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Multimarket Optimal Bidding for a Power Producer
Miguel A. Plazas, Antonio J. Conejo, Fellow, IEEE, and Francisco J. Prieto

Abstract—This paper considers a profit-maximizing thermal
producer that participates in a sequence of spot markets, namely,
day-ahead, automatic generation control (AGC), and balancing
markets. The producer behaves as a price-taker in both the
day-ahead market and the AGC market but as a potential
price-maker in the volatile balancing market. The paper provides
a stochastic programming methodology to determine the optimal
bidding strategies for the day-ahead market. Uncertainty sources
include prices for the day-ahead and AGC markets and balancing
market linear price variations with the production of the thermal
producer. Results from a realistic case study are reported and
analyzed. Conclusions are duly drawn.

Index Terms—Electricity spot markets, market power, optimal
bidding strategies, stochastic programming.

NOTATION

The notation used throughout the paper is reproduced below

for quick reference.

Sets:

Set of hours.

Set of generating units.

Set of scenarios.

Set of blocks of the revenue function in the balancing

market.

Numbers:

Number of blocks of the revenue function in the bal-

ancing market.

Number of scenarios for market , where D

(day-ahead), G (AGC), A (balancing) .

Total number of scenarios.

Constants:

Variable operating cost for unit (Euro/MWh).

Power output of unit at the beginning of period 1

(MW).

AGC capacity for unit (MW).

Capacity of unit (MW).

Minimum power output of unit (MW).

Ramp-down limit for unit (MW/h).

Ramp-up limit for unit (MW/h).
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Maximum energy to be traded in the balancing market

in hour (MWh).

Upper bound for random variable price (Euro/MWh).

Probability of scenario .

Random variables:

Intercept of the inverse demand curve corresponding to

hour in the balancing market.

Slope of the inverse demand curve corresponding to

hour in the balancing market.

Price in hour and market , where D (day-

ahead), G (AGC) .

It should be noted that a subscript affecting any of the above

variables indicates actual uncertainty realization .

Real variables:

Power of unit in market , hour ,

and scenario (MW).

Energy produced by unit in market and scenario

during hour (MWh).

Total energy production (of the generating company)

in hour , scenario , and market

(MWh).

Block of the total energy production of the gener-

ating company in the balancing market in hour and

scenario (MWh).

Binary variables:

It is equal to 1 if unit is engaged in AGC in hour

and scenario and 0 otherwise.

Functions:

Revenues for hour and scenario in the balancing

market (Euro).

Expected value over .

Recourse function associate to stage

and scenario .

Function that provides the price ranking (increasing

value) for all the considered scenarios.

I. INTRODUCTION

W
E consider a power producer that owns several gen-

erating units and participates in a pool-based market

framework that includes three independent and successive mar-

kets: the day-ahead market, the automatic generation control

(AGC) market, and the balancing market. We consider that

the producer has no market power capability in the day-ahead

and AGC markets, but it can influence price in the volatile

balancing market. Not modeling market power in this market

is unrealistic and leads to unreasonable results. The objective

of the producer is to maximize its expected profits from selling

energy in the day-ahead and balancing markets and AGC in the

AGC market.
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Fig. 1. Time sequence for market clearing.

For instance, in the electricity market of mainland Spain,

AGC total revenues are typically 3% of the energy revenues,

but prices range from 16 to 100 Euro/MW (2003) and there

exist opportunities for profit spikes. The volume traded in the

day-ahead market of mainland Spain in 2004 was Euro 5800

million and the volume negotiated in the AGC market was Euro

128 million. This amount represents only 2.2% of the energy

traded in the day-ahead market but note that AGC is provided

at almost no cost to the generating company.

The day-ahead market is cleared through an auction mecha-

nism. That is, producers submit selling bids including energy

production blocks and their corresponding minimum selling

prices, while consumers submit buying bids consisting in

energy consumption blocks and their corresponding maximum

buying prices. In turn, the market operator clears the market

using a suitable market-clearing procedure [1], [2].

