, for large n, it follows that
λ+ < −γφ1 and thus λ+ ∈ (−γφ0,−γφ1) by virtue of Corollary 4. Observe that m1+m3 (again
as a function of λ) is also monotone decreasing on (−γφ0,−γφ1), from which it follows that
λ+ is the unique eigenvalue of H on Hinv in this range. We may now proceed as in the above
discussions, and conclude that

λ+ = −γφ0 + ǫ+,

where

ǫ+ =

√
2√
N

(1 + o(1)).

We also obtain the scalar α = α+ for the eigenvalue λ+ as

α+ =
1

2
+ o(1), (23)

and
〈

ψ(0)
∣

∣λ+
〉

= − 2α+

√
N ǫ+

= − 1√
2
+ o(1). (24)

3.3 Computational complexity

Now we apply the general recipe outlined in the previous Section to the search algorithm on
J(n, k) by fixing k and letting n→ ∞. Using Eqs. (21), (22), (23), and (24), we check that the
condition (8) is true. The probability of finding a marked vertex as a function of time is given
by Eq. (9) and then using Eq. (10) the optimal running time is

trun =
π
√
N

2
√
2
,

and using Eq. (11) the success probability is

psucc = 1 + o(1). (25)

Note that the asymptotic success probability does not depend on δ, the distance between the
two marked vertices w1 and w2.

We have so far assumed that δ is known in advance; see Eq. (15). In the case where we have
no prior information on δ, we simply apply the above search algorithm in turn for δ = 1, 2, . . . , k.
We note that we can check if the outcome is a marked vertex by applying the oracle for each
of the k steps. Hence, the success probability is still given by Eq. (25). The running time is at
most

πk
√
N

2
√
2
.

We fix k, so this is still of order O(
√
N).

4 Final remarks

We have described a framework to determine the computational complexity of spatial search
algorithms by continuous-time quantum walk on graphs with multiple marked vertices. The
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framework is successful if the evolution operator satisfies a few properties. The most important
one is that the dynamical evolution in the asymptotic limit depends only on two eigenvectors
of the Hamiltonian, the ground state and the first excited state, which are associated with the
smallest eigenvalues. The optimal running time depends only on the spectral gap in this case. To
find the spectrum of the Hamiltonian and the success probability, we need to know in advance
the eigenvalues and eigenvectors of the adjacency matrix. The simplest cases have a success
probability that is described by the square of a sinusoidal function a2 sin2 ǫt, where 2ǫ is the
spectral gap. The optimal running time is given by t = π/2ǫ and then the success probability
is psucc = a2. We have given directions on how to address the cases in which the dynamical
evolution in the asymptotic limit depends on eigenvectors different from the ground state and
the first excited state.

To show an example of our framework, we have analyzed the spatial search algorithm by
continuous-time quantum walk on the Johnson graph J(n, k) with two marked vertices. We
have shown that the optimal running time in this case is π

√
N/2

√
2, where N is the number of

vertices, when k is fixed and the distance δ between the marked vertices is known in advance.
When we do not know δ, we have to repeat the algorithm k times assuming all possible values of
δ. The total running time is at most πk

√
N/2

√
2 with success probability 1+o(1) when n→ ∞.
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Appendix

A The proof of Eq. (17)

We first invoke some results from [42] to evaluate the 3F2 series in Eq. (14). Set

φℓ = φ0 + hℓ(ℓ+ 1 + s), φ∗ℓ = φ∗0 + s∗ℓ

for 0 6 ℓ 6 k, and

αℓ = hs∗ℓ(ℓ− k − 1)(ℓ + r), βℓ = hs∗ℓ(ℓ− k − 1)(ℓ+ r − s− k − 1)

for 1 6 ℓ 6 k, where
s = −n− 2, r = k − n− 1,

and φ0, φ
∗
0, h, and s

∗ are arbitrary with h, s∗ 6= 0. The sequence
(

φℓ, φ
∗
ℓ , ℓ = 0, . . . , k;αℓ′ , βℓ′ , ℓ

′ = 1, . . . , k
)

is a parameter array of dual Hahn type; cf. [42, Example 5.12]. Note that the φℓ agree with the
eigenvalues of J(n, k) (cf. Eq. (12)) provided that we set φ0 = k(n − k) and h = 1. Moreover,
we have

3F2

(

−ℓ,−δ, ℓ− n− 1
k − n,−k

∣

∣

∣

∣

1

)

= fδ(φℓ),
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where

fδ(x) =
δ
∑

ν=0

(x− φ0) · · · (x− φν−1)(φ
∗
δ − φ∗0) · · · (φ∗δ − φ∗ν−1)

α1 · · ·αν

.

By [42, Theorem 4.1, Lemma 4.2], we have

fδ(x) =
β1 · · · βδ
α1 · · ·αδ

f⇓δ (x) =
δ!

(k − n)δ
f⇓δ (x),

where

f⇓δ (x) =

δ
∑

ν=0

(x− φk) · · · (x− φk−ν+1)(φ
∗
δ − φ∗0) · · · (φ∗δ − φ∗ν−1)

β1 · · · βν
,

and (a)m = a(a+ 1) · · · (a+m− 1) denotes the shifted factorial. We have

f⇓δ (φℓ) = 3F2

(

ℓ− k,−δ, n − k − ℓ+ 1
1,−k

∣

∣

∣

∣

1

)

,

and hence

3F2

(

−ℓ,−δ, ℓ− n− 1
k − n,−k

∣

∣

∣

∣

1

)

=
δ!

(k − n)δ
3F2

(

ℓ− k,−δ, n − k − ℓ+ 1
1,−k

∣

∣

∣

∣

1

)

. (26)

By Eqs. (12), (13), (14), and (26), we have

〈

w1

∣

∣Pℓ

∣

∣w2

〉

φ0 − φℓ
= O

(

1

nk−ℓ+1+δ−τ

)

,

〈

w1

∣

∣Pℓ

∣

∣w2

〉

(φ0 − φℓ)2
= O

(

1

nk−ℓ+2+δ−τ

)

for 1 6 ℓ 6 k, where τ = min{k − ℓ, δ}, and Eq. (17) follows.
We remark that the above method can be generalized to other families of Q-polynomial

distance-regular graphs, again including the Hamming graphs (see [37, Chap. 9]).
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