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Abstract

Localization methods reduce the path integrals in N ≥ 2 supersymmetric Chern-Simons
gauge theories on S3 to multi-matrix integrals. A recent evaluation of such a two-matrix
integral for the N = 6 superconformal U(N) × U(N) ABJM theory produced detailed
agreement with the AdS/CFT correspondence, explaining in particular the N3/2 scaling of
the free energy. We study a class of p-matrix integrals describing N = 3 superconformal
U(N)p Chern-Simons gauge theories. We present a simple method that allows us to evaluate
the eigenvalue densities and the free energies in the large N limit keeping the Chern-Simons
levels ki fixed. The dual M-theory backgrounds are AdS4×Y , where Y are seven-dimensional
tri-Sasaki Einstein spaces specified by the ki. The gravitational free energy scales inversely
with the square root of the volume of Y . We find a general formula for the p-matrix free
energies that agrees with the available results for volumes of the tri-Sasaki Einstein spaces
Y , thus providing a thorough test of the corresponding AdS4/CFT3 dualities. This formula
is consistent with the Seiberg duality conjectured for Chern-Simons gauge theories.
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1 Introduction and Summary

The AdS/CFT correspondence [1–3] provides many predictions about the dynamics of strongly

interacting field theories in various numbers of dimensions. For the case of three dimensions,

ref. [4] predicted that the number of low-energy degrees of freedom on N coincident M2-

branes scales as N3/2 for large N . Remarkably, this surprising prediction was recently con-

firmed [5] in the context of the ABJM construction [6] of the U(N)k×U(N)−k Chern-Simons

gauge theory on coincident M2-branes. The paper [5] was in turn based on [7] where the

methods of localization [8] were shown to reduce the path integral of the Euclidean ABJM

theory on S3 to a matrix integral. This matrix model was solved in the large N limit with

N/k kept fixed [5, 9], leading to precise tests of the AdS/CFT correspondence for Wilson

loops and for the free energy (by which we mean minus the logarithm of the Euclidean par-

tition function). The exact solution of this matrix model is related by analytic continuation

to a solution [10] of another matrix model describing topological Chern-Simons theory on

S3/Z2; in particular, the formula for the resolvent has the same structure in the two cases.

A generalization of the matrix model to the case where the Chern-Simons levels do not add

up to zero was considered in [11].

The aim of our paper is to build on the major progress recently achieved in [5, 7, 9] in

several ways. In section 2 we revisit the matrix integral for the ABJM theory on S3 and

uncover the details of the eigenvalue distribution. The matrix eigenvalues are located along

the branch cuts of the resolvent used in [5] and derived in [10] for the S3/Z2 model. While

the endpoints of the cuts can be read off directly from the resolvent, the cuts themselves are

not simply parallel to the real axis, in contrast with the matrix model of [10]. In order to

gain intuition for the location of the eigenvalues, we develop a numerical method for finite

N and k. This method allows us to access values of N and k that are large enough for the

result to be a good approximation to the limit studied in [5,9]. Furthermore, we focus on the

limit where N is sent to infinity at fixed k where the ABJM model is expected to be dual to

the AdS4×S7/Zk background of M-theory. In this strong coupling limit we find analytically

that the structure of the solution simplifies considerably. An ansatz where the real parts

of the eigenvalues scale with
√

N allows us to calculate the free energy analytically. Unlike

in [5], our method does not rely on resolvents or mirror symmetry. We confirm that the free

energy scales as N3/2 with the coefficient found in [5].

In section 3 we develop our analytic approach further and apply it to the large N limit

of matrix models describing quiver Chern-Simons gauge theories on S3. We study explicitly

a class of N = 3 superconformal U(N)p gauge theories with bifundamental matter, quartic
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superpotentials, and Chern-Simons levels k1, k2, . . . , kp that sum to zero. These models were

introduced in [12] where their type IIB brane constructions were presented. The type IIB

brane constructions involve N D3-branes that are wrapped around a circle and intersect the

(1, q1), (1, q2), . . . , (1, qp) 5-branes located sequentially along the circle. The dual AdS4 × Y

M-theory backgrounds for these models, which involve certain seven-dimensional tri-Sasaki