The AGC and balancing markets are cleared using analo-

gous auction procedures. For any of these three markets, market

clearing provides hourly prices and accepted production and

consumption bids.

The time framework for market clearing is as follows. The

day-ahead market concerning the whole day d is cleared around

10 am of day . Analogously, the AGC market concerning

the whole day d is cleared around 4 pm of day . The

balancing market concerning the whole day d is cleared around

6 pm of day . For these three markets, bids are sent to

the market operator just before the closing (clearing) hour, and

market-clearing results are known just after that closing hour.

This time framework is illustrated in Fig. 1. It should be noted

that additional balancing markets can be considered; however,

they are generally less relevant than the first balancing market,

and this is why they are not considered in this paper. The

electricity market of mainland Spain motivates this modeling

framework.

This paper provides a methodology that allows a producer to

develop appropriate bidding strategies for the day-ahead market,

thereby selling its production in the best possible manner. This

methodology is based on stochastic programming [3].

It should be noted that the methodology developed can be

straightforwardly applied to derive also bidding strategies for

the AGC and balancing markets by moving the time window and

repeating the procedure. That is, once the day-ahead market re-

sults are available, a two-stage stochastic programming problem

can be solved to derive bidding stacks for the AGC market.

TABLE I
STOCHASTIC PROCESSES FOR PRICES AND PRICE FUNCTIONS

Also, once the results for the AGC market are also available,

a one-stage stochastic programming problem can be solved to

derive bidding stacks for the balancing market.

Uncertainty sources include prices for the day-ahead and

AGC markets and linear functions describing the way the

market price in the balancing market changes with the total

production of the producer. We characterize those uncertainties

using stochastic models based on historical information.

We consider that self-scheduling is carried out on a weekly

basis and therefore the on/off status of the units is known a priori

at the time of constructing bidding stacks. Therefore, no start-up

and shut-down decisions are considered in this paper.

Relevant references on stochastic programming and electric

power are [4]–[8]. Within an electricity market framework, [9]

models in detail the day-ahead market but not other markets,

and [10] focuses on hydrodominated systems.

Background material on electricity markets can be found in

[11]–[15], while background material for stochastic program-

ming is covered in [3], [16], and [17].

This paper is organized as follows. Section II describes the

stochastic programming optimization framework that allows

deriving optimal bidding strategies for the day-ahead market.

In Section III, the stochastic processes involving day-ahead

market prices and AGC market prices are characterized. Addi-

tionally, the two processes that characterize linearly the price

variation with production in the balancing market are charac-

terized. Section IV is a detailed case study where results are

reported and analyzed. Some relevant conclusions are drawn

in Section V. Section A of the Appendix provides useful defi-

nitions, while Section B provides a description of the scenario

reduction algorithm used in this paper.

II. DECISION FRAMEWORK

This section describes in detail the proposed methodology to

derive bidding stacks for the day-ahead market.

A. Scenario Tree

Prices in the day-ahead market, prices in the AGC market, and

price slopes and intercepts in the balancing market are charac-

terized using seasonal ARIMA models. These ARIMA models

are provided in Table I. Once those stochastic models have been

identified, and their parameters properly fitted using time se-

ries data, they can be used to generate price scenarios using a

tree format (see Fig. 2). The tree constitutes a discrete and finite

approximation of the probability distribution of the stochastic

process. The probability associated to a given scenario is the
2



Fig. 2. Scenario tree.

product of the probabilities of occurrence of the prices that con-

stitute the scenario. Note also that those stochastic models cap-

ture the dependency of prices across hours.

Therefore, the uncertainty framework is modeled through a

symmetric scenario tree [8]. That is, different realizations of

prices for the day-ahead market are considered. Then, for each

realization of day-ahead market prices, different realizations of

the AGC market prices are simulated. Finally, for each realiza-

tion of the AGC market, different realizations of the two param-

eters describing the price-production variation of the balancing

market are considered.

