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This paper presents a topology optimization method for multimaterial models based on the normalized Gaussian network (NGnet). 
In this method, one can determine optimal shapes of machines which are composed of various materials such as iron, magnet and non-
magnetic material. The present method is applied to the optimization of interior permanent magnet motor to determine the 
distributions of magnetic core and flux barrier as well as magnets. The optimization results show that average torque can be improved 
using as small amount of magnet as possible. In addition, characteristic of the present method is discussed in detail.  
 

Index Terms—interior permanent magnet motor, topology optimization.  
 

I. INTRODUCTION 
OPOLOGY optimization allows us to find novel shapes of 
electric machines and devices. For example, the rotor 

shape of interior permanent magnet (IPM) motor has been 
optimized with little dependence on experience and 
knowledge of engineers [1]-[3]. One of the well-known 
topology optimization methods is the on/off method with 
evolutionary algorithms (EA) [1],[2],[5], in which the 
optimization model is subdivided into small cells to which 
binary states, on (material) and off (air), are assigned. The 
model shape is optimized for the binary states using EA. 
Although the on/off method with EA possibly finds good 
approximations to global optimal solutions without sensitivity 
analysis unlike the level-set methods [3],[4], we often obtain 
quite complicated shapes which are not suitable for 
manufacturing. The spatial filtering has been applied to the 
optimization processes to reduce spatial frequency in the 
shapes [2],[5]. However, because the resultant shapes strongly 
depend on the employed filtering and its parameters, we must 
carefully tune them to obtain desirable solutions. 

To obtain smooth shapes without filtering, the authors have 
introduced the topology optimization method based on 
Normalized Gaussian Network (NGnet) [6]. Although this 
method can easily find smooth optimal shapes, multiple 
material distributions cannot be considered. In this paper, we 
present the NGnet-based multimaterial topology optimization 
method (NGnet-MTO), which can determine the optimal 
distribution of various materials such as iron, magnet, and 
non-magnetic material. Moreover, NGnet-MTO can globally 
seek for heuristic optima using the Genetic Algorithm with the 
heuristic local search. 

The NGnet-MTO is applied to the optimization of rotor 
shape in an IPM motor in which distributions of magnetic core 
and flux barrier as well as magnets are determined. It will be 
shown that smooth rotor shapes can be obtained and the 
average torque of an IPM motor can be improved using as 
small amount of magnet as possible. In addition, the 

characteristic of the present method will be discussed in detail.  

II. MULTIMATERIAL OPTIMIZATION USING NGNET 

A. NGnet-based topology optimization method 
In NGnet-MTO, the device shapes are determined based on 

the output of NGnet which is computed from the weighted 
sum of normalized Gaussians [7], as shown in Fig. 1. Because 
of this definition, the NGnet-output is spatially smooth. The 
output of NGnet, f(x), is given by 
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where x is position vector, N is the number of Gaussians, and 
Gk(x) is the Gaussian function. Moreover, wi is the weight for 
bi(x). The state of the cell e in the design region is determined 
from f(x). For example, when we consider the binary state {on, 
off} for each cell, the cell state is determined as follows: when 
f(xe) ≥ 0( < 0), Se←on(off), where xe is the center of e. When 
considering multiple states, Se can be determined through the 
combination of outputs of NGnets. For example, four material 
states can be expressed using two NGnets. For simplicity, in 
this work, we uniformly deploy the Gaussians to cover design 

region, and all the Gaussian have the same isotropic deviations. 

B. Optimization algorithm 
In NGnet-MTO, we consider the chromosome w={w1, w2, ... 

wN×NG} for the real-coded Genetic Algorithm (GA), named 

T 
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Fig. 1.  Output of NGnet in case of 2D input. 
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AREX+JGG [8], where NG denotes the number of NGnets. 
Each entity wi of w is rounded to -1/+1 in order to reduce 
search space. Figure 2 demonstrates the representation of four-
material model generated from w where N=9 and NG=2. Once 
w is determined, then the outputs of two NGnets, f1(xe) and 
f2(xe), in cell e are computed from (1). The state of each cell is 
determined from f1(xe) and f2(xe), as shown in Fig. 2.  