Einstein spaces Y , were conjectured in [13]. The tri-Sasaki Einstein spaces Y are defined

to be bases of hyper-Kähler cones [14–16], and we take the Einstein metric on them to be

normalized so that Rmn = 6gmn. The p-matrix models for the gauge theories dual to AdS4×Y

may be read off from [7]. In the large N limit we calculate the eigenvalue densities for these

matrix models and show that they are piecewise linear. This remarkably simple conclusion

allows us to evaluate the coefficient of the N3/2 scaling of the free energy as a function

of the levels ki and compare it with the calculation on the gravity side of the AdS/CFT

correspondence [5,17]. For an arbitrary compact space Y we find that the gravitational free

energy is

F = N3/2

√

2π6

27 Vol(Y )
. (1)

For p = 3 the tri-Sasaki Einstein spaces Y are the Eschenburg spaces [18] whose volumes

were determined explicitly in [19]. Our 3-matrix model free energy is in perfect agreement

with this volume formula.

Furthermore, we carry out calculations of the p-matrix model free energy and use them

to conjecture an explicit general formula for the volumes via the AdS/CFT correspondence.

For a general p-node quiver with CS levels ka = qa+1 − qa, with 1 ≤ a ≤ p and qp+1 = q1, we

conjecture in section 4 that

Vol(Y )

Vol(S7)
=

∑

(V,E)∈T

∏

(a,b)∈E |qa − qb|
∏p

a=1

[

∑p
b=1 |qa − qb|

] , (2)

where the sum in the numerator is over the set T of all trees (acyclic connected graphs)

with p nodes. Such a tree (V, E) consists of the vertices V = {1, 2, . . . , p} and |E| = p − 1

edges. The volumes of the corresponding tri-Sasaki Einstein spaces Y had previously been

studied by Yee, who expressed them through an integral formula (eq. (3.49) of [20]). In

the cases we have checked, our formula (2) is consistent with that of [20]. Equation (2) is

invariant under permutations of the qa, supporting the conjectured Seiberg duality for Chern-

Simons theories with at least N = 2 supersymmetry [21–23], which may be motivated by
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interchanging different types of 5-branes in the type IIB brane constructions of these models.

Recent work [5,7,24] and the present paper hint at a special role that may be played by

the Euclidean path integral of a 3-dimensional conformal field theory on S3. This quantity

may be analogous to the conformal anomaly coefficients in even dimensional CFT’s. Recall

that the anomaly coefficients are very useful measures of the number of degrees of freedom.

For even dimensional theories with weakly curved dual backgrounds, these coefficients can

be calculated using dual gravity in AdS space [25] leading to precise tests of the AdS/CFT

correspondence. Such a definition of the number of degrees of freedom is not available for

3-dimensional CFT’s. As mentioned already, the path integral on S3 can be reduced to

matrix integrals using supersymmetric localization methods [7]. Earlier work on gravity

in Euclidean AdS4 [17] has pointed to the usefulness of the corresponding quantity: after

adding certain surface counter-terms, the action becomes finite, I = π/(2GN), and appears

to be unambiguous. The successful matching of this finite gravitational action with the path

integral on S3 in [5] for the N = 6 ABJM theory, and in the present paper for a class of

N = 3 superconformal theories provides evidence for the usefulness of this quantity as a

measure of the number of degrees of freedom.

One may hope that the free energy on S3 is also a useful quantity for non-supersymmetric

fixed points.1 For example, one could aim to match the large N free energy on S3 for the

non-supersymmetric example of AdS/CFT correspondence conjectured for the O(N) sigma

model in three dimensions [26].

2 ABJM Matrix Model

2.1 Matrix Model Setup

As shown in [7], the partition function for ABJM theory on S3 localizes on configurations

where the auxiliary scalars σ and σ̃ in the two N = 2 vector multiplets are constant N ×N

Hermitian matrices. Denoting the eigenvalues of σ and σ̃ by λi and λ̃i, with 1 ≤ i ≤ N , one

can write the partition function as

Z =
1

(N !)2

∫

(

N
∏

i=1

dλi dλ̃i

(2π)2

)
∏

i<j

(

2 sinh
λi−λj

2

)2 (

2 sinh
λ̃i−λ̃j

2

)2

∏

i,j

(

2 cosh
λi−λ̃j

2

)2 exp

(

ik

4π

∑

i

(λ2
i − λ̃2

i )

)

,

(3)