The number of scenarios for the day ahead market is

(typically 100) and for the AGC and balancing markets,

(typically 100) and (typically 100), respectively. The total

number of scenarios is therefore (typically

). The scenario tree considered is shown in Fig. 2.

The scenario tree represented in Fig. 2 can be interpreted as a

multistage stochastic process , whose prob-

ability distribution is approximated through a finite number of

scenarios , with probability

, . A scenario reduction technique intended to

reduce drastically the number of scenarios while maintaining

the statistic properties of the considered stochastic process is

carried out [18]. Through this reduction, a subset of scenarios

denoted by is selected,

such that their corresponding probability distribution is the

closest to the original distribution in terms of a certain proba-

bility distance between and .

The technique used to reduce the number of scenarios deter-

mines a scenario subset of prescribed cardinality and assigns

new probabilities to the preserved scenarios, such that their cor-

responding probability distribution is the closest to the original

distribution in terms of the following probability distance

(1)

where and represents a norm in . Note

that the method proposed in this paper uses the scenario-based

approximation, which means discrete probability distributions,

and considers scenario probabilities as elements of a linear

space. Section B of the Appendix provides a heuristic algorithm

that approaches the optimal selection of the subset and

assigns new probabilities to the preserved scenarios. Further

details can be found in [18]–[20].

For the problem considered in this paper, the scenario reduc-

tion technique is first applied to each stage, resulting in ,

, and scenarios, respectively, and then to the resulting

tree comprising scenarios. This second reduc-

tion results in a small number (around 25) of scenarios. For com-

puting expression (1), the quadratic norm 2 is used.

B. Optimization Framework

The mathematical programming models to be solved to de-

termine the optimal bidding strategies for the power producer

in the different spot markets are stated below.

The day-ahead bidding strategy is determined through the fol-

lowing stochastic programming model:

Maximize

(2)

subject to

(3)

(4)

(5)

(6)

The objective function (2) includes revenues obtained from

the day-ahead market plus expected revenues from AGC and

balancing markets. These expected revenues are computed

through the problem (7)–(12) below. The expectation operator

is taken over AGC and balancing random variables.

Equation (3) defines energies as average values of powers

for every scenario. Equation (4) determines total hourly produc-

tions for each scenario. Equation (5) is explained below. Equa-

tion (6) is an nonanticipativity constraints.

The purpose of the technique proposed in this paper is not

to compute the optimal quantities (in a stochastic programming

sense) to be sold in the day-ahead market (e.g., 40 MWh in hour
3



1, 25 MWh in hour 2, etc.) but rather to derive optimal bid-

ding curves for every hour of the day-ahead market (see Figs. 6

and 7 in Section IV). Therefore, to obtain such curves, variables

are made dependent on scenarios [9] and (5)

are introduced to ensure higher productions at higher prices.

These conditions make bidding curves nondecreasing, which is

a bidding requirement in most markets. In order to obtain the

optimal quantity to be sold in the day-ahead market in a stan-

dard stochastic programming framework, (6) should be replaced

by the nonanticipativity constraint . It

should be noted that this last constraint is more restrictive than

constraint (6) because it enforces nonanticipativity for all mar-

kets, while (6) only enforces nonanticipativity for the AGC and

balancing markets.

The AGC market strategy is determined through the problem

below.

Maximize

(7)

subject to

(8)

(9)

(10)

(11)

(12)

The objective function (7) includes revenues obtained from

the AGC market plus expected revenues from the balancing

market. These expected revenues are computed through the

problem (13)–(22) below. The expectation operator is taken

over the random variables of the balancing market.

Equation (8) expresses energy values as the average of the

powers at the beginning and the end of any considered hour

and scenario. Equation (9) limits the amount of power devoted

to AGC during any hour and scenario by any generating unit.

Equation (10) expresses the total energy associated to AGC ac-

tivity for every hour and scenario. Equation (11) is an nonantic-

ipativity constraint. Equation (12) declares binary variables that

define which units are in AGC operation.

Note that using a binary variable per unit is necessary to dif-

ferentiate whether the unit is contributing to AGC or ramping.