To cover the design region by Gaussians, enough number of 
Gaussians must be placed, which results in long chromosome 
size. This leads to long computational time which is necessary 
for search in high dimensional space. In addition, the fitness of 
individuals is computed in parallel [1]. Moreover, the heuristic 
local search (LS) is employed, because original GA hardly 
finds even heuristic local optima when chromosome size is 
long. For LS, the modified greedy method is employed and 
applied to the elite individual. In this method, one randomly-
selected gene is inverted (e.g. +1→-1). If the fitness after the 
inversion is better than before, the inverted gene is adopted. 
Then, other gene is again randomly selected and inverted. This 
process is repeated until all genes are selected. Namely, the 
genes are greedily changed to improve fitness. Note that the 
resultant chromosome after this procedure depends on the 
order of the selection. Hence, the parallel computation 
technique is also employed for LS, that is, we set different 
selection orders, and the greedy search is applied to them in 
parallel. The flow of the optimization algorithm is shown in 
Fig. 3. 

III. OPTIMIZATION OF IPM MOTOR 

A. Problem setting 
The rotor shape of the IEEJ D-model (initial model) [9] 

shown in Fig. 4, which is a benchmark model for testing 
numerical methods, is optimized using NGnet-MTO. The 
purpose of the optimization is to maximize the average torque 
using as small amount of magnet as possible. The torque is 
analyzed by the finite element method (FEM), where the 
motor is driven by three-phase sinusoidal current whose 
amplitude I and phase angle β are 3Arms and 20deg 
respectively, and the nonlinear BH curve of 50H350 is 
assumed. Figure 5 shows the design region which contains 
3870 FEs. The rotor shape in the domain next to the design 
region is created assuming right-left symmetry. The 
distribution of magnets, magnetic core, and flux barrier in the 
design region is optimized. The optimization problem is 
formulated by 

min.,0 →−= TTF ave  (3) 
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where Tave and S denote average torque and magnet area, 
respectively, SD is critical area below which the magnet is 
degaussed when I and β are 4.5Arms and 90deg, respectively. 
In addition, T0=2.2Nm and ST=52.5mm2 are the torque and 
magnet area of the initial model, respectively, and K is a 
weighting coefficient. Moreover, Rth=27.8mm, ρ th=324MPa 

are mechanical thresholds, and Rmax, ρmax are the maximum 
displacement and stress in the rotor, respectively, when the 
motor angular velocity is 2500rpm, where they are computed 
by the mechanical FEM.  

To treat four constraints efficiently, we employ the oracle 
penalty method [10] in which penalty is dynamically 
controlled. This method allows us to avoid the situation that 
the penalty becomes overwhelmingly dominant in F. 
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Fig. 4.  IEEJ D-model (initial model) [9]. 
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Fig. 5.  Cells in design region. 
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Fig. 2.  Representation of multimaterial distributions using NGnets. 
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Fig. 3.  Flow of parallelized NGnet-MTO. 
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B. Optimization setting 
In this work, we consider two magnets which have different 

directions in magnetization, that is, mag1 and mag2 whose 
magnetization vectors, M/||M||, are (0, 1) and ( 21 , 21 ), 
respectively. The state Se for an element e is determined based 
on output of two NGnets, f1(x) and f2(x), as follows: 
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The parameters in NGnet-MTO are summarized in Table I, 
and the optimization is performed over 60 generations. In this 
setting, it takes about 5 days to obtain final solution using the 
Intel Xeon CPU (2.1GHz, 12 cores). 

 
C. Optimization Results 
It is expected that the resultant solution obtained by NGnet-

MTO depends on the number of deployed Gaussians and the 
deviation. To clarify its effect on optimization results, we test 
for three different distributions shown in Fig. 6. Larger 
number of Gaussians increases shape representation ability, 
and simultaneously, the chromosome size gets long. In (C), 
the chromosome size is equal to that of (B), while the diameter 
of Gaussians is set quite small. In this case, Se is determined 
from the output of the nearest Gaussian, that is, it works like 
the cluster filtering [2]. The optimization is performed five 
times for each distribution in which K in (4) is set to 1.  

Figure 7 shows the changes in average fitness during 
optimizations with and without LS. We can see that the 
average fitness in (A) and (B) are almost identical when using 
LS, while the average fitness in (A) is worse than that in (B) 
without LS. These results show that LS accelerates progress in 
the optimization. 

The changes in average fitness for three cases with LS are 
shown in Fig. 8, from which it can be seen that the fitness in 
(C) is worse than those in (A) and (B). This result is attributed 
to the fact that the representation ability in (C) is lower than 
the others. Figure 9 shows the resultant shapes of the best 
solution for three distributions. All solutions have smooth and 
connected material regions which would be suitable for 
engineering realization. We can find that all the results have 
V-shaped magnets. Moreover, the average torques in (A) and 
(B) are larger than that in the initial model, although the 
magnet volume is not increased. From Fig. 9(c), we can see 
that rectangle-shaped magnets are obtained in (C). Although 
such shapes are quite suitable for manufacturing, there is little 
torque improvement. When the diameter of Gaussian is small, 
the representation ability is strongly limited because Se is 
determined only by the nearest output. This is the reason why 

the average fitness is worst in the three cases. 
The torque waves for the optimized shapes are shown in Fig. 