1Of course, another non-supersymmetric measure of the number of degrees of freedom, which is very
useful physically, is the thermal free energy.
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where k is the Chern-Simons level, and the precise normalization was chosen as in [5]. The

integration contour should be taken to be the real axis in each integration variable. When

the number N of eigenvalues is large, the integral in eq. (3) can be approximated in the

saddle point limit by Z = e−F , where the “free energy” F is an extremum of

F (λi, λ̃i) = −i
k

4π

∑

j

(λ2
j − λ̃2

j) −
∑

i<j

log





(

2 sinh
λi − λj

2

)2
(

2 sinh
λ̃i − λ̃j

2

)2




+ 2
∑

i,j

log

(

2 cosh
λi − λ̃j

2

)

+ 2 log N ! + 2N log(2π)

(4)

with respect to λi and λ̃i. The goal of this section is to compute the leading contribution to

F in such a large N expansion while holding k fixed.

Varying (4) with respect to λj and λ̃j we obtain the saddle point equations:

−∂F

∂λi

=
ik

2π
λi −

∑

j 6=i

coth
λj − λi

2
+
∑

j

tanh
λ̃j − λi

2
= 0 ,

−∂F

∂λ̃i

= − ik

2π
λ̃i −

∑

j 6=i

coth
λ̃j − λ̃i

2
+
∑

j

tanh
λj − λ̃i

2
= 0 .

(5)

Similar saddle point equations appear in the context of matrix models derived from topolog-

ical string theory [10,27], and can be solved using powerful techniques based on holomorphy

arguments and special geometry. Such methods were used in [5] to solve eqs. (5) in the limit

where N is taken to infinity while holding N/k fixed. Our goal in this paper is more modest

than solving the matrix model for any value of the ’t Hooft parameter N/k. We will work

at fixed k and take the large N/k limit. As we will see shortly, in such a limit we can find

the eigenvalue distribution using a more elementary approach.

2.2 A Numerical Solution

To gain intuition, one can start by solving the saddle point equations (5) numerically for

any values of N and k. One of the simplest ways to do so is to view the equations (5)

as describing the equilibrium configuration of 2N point particles whose 2-d coordinates are

given by the complex numbers λj and λ̃j and that interact with the forces given by eq. (5).

This equilibrium configuration can be found by introducing a time dimension and writing

down equations of motion for λj(t) and λ̃j(t) whose solution approaches the equilibrium
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configuration (5) at late times in the same way as the solution to the heat equation approaches

a solution to the Laplace equation at late times. The equations of motion for the eigenvalues

are

τλ
dλi

dt
= −∂F

∂λi

, τλ̃

dλ̃i

dt
= −∂F

∂λ̃i

, (6)

where τλ and τλ̃ are complex numbers that need to be chosen in such a way that the saddle

point we wish to find is an attractive fixed point as t → ∞.
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-40 -20 20 40
Re Λ

-Π�2

-Π�4

Π�4

Π�2

Im Λ
N=25 and 100, k=1

Figure 1: Numerical saddle points for the ABJM matrix model. The eigenvalues for N = 25
are plotted in black and those for N = 100 are plotted in orange. The plot has been obtained
with τλ = τλ̃ = 1. As mentioned in the text, the real parts of the eigenvalues grow with

√
N .

In figure 1 we show typical eigenvalue distributions that can be found using the method

we just explained. There are several features of the saddle-point configurations that are

worth emphasizing:

• The eigenvalues λj and λ̃j that solve (5) are not real.

That the eigenvalue distributions do not lie on the real axis might be a bit puzzling

given that λi and λ̃i are supposed to be eigenvalues of Hermitian matrices. However,

it is well-known that in general, when using the saddle point approximation, the main

contribution to an oscillatory integral may come from saddles that are not on the

original integration contour, but through which the integration contour can be made

to pass. We will assume that the integration contour that should be chosen in writing

down the integral in eq. (3) can be deformed so that saddle points like those in figure 1

are the only important ones.

• The eigenvalue distributions are invariant under λi → −λi and λ̃i → −λ̃i.
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Indeed, the saddle point equations (5) are invariant under these transformations, so it

is reasonable to expect that there should be solutions that are also invariant.

• In the equilibrium configuration the two types of eigenvalues are complex conjugates

of each other, λ̃j = λ̄j.