These binary variables complicate the solution of the problem,

but they are needed to reflect the actual functioning of gener-

ating units. It should be noted that a machine providing AGC

cannot ramp up or down as its control is transferred to the ISO.

This is common practice in the electricity market of mainland

Spain, as stated in the corresponding operating policy enforced

by the ISO and reported in [21]. Moreover, the gaps between

the power output of a machine providing AGC and its upper

and lower bounds, respectively, must allow both up and down

control.

Similarly to the day-ahead market, it should be noted that

variables are made dependent on scenarios,

which is not the case in a standard stochastic programming

framework. This is consistent with using a two-stage model

(AGC and balancing markets) similar to the one presented

in this paper to generate AGC bidding curves. Equation (11)

enforces nonanticipativity only with respect to the balancing

market. In a conventional stochastic programming approach,

nonanticipativity constraints would enforce nonanticipativity

with respect to both the AGC and balancing markets.

The balancing market strategy is determined through the

problem below.

Maximize

(13)

subject to

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

The objective function (13) is the revenue obtained from the

balancing market.

Equation (14)–(17) sets the maximum (capacity) and min-

imum power output of any generating unit at any hour and

scenario, including AGC activity (if any). Equation (18)–(19)

enforces, respectively, up and down ramping limits for gener-

ating units not engaged in AGC for every scenario. Equation

(20) expresses energy values as an average of the powers at

the beginning and the end of any considered hour for every

scenario. Equation (21) expresses the total energy associated

to the balancing market in every hour and scenario. Equation

(22) expresses the balancing market revenue for each hour

and scenario as a quadratic concave function. This function is

linearized below.

It should be noted that variables are made

dependent on scenarios to achieve bidding curves, which is not

the case in a standard stochastic programming framework. No

nonanticipativity constraint is required in this last stage.
4



Note also that the variables can be eliminated from the

models above using (3), (8), and (20), thus reducing the number

of variables required in the formulation.

C. Equivalent Formulation as a Mathematical

Program With Recourse

The above stochastic programming problem is equivalent to

the deterministic one stated below (mathematical program with

recourse). This version is readily solvable using an appropriate

mixed-integer linear programming solver.

maximize

(23)

Conditions that ensure a monotonously increasing bidding

stack for the day-ahead market are

(24)

Nonanticipativity constraints for the day-ahead market are

(25)

Nonanticipativity constraints for the AGC market are

(26)

Energy balance in the spot (day-ahead, AGC, and balancing)

markets are

(27)

(28)

Generating unit functioning constraints are

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Fig. 3. Illustration of the linearization provided by (37)–(40).

The piece-wise linear (concave) representation of revenues

in the balancing market is achieved through the following

constraints:

(37)

(38)

(39)

(40)

It should be noted that (37)–(40) constitute a straightforward

linearization of (22). Fig. 3 illustrates the piece-wise concave

linearization carried out through (37)–(40).

It should also be noted that we have experienced better nu-

merical performance using a linear model than a quadratic one.

D. Solution Procedure

The problem formulated in the previous section is mixed-in-

teger and linear and can be solved using an appropriate mixed-

integer linear programming solver, such as CPLEX [22]. This

procedure is used in the case study below.

III. CHARACTERIZATION OF THE STOCHASTIC PROCESSES

Market-clearing prices for the day-ahead and the AGC

markets, respectively, are characterized through stochastic

processes. Only weekdays are considered. The treatment for

weekends is similar and is not reported below.

Analogously, the intercept and slope that describe the partici-

pation of the power producer in the balancing market are charac-

terized using stochastic processes. To enhance numerical perfor-
5



TABLE II
CHARACTERISTICS OF THE THERMAL UNITS

mance, instead of characterizing the hourly intercept, the differ-

ence between this intercept and the day-ahead market clearing

price is characterized.

It should be noted that the above stochastic processes should

generate an adequate number of scenarios, which properly

covers the spectrum of possible prices.