10. Because torque ripple is not considered in the objective, 
the ripple is not sufficiently improved. However, the resultant 
rotor in (A) has lower torque ripple compared with those of 
the initial model. It has been pointed out in [11] that V-shaped 
magnets cause the torque reduction when the permeability 
distribution is asymptotic. In this problem, armature current is 
not so strong that permeability distribution is nearly 
symmetric as shown in Fig. 11. This would be the reason why 
V-shaped magnets are obtained by which the average torques 
are improved. 

A multi-start algorithm based on LS without GA would also 
be effective for NGnet-MTO. Thus, this approach is tested for 
the distribution (A), in which 30 individuals are randomly 
generated and LS is applied to them for three times. The 
performance of the best solution obtained by the multi-start 
algorithm is summarized in Table II which also contains the 
performance for Fig. 9(a), for comparison. It is clear that the 
solution obtained by the multi-start LS is inferior to that 
shown in Fig. 9(a). This fact suggests the superiority of the LS 
combined with GA. This is because fitness-landscape in this 
problems is complex and multimodal due to four constraints. 
In such condition, it is difficult to find good heuristic solutions 
only by LS. 

The optimization is performed by setting K=0.6. The 
resultant shape using (B) is shown in Fig. 12(a) in which we 
can see that the optimized shape is again smooth and its torque 
reduction is about 15% while magnet volume is 60%. From 
this result, the effectiveness in NGnet-MTO is shown under 
the different constraint condition. 

TABLE I 
PARAMETER SETTING IN NGNET-MTO 

Initial 
individuals:Na 

Num .of 
parents:Np 

Num. of 
replaced 

parents:Nq 

Num. of 
children: Nc 

Interval 
between LS: 

NL 
800 120 40 100 20 
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Fig. 7.  Changes in average fitness with and without local search. 
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Fig. 8.  Changes in average fitness during optimization process. 

   
(A): 76 Gaussians (B): 42 Gaussians (C): 42 Gaussians with 

small diameter 
Fig. 6.  Deployed Gaussians used in optimization. 
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Moreover, the optimization result is compared with that 
obtained by the conventional on/off method with clustering 
and cleaning filtering [2], [5]. In the filtering, the material 
islands composed of smaller than three elements are 
eliminated. The other settings are the same as the previous 
optimizations. Figure 12(b) shows the resultant shape obtained 
by the conventional method. Because of huge number of target 
FEs, the filtering does not effectively work, and complicated 
shape is obtained. This result suggests that, in the conventional 
method, the filtering parameter must carefully be tuned to 
obtain smooth shapes with desirable performance. 

From these results, we can conclude that NGnet-MTO with 
LS can lead to smooth optimized shapes whose performance is 
satisfactory. The LS is effective when combined with GA, 
especially for the model which contains large number of 
Gaussians. The small diameter of Gaussians leads to simple 
structures, while the shape representation ability is limited and 
it highly depends on the deployed Gaussians. 

IV. CONCLUSIONS 
The NGnet-MTO has been introduced. It has been applied 

to shape optimization of an IPM motor. It has been shown that 
NGnet-MTO can find smooth shapes which have improved 

torques. The heuristic local search is effective for the progress 
acceleration, especially for models which have many 
Gaussians.  
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Fig. 11.  Permeability distribution in rotor core for (A). 

  
(a): when K=0.6 

(Tave=0.86T0, S=0.59ST, SD=0.4%) 
(b): conventional method 

(Tave=0.64T0, S=0.83ST, SD=0.47%) 
Fig. 12.  Resultant rotor shapes obtained by different settings. 

   
(a): resultant shape for (A) 

(Tave=1.17T0, S=0.99ST, SD=0.07%) 
(b): resultant shape for (B) 

(Tave=1.16T0, S=0.97ST, SD=0.86%) 
(c): resultant shape for (C) 

(Tave=1.01T0, S=0.97ST, SD=0.2%) 
Fig. 9.  Resultant rotor shapes for three Gaussian distributions, where light and deep red areas correspond to mag1 and mag2, respectively. 
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Fig. 10. Torque waves for resultant solutions 

TABLE II 
BEST SOLUTION OBTAINED BY MULTI-START LS 

 fitness Tave S SD 
GA+LS (Fig. 9(a)) 0.26 1.17T0 0.99ST 0.07% 

multi-start LS 0.48 0.90T0 0.93ST 1.3% 
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