Indeed, it is not hard to see that upon setting λ̃j = λ̄j the two equations in (5) become

equivalent, so it is consistent to look for solutions that have this property.

• As one increases N at fixed k, the imaginary part of the eigenvalues stays bounded

between −π/2 and π/2, while the real part grows with N . We will show shortly that

for the saddle points we find, the real part grows as N1/2 as N → ∞.

2.3 Large N Analytical Approximation

Let us now find analytically the solution to the saddle point equations (5) in the large N

limit. As explained above, we can assume λ̃j = λ̄j and write

λj = Nαxj + iyj , λ̃j = Nαxj − iyj , (7)

where we introduced a factor of Nα multiplying the real part because we want xj and yj to

be of order one and become dense in the large N limit. The constant α is so far arbitrary

but will be determined later.

In passing to the continuum limit, we define the functions x, y : [0, 1] → R so that

xj = x(j/N) , yj = y(j/N) . (8)

Let us assume we order the eigenvalues in such a way that x is a strictly increasing function

on [0, 1]. Introducing the density of the real part of the eigenvalues

ρ(x) =
ds

dx
, (9)

one can approximate (4) as (see Appendix A)

F =
k

π
N1+α

∫

dx xρ(x)y(x) + N2−α

∫

dx ρ(x)2f(2y(x)) + · · · , (10)
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where the function f is

f(t) = π2 −
(

arg eit
)2

. (11)

In other words, f is a periodic function with period π given by

f(t) = π2 − t2 when − π ≤ t ≤ π . (12)

It may be a little puzzling that while the discrete expression for the free energy in eq. (4)

is non-local, in the sense that there are long-range forces between the eigenvalues, its large N

limit (10) is manifestly local. One can understand this major simplification from examining,

for instance, the first saddle point equation in (5). The force felt by λi due to interactions

with far-away eigenvalues λj and λ̃j is

− coth
λj − λi

2
+ tanh

λ̃j − λi

2
≈ − sgn(Re λj − Re λi) + sgn(Re λ̃j − Re λi) , (13)

the corrections to this formula being exponentially suppressed in Reλj − Re λi and Re λ̃j −
Re λi. In other words, the non-local part of the interaction force between eigenvalues is

given just by the right-hand side of eq. (13). The non-local part of the force vanishes when

Re λj = Re λ̃j, so in assuming that the two eigenvalue distributions are complex conjugates

of each other, we effectively arranged for an exact cancellation of non-local effects. All that

is left are short-range forces, which in the large N limit are described by the local action

(10).

One can view F as a functional of ρ(x) and y(x) and look for its saddle points in the set

C =

{

(ρ, y) :

∫

dx ρ(x) = 1; ρ(x) ≥ 0 pointwise

}

. (14)

These constraints mean that ρ is a normalized density. Motivated by the numerical analysis

we performed, we assume that ρ and y describe a connected distribution of eigenvalues

contained in a bounded region of the complex plane.

Let us assume a saddle point for F exists. As N → ∞, we need the two terms in (10) to

be of the same order in N in order to have non-trivial solutions, so from now on we will set

α =
1

2
. (15)
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The real part of the eigenvalues therefore grows as N1/2, and to leading order, the free energy

behaves as N3/2 at large N . In writing (10) we omitted the last two terms from eq. (4).

They do not depend on ρ or y and hence do not affect the saddle point equations. They are

also lower order in N given the choice of α.

To find a saddle point for F , one can add a Lagrange multiplier µ to (10) and extremize

F̃ = N3/2

[

k

π

∫

dx xρ(x)y(x) +

∫

dx ρ(x)2f(2y(x)) − µ

2π

(∫

dx ρ(x) − 1

)]

(16)

instead of (10). As long as ρ(x) > 0, the saddle point eigenvalue distribution satisfies the

equations

4πρ(x)f(2y(x)) = µ − 2kxy(x) ,

2πρ(x)f ′(2y(x)) = −kx .
(17)

Plugging (12) into (17) one obtains

ρ(x) =
µ

4π3
, y(x) =

π2kx

2µ
, (18)

as long as −π/2 ≤ y(x) ≤ π/2. If ρ is supported on [−x∗, x∗] for some x∗ > 0 that we will

determine shortly, we can calculate µ from the normalization of the density ρ(x):