All stochastic processes are modeled using seasonal ARIMA

models [23]–[25]. The fitted ARIMA models for the week con-

sidered in the case study are provided in Table I. Model fitting

is ensured using the autocorrelation and partial autocorrelation

functions of the error.

Historical data comprising 30 working days are used to fit the

models in Table I.

IV. CASE STUDY

Results from a case study based on the electricity market of

mainland Spain [26] are reported in this section. The consid-

ered market framework includes the day-ahead market, the AGC

market, and the first balancing market [26]. The week under

study is June 7–11, 2004 (just working days) in the electricity

market of mainland Spain.

It should be noted that in the electricity market of mainland

Spain, no virtual bidding is allowed. Settled transactions consti-

tute firm obligations.

The considered producer includes six thermal units whose

characteristics are provided in Table II.

Table II includes fixed costs . In order to compute daily

profit, the constant should be subtracted from the

revenue of the producer.

The numbers of scenarios for the day-ahead, AGC, and bal-

ancing markets are, respectively, 100, 100, and 100. The total

number of scenarios is therefore . The scenario reduction

technique is first applied to each stage, resulting in 25, 10, and

10 scenarios, respectively, and then to the resulting tree com-

prising 2500 scenarios. This second reduction results in just 25

scenarios. Fig. 4 provides a measure of the relative distance be-

tween the tree comprising 2500 scenarios and trees containing

a reduced number of scenarios for the case of June 7, 2004. The

relative distance is defined as the distance measured between the

reduced tree and the original tree, divided by the distance mea-

sured between a reduced tree that considers just one scenario

and the original tree. For this case study, a tree with 25 sce-

narios provides a reasonable approximation as can be deduced

from Fig. 5, which shows how the optimal objective function

value changes as the number of scenarios increases.

Fig. 4. Relative distance of the original tree to reduced scenario trees.

Fig. 5. Objective function value as a function of the number of scenarios
considered.

TABLE III
SOLUTION TIME AND QUALITY

We have also analyzed in detail the best use of Benders de-

composition to address the problem of interest, but our imple-

mentations have only produced frustrating results due to the size

of the master problem. We decided not to try Lagrangian tech-

niques because of their lack of robustness associated with their

required tune-up of parameters.

The number of constraints, real variables, and binary vari-

ables in the resulting problem are, respectively, 44 833, 22 201,

and 3600. It has been solved using CPLEX under GAMS [22].

The computational characteristics of the solution attained are il-

lustrated in Table III. The CPU time needed to attain the solution

using a Dell PowerEdge 6600 with two processors at 1.60 GHz

and 2 Gb of RAM memory is 100 s.

The optimal profit values attained (for the three markets)

using alternative approaches are reported in Table IV.

To obtain a measure of quality for the results attained if

the technique proposed would have been applied to the actual

electricity market situation of mainland Spain on June 7, 2004,

and to compare these results with those obtained using other

methods, the solutions below are considered.

Stochastic solution: Once day-ahead market bidding curves

are obtained using the proposed model, energies for the day-

ahead market are fixed considering actual price values (June 7,
6



TABLE IV
PROFIT (EURO THOUSAND)

2004) for that market. Then, the proposed model is run consid-

ering the fixed energy values for the day-ahead market and only

one scenario for the AGC and balancing markets comprising the

actual price values (June 7, 2004). The result obtained consti-

tutes a measure of the maximum benefit that the company can

achieve in all markets if bidding is carried out according with

the proposed model.

Deterministic solution: Using the expected values of all sto-

chastic variables, the resulting deterministic model is run and

optimal values for energy in the day-ahead market are deter-

mined. Then, energy for the day-ahead market is fixed consid-

ering the solution provided by the deterministic model and the

proposed (stochastic) model is executed considering only one

scenario comprising the actual price values (June 7, 2004) for

the AGC and balancing markets. The result obtained consti-

tutes a measure of the maximum benefit that the company can

achieve in all markets if bidding is carried out using a determin-

istic model.

Classic solution: Using the expected values of the stochastic

variables, a one-stage deterministic model comprising the day-

ahead market is run and optimal values for energy in the day-

ahead market are determined. Then, energy for the day-ahead

market is fixed considering the solution provided by the classic

model and the proposed (stochastic) model is executed consid-

ering only one scenario comprising the actual price values (June

7, 2004) for the AGC and balancing markets. The result obtained

constitutes a measure of the maximum benefit that the com-

pany can achieve in all markets if bidding is carried out using a

one-stage deterministic model.

Note that the difference between the deterministic and classic

models is that the first model considers three stages to provide a

solution for the day-ahead market while the second model only

considers the day-ahead (one-stage) market.

Observe the profit advantage obtained by using a stochastic

approach. The above comparison provides an appropriate mea-

sure of how the stochastic model used reflects the real world.

Several stochastic programming indicators are reported in

Table V (as formulated in [3]). Once an optimal deterministic

solution is obtained for the deterministic problem resulting from

substituting all random variables for their corresponding ex-

pected values (EV solution), the expected result of using the

EV solution (EEV indicator) is computed as the average value

over scenarios of the objective function values corresponding

to the optimal deterministic solution of the day-ahead market

and all scenarios. Indicator RP is computed as the average value

over scenarios of the objective function values corresponding to

the optimal stochastic solution of the day-ahead market and all

scenarios. Indicator VSS is computed as RP minus EEV. Note

that VSS is a measure of the advantage obtained if a stochastic

model is used rather than a naïve deterministic one. This indi-

cator shows that the solution obtained is of a high quality from

TABLE V
STOCHASTIC PROGRAMMING INDICATORS (EURO THOUSAND)

Fig. 6. Bidding stack at period 10 (9 A.M. to 10 A M.) for the day-ahead market.

Fig. 7. Bidding stack at period 5 (4 A.M. to 5 A M.) for the day-ahead market.

a stochastic programming viewpoint, and its value shows that it

would be possible to attain additional savings of Euro 4000 by

taking into account a stochastic solution to the problem.

Fig. 5 shows how the objective function optimal value [(23)]

changes as the number or scenarios increases. Note that this

value coincides with indicator RP. Observe that a robust solu-

tion is attained for 25 or more scenarios and that the scenario

reduction illustrated in Fig. 4 is appropriate. It should be noted

that a critical issue when using a stochastic programming ap-

proach based on scenarios is the actual number of scenarios to

consider. A low number of scenarios might result in inaccura-

cies while a large number implies high computational burden.

An appropriate manner to resolve this tradeoff is to increase the

number of scenarios until the objective function value stabilizes.

This is the criterion used in this case study.

Figs. 6 and 7 provide the optimal bidding stacks for the day-

ahead market at period 10 (from 9 am to 10 am) and 5 (4 am

to 5 am), respectively. Bidding stacks for other hours are sim-

ilar. It should be noted that for a market requiring step-wise bid-

ding stacks (the case of the market in mainland Spain) the linear
7



TABLE VI
CHARACTERISTICS OF THE SOLUTION. JUNE 7–11, 2004

(FIGURES IN EURO THOUSAND)

blocks of the stacks in Figs. 6 and 7 should be approximated by

step-wise functions.

For instance, the solution obtained for period 5 (see Fig. 7) re-

sults in 85 MWh bought in the balancing market (average value

for the solution obtained over the considered 25 scenarios). This

value becomes 356 MWh if the same model is run without con-

sidering market power in the balancing market. Using the ac-

tual price quantity function for period 5, the actual payment is

Euro 7798, while not considering market power would result in

a payment of Euro 6657. Note the significant differences in en-

ergy traded and payments.

Only bidding stacks for the day-ahead market are reported in

the paper, as the paper concentrates on the decisions pertaining

to that market. Note that in multistage sequential markets, deci-

sions in subsequent markets are made once the actual values of

the previous-stage stochastic variables are known.

The solution obtained using the deterministic model for

period 5 results in the three cheapest units plus one oil

unit working close to their respective upper limits (Coal_1,

CCGT_1, CCGT_2, and Oil_1). This solution implies buying

back energy in the balancing market since the expected price

for this market is comparatively low. However, the actual prices

for period 5 in both the day-ahead and balancing markets are

lower than the variable cost of most of the units, but buying

back in the balancing market the whole surplus of energy is

unprofitable due to the influence that this energy would have

on the resulting price in the balancing market. On the other

hand, considering the bidding curves provided by the stochastic

model, the energy sold for the actual day-ahead price in period

5 of 20.4 Euro/MWh is smaller than the energy sold using

the deterministic model. Consequently, one concludes that the

stochastic solution is a better solution in this particular case.

The whole procedure is repeated for June 7–June 11, 2004

(Monday to Friday). Results (for the three markets) are reported

in Table VI, where the advantage of using a multistage stochastic

programming approach as the one presented in this paper should

be readily apparent. For the working days of the week under

study, 0.91% profit advantage (Euro 11.8 thousand) is obtained

with respect to the deterministic approach and 0.54% (Euro

7.0 thousand) with respect to the classic one. Indicators EEV,

RP, and VSS clearly show the advantage of using a multistage

stochastic programming approach. Indicator VSS is Euro 18.4

thousand, a significant amount of money.

It can be concluded from Table VI that a stochastic approach

clearly outperforms the deterministic and classic ones. Only on

June 9 and 10, when forecast price values are close to actual

Fig. 8. True and forecast prices and price scenario envelope. June 7–11, 2004.

prices (periods 49 to 96 in Fig. 8), is a deterministic approach

more advantageous.

V. CONCLUSIONS

This paper provides a procedure to derive optimal bidding

stacks for a power producer that participates in the spot elec-

tricity markets, including day-ahead, AGC, and balancing. The

objective of the producer is to maximize the expected profit from

its involvement in the spot markets. The proposed procedure tar-

gets a producer with no market power in the day-ahead and AGC

markets but with the capability of influencing market-clearing

prices in the volatile balancing market. The proposed technique

is built within the versatile decision framework provided by the

stochastic programming methodology. A robust yet efficient so-

lution technique is used. A real-world case study based on the

electricity market of mainland Spain is used to illustrate the ap-

propriate functioning of the procedure developed.

APPENDIX

This Appendix provides definitions for acronyms and some

specific stochastic programming expressions and a mathemat-

ical description of the scenario reduction algorithm used [18].

A. Acronyms and Other Definitions

1) ARIMA: Stochastic model to characterize price behavior.

2) RP: Indicator RP is computed as the average value over

scenarios of the objective function values corresponding

to the optimal stochastic solution of the day-ahead market

and all scenarios.

3) EEV: Indicator EEV is computed as the average value

over scenarios of the objective function values corre-

sponding to the optimal deterministic solution of the

day-ahead market and all scenarios.

4) VSS: Indicator VSS is computed as RP minus EEV.

5) Nonanticipativity: Nonanticipativity conditions enforce

that decisions depend only on temporal information up to

the time at which decisions are made.

6) Relative distance: The distance measured between the re-

duced tree and the original tree, divided by the distance

measured between a reduced tree that considers just one

scenario and the original tree.
8



B. Scenario Reduction Algorithm

The optimal choice of an index set for scenario reduc-

tion problem with fixed cardinality is given by the solu-

tion of the problem

Minimize

Since this problem is difficult to solve, a heuristic algo-

rithm that approaches the optimal selection of the subset

and assigns new probabilities to the preserved scenarios has

been developed in [19]. This algorithm is reproduced below

for the reader’s convenience. Further details can be found in

[18]–[20]. Note that the expression denotes the

value computed by the algorithm at step .

The algorithm proceeds as follows.

Step 1)

Compute

and

Set

and

Step )

Compute

and

Set

and

Step )

Compute

and

Set

and

The subset constitutes

an approximation to the optimal selection

of the set for a scenario reduction

problem with fixed cardinality .

Step )

For every scenario , compute

closestto

Set the resulting probability of the sce-

narios included in as
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