∫ x∗

−x∗

dx ρ(x) = 1 =⇒ µ =
2π3

x∗

. (19)

Plugging this formula back into (10), we obtain the free energy in terms of x∗:

F =
N3/2(12π4 + k2x4

∗)

24π2x∗

+ o(N3/2) . (20)

This expression is extremized when

x∗ = π

√

2

k
, y(x∗) =

π

2
. (21)

Luckily, the answer y(x∗) = π/2 is consistent with our assumption that −π/2 ≤ y(x) ≤
π/2 without which eq. (18) would not be correct. In Appendix B we check that assuming

y(x∗) > π/2 implies a contradiction. The extremum of F obtained from eqs. (20) and (21)
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is

F =
π
√

2

3
k1/2N3/2 + o(N3/2) . (22)

This result agrees with the free energy found in [5] using the regularized Euclidean action in

AdS4 [17].

-4 -2 2 4
x

0.02

0.04

0.06

0.08

0.10

0.12

Ρ

N=200, k=1

Figure 2: Comparison between analytical prediction and numerical results for the density of
eigenvalues ρ defined in eq. (9). The dotted black line represents the analytical calculation,
and the numerical result is shown in orange dots.

In the large N limit the eigenvalues therefore condense on two line segments and on these

two line segments they have uniform density. In figure 2 we compare the analytical result

for the density with the numerical one.

We would like to compare the location of our eigenvalue distributions with the results

of [5]. Noting a similarity between the ABJM matrix model and the S3/Z2 matrix model

solved in [10], Drukker, Marino, and Putrov [5] write down a resolvent for the ABJM model.

This resolvent has cuts in the λ plane corresponding to the locations of the eigenvalues. In

particular, it has a cut where the λi eigenvalues are located and a second cut where the λ̃i

eigenvalues are located but shifted by πi. More specifically, the resolvent has the form

ω(λ) = 2 log

(

1

2

[

√

(eλ + b)(eλ + 1/b) −
√

(eλ − a)(eλ − 1/a)
]

)

. (23)

9



where a + 1/a + b + 1/b = 4 and at strong coupling,

a +
1

a
− b − 1

b
= 2i exp

(

π

√

2N

k
− 1

12

)

+ . . . (24)

The ellipses denote terms exponentially suppressed in N/k relative to the leading term.

Solving the equations for a and b, we find that the branch points in the λ plane are at

log a = π

√

2N

k
− 1

12
+

iπ

2
, log

1

a
= −π

√

2N

k
− 1

12
− iπ

2
, (25)

log b = −π

√

2N

k
− 1

12
+

iπ

2
, log

1

b
= π

√

2N

k
− 1

12
− iπ

2
. (26)

These expressions are in agreement with (21) in the large N limit.

We can also compute the 1/6 and 1/2 BPS Wilson loops in this strong coupling limit.

We have that [5, 28]

〈W 1/6
�

〉 =
2πiN

k

∫ x∗

−x∗

eλ(x)ρ(x)dx , (27)

〈W 1/2
�

〉 =
2πiN

k

∫ x∗

−x∗

(

eλ(x) + eλ̃(x)
)

ρ(x)dx . (28)

Plugging in our results, we find

〈W 1/6
�

〉 ≈ −
√

N

2k
eπ
√

2N/k , (29)

〈W 1/2
�

〉 ≈ i

2
eπ
√

2N/k . (30)

The exponents in these formulae agree with the results in [5, 28].

3 Necklace Quiver Gauge Theories

In this section we consider a class of quiver Chern-Simons U(N)k1
×U(N)k2

× · · · ×U(N)kp

gauge theories whose quiver diagrams look like necklaces (see figure 3) [12,13]. In the N = 2

superspace formulation the theory is coupled to bi-fundamental chiral superfields Aa, Ba,
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k1

k2

k3

k4

kp

Ap A1

A2

A3

B1

B2

B3

Bp

Figure 3: Necklace quiver diagrams for U(N)p Chern-Simons gauge theories.

a = 1, 2, . . . , p whose interactions are governed by the quartic superpotential

W = −
p
∑

a=1

2π

ka

(BaAa − Aa+1Ba+1)
2 . (31)

The 4-d “parent theories” for these Chern-Simons models, i.e. the 4-d gauge theories with

the same type of quiver diagrams and superpotentials, arise on N D3-branes placed on

generalized conifolds [29, 30]. For
∑p

a=1 ka = 0 and N = 1 the moduli space of each 3-d

model was calculated in [12, 13] and shown to be given by a certain hyper-Kähler cone in

four complex dimensions [14–16]. Therefore, it was conjectured that such a model describes

the low-energy dynamics of N coincident M2-branes placed at the tip of this cone. The

quiver Chern-Simons gauge theories were therefore conjectured to be dual to the AdS4 × Y

backgrounds of M-theory where Y are the bases of the cones. These gauge theories are

natural generalizations of the ABJM model that is found for p = 2.

The gauge theories in figure 3 arise from the following type IIB brane construction [12].

We consider N D3-branes filling directions 0123 where x3 is a circle, and then add a sequence

of (1, q) 5-branes (the bound states of an NS5-brane and qa D5-branes) filling directions 012

and located at specific points along the x3 circle. If we express the CS levels as

ka = qa+1 − qa , (32)

where qa are integers, then as we move around the circle we find the ordering (qa, 1) of

the 5-branes. This picture is helpful in considering certain transformations in the gauge
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theory that are analogous to the Seiberg duality in four-dimensional gauge theory [21–23].

As in that case, these transformations are related to interchange of adjacent branes and thus

correspond to interchange of qa and qa+1. (There is also a shift in the rank of one of the

gauge groups that may be neglected in the large N limit.) Our explicit answer for the free

energy will have this symmetry.

For a general set of Chern-Simons levels such a p > 2 gauge theory has N = 3 superconfor-

mal invariance, but in the special case where p is even and the CS levels are (k,−k, k,−k, . . .)

the supersymmetry is enhanced to N = 4 [12, 31, 32]. Then Y = S7/(Zp/2 × Zkp/2) and

Vol(Y ) = 4π4/(3kp2). For more general ki the eight-dimensional cone is not an orbifold,

which complicates the calculation of its volume. Nevertheless, these volumes were computed

in [19,20], and we can compare the result on the gravity side with our calculation of the free

energy.

3.1 Multi-Matrix Models

As explained in [7], the partition function for the necklace quivers in figure 3 localizes on

configurations where the scalars σa in the N = 2 vector multiplets are constant Hermitian

matrices. Denoting by λa,i, 1 ≤ i ≤ N , the eigenvalues of σa, the partition function takes

the form of the matrix integral

Z =
1

(N !)p

∫

(

∏

a,i

dλa,i

2π

)

p
∏

a=1







∏

i<j

(

2 sinh
λa,i−λa,j

2

)2

∏

i,j 2 cosh
λa,i−λa+1,j

2

exp

[

i

4π

∑

i

kaλ
2
a,i

]






. (33)

The normalization of the partition function was chosen so that it agrees with the ABJM

result from eq. (3) in the case p = 2. As in the ABJM case, the integration contour should

be taken to be the real axis in each integration variable. The saddle point equations following

from (33) are

ika

π
λa,i − 2

∑

j 6=i

coth
λa,j − λa,i

2
+
∑

j

tanh
λa+1,j − λa,i

2
+
∑

j

tanh
λa−1,j − λa,i

2
= 0 . (34)

These equations can be solved numerically using the method described in section 2.2: by

replacing the right-hand side of these equations by τadλa,j/dt, we obtain a system of first

order differential equations whose solution converges at late times t to a solution of eq. (34)

provided that the constants τa are chosen appropriately. We will now show how to obtain

an approximate analytical solution valid in the limit where N is taken to be large and k is
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held fixed.

Based on our intuition from the ABJM model, let us assume that in this case too the

real part of the eigenvalues behaves as N1/2 at large N while the imaginary part is of order

one. So if one writes

λa,j = N1/2xa,j + iya,j , (35)

then the quantities xa,j and ya,j become dense in the large N limit. Under this assumption,

we will be able to solve the saddle point equations to leading order in N in a self-consistent

way. We can pass to the continuum limit by considering the normalized densities ρa(x) of

the xa,j together with the continuous functions ya(x) that describe the imaginary parts of

the eigenvalues as functions of x. Let us first make a rough approximation to the saddle

point equations (34). When N is large, we have

coth
λa,j − λa,i

2
≈ sgn (xa,j − xa,i) , tanh

λa,j − λa±1,i

2
≈ sgn (xa,j − xa±1,i) . (36)

To leading order in N , the saddle point equations then become

∫

dx′ [2ρa(x
′) − ρa+1(x

′) − ρa−1(x
′)] sgn(x′ − x) = 0 . (37)

Differentiating with respect to x, we immediately conclude that all ρa must be equal to one

another to leading order in N , so we can write ρa(x) ≡ ρ(x) for some density function ρ(x)

that is normalized as

∫

dx ρ(x) = 1 . (38)

With the simplifying assumption that the densities ρa are equal, one can go back to the

integral (33) and calculate the free energy functional F [ρ, ya] to leading order in N (see

Appendix A):

F [ρ, ya] =
N3/2

2π

∫

dx xρ(x)

p
∑

a=1

kaya(x)

+
N3/2

2

∫

dx ρ(x)2

p
∑

a=1

f(ya+1(x) − ya(x)) + o(N3/2) ,

(39)

where f is the same function that was defined in (11). We wish to evaluate the integral

13



(33) in the saddle point approximation where it equals Z = e−F , the free energy F being

an appropriate critical point of F [ρ, ya]. Let us assume that the eigenvalue distribution

corresponding to this saddle point is connected, symmetric about x = y = 0, and bounded.

In looking for the eigenvalue distribution that extremizes (39) to order O(N3/2), an

important observation is that, in fact, one cannot find this distribution, because to this

order in N F [ρ, ya] has a flat direction given by ya(x) → ya(x) + δy(x) for any function

δy(x). The second term in eq. (39) is clearly invariant under this transformation, and the

first term is also invariant because
∑p

a=1 ka = 0. The existence of this flat direction is not

a problem at all if one just wants to compute the free energy F to leading order in N . If

one’s goal is instead to find the eigenvalue distributions for the saddle point, subleading

corrections to (39) that presumably lift this flat direction must be taken into account. In

this paper we will content ourselves with calculating the free energy to order O(N3/2), and

will leave a careful analysis of how the flat direction gets lifted for future work.

Before we examine the extremization of the free energy functional (39) in more detail,

let us make a few comments and present a result that follows already from the discussion

above. Suppose we manage to find a saddle point of F by extremizing (39) for a quiver

Chern-Simons gauge theory that in the large N limit and at strong ’t Hooft coupling is dual

to an AdS4 × Y M-theory background. Let us assume that this saddle point gives the most

important contribution to the partition function. What can we learn? From (39) one may

infer that the free energy grows as N3/2 at large N as expected from supergravity, so our

computation provides a gauge theory explanation of this N3/2 behavior. Moreover, one can

compare the free energy we obtain with the exact M-theory result

F = N3/2

√

2π6

27 Vol(Y )
(40)

that can be derived as a straightforward generalization of the ABJM computation in [5]. Via

this formula we will compare successfully our matrix model results with the expressions for

the volumes of tri-Sasaki Einstein space available in the literature [19,20].

3.2 A Class of Orbifold Chern-Simons Theories

The vacuum moduli space of the non-chiral quivers with alternating CS levels (k,−k, k,−k, . . .)

and N = 1 is the orbifold C
4/
(

Zp/2 × Zkp/2

)

[12]. There is an induced orbifold action on

the unit 7-sphere in C
4, and thus the internal space Y is S7/

(

Zp/2 × Zkp/2

)

. Consequently,
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we expect

Vol(Y ) =
4 Vol(S7)

kp2
=

4π4

3kp2
, (41)

where in the second equality we used the round 7-sphere volume Vol(S7) = π4/3.

This formula can be reproduced very easily from the matrix model computation. The

saddle point equations (34) are solved by setting λ2a,i = λi and λ2a+1,i = λ̃i, λi and λ̃i

being the eigenvalues for the saddle point of the ABJM matrix model discussed in detail in

section 2. The free energy of the p-node quiver with CS levels (k,−k, k,−k, . . .) is therefore

p/2 times the free energy in the ABJM model, and thus

F =
p

2
FABJM =

π
√

2

6
pk1/2N3/2 + o(N3/2) . (42)

Using eq. (40), one immediately reproduces the volume of the S7-orbifold in eq. (41).

3.3 Warm-up: A Four-Node Quiver

k1 = k k2 = k

k4 = −k k3 = −k

Figure 4: Four-node quiver diagram obtained as a particular case of the general quivers
presented in figure 3.

Another case we can easily solve using the approximation scheme developed above is

that of the four-node quiver with CS levels ka = (k, k,−k,−k) (see figure 4). The two Z2

symmetries of the quiver, one acting by interchanging nodes 1 ↔ 4 and 2 ↔ 3 and the other

by interchanging nodes 1 ↔ 2 and 3 ↔ 4, allow us to set

λ1,j = λ2,j = λj , λ3,j = λ4,j = λ̃j . (43)
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Moreover, in the saddle point equations (34) it is consistent to set λ̃j = λ̄j as in the ABJM

case, which reduces our task to finding a single eigenvalue distribution λi. In passing to the

continuum limit, we should therefore set

y1 = y2 = −y3 = −y4 = y . (44)

The free energy functional (39) then becomes

F [ρ, y] =
2kN3/2

π

∫

dx xρ(x)y(x) + N3/2

∫

dx ρ(x)2
[

π2 + f(2y(x))
]

+ o(N3/2) . (45)

In the paragraph following eq. (39) we discussed how for arbitrary p-node quivers we

would not be able to solve for the ya themselves, but only for differences of consecutive ya,

because the leading large N contribution to the free energy functional is invariant under the

shifts ya → ya + δy for any function δy. In the case of the (k, k,−k,−k) quiver we will,

however, be able to determine the location of the eigenvalues exactly, because the ansatz

(44) breaks this shift symmetry.

In order to find the saddle points of (45) in the set (14), we should add a Lagrange

multiplier µ to enforce the normalization condition for ρ, and extremize the functional

F̃ [ρ, y] = F − N3/2

2π
µ

(∫

dx ρ(x) − 1

)

. (46)

Let us assume the eigenvalue distribution is symmetric around x = y = 0 and ranges

between [−x∗, x∗]. Let us focus on the region where x ≥ 0. Solving the equations of motion

we obtain

ρ(x) =
µ

8π3
, y(x) =

2kπ2x

µ
, if − π

2
≤ y(x) <

π

2
. (47)

Since ρ(x) > 0 in this region, we have µ > 0 and y(x) ≥ 0. Assuming y(x∗) < π/2, we can

find µ in terms of x∗ from the normalization condition for ρ, and then express F in terms

of x∗ and extremize it. The extremization yields x∗ = 21/4π/
√

k and y(x∗) = π/
√

2 > π/2,

which suggests that the assumption y(x∗) < π/2 might be wrong. One could imagine that

y(x∗) > π/2, but solving the saddle point equations in the region where y > π/2 would yield

ρ(x) < 0.

The correct answer is y(x∗) = π/2, and in fact y(x) = π/2 on some interval [xπ/2, x∗]
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with 0 < xπ/2 < x∗. On this interval,

ρ(x) =
µ − 2kπx

4π3
, y(x) =

π

2
, (48)

where in obtaining these equations we only varied (46) with respect to ρ. The quantity xπ/2

can be obtained from setting y(xπ/2) = π/2 in (47):

xπ/2 =
µ

4πk
. (49)

One can now find µ by imposing the normalization condition for ρ, and then express the free

energy F in terms of x∗ and extremize with respect to x∗. The result is that

x∗ = 2xπ/2 = 2π

√

2

3k
, µ = 4π2

√

2k

3
. (50)

The density of eigenvalues is constant on [−xπ/2, xπ/2] and then drops linearly to zero on
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Figure 5: Comparison between numerics and analytical prediction for the four-node quiver
with k = {1, 1,−1,−1}. The dotted black lines represent the large N analytical prediction
and the orange dots represent numerical results.

[−x∗,−xπ/2] and [xπ/2, x∗]. See figure 5 for a comparison of this analytical prediction with a

numerical solution of the saddle point equations.

The free energy for this model can be computed from (45):

F =

√

32

27
πk1/2N3/2 + o(N3/2) . (51)

Using (40), we infer that the gravity dual of the Chern-Simons quiver gauge theory with CS
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levels (k, k,−k,−k) is AdS4 × Y where the volume of the compact space Y is

Vol(Y ) =
π4

16k
. (52)

Satisfyingly, this result is in agreement with the calculation of the corresponding integral

representation given in [20] for k = 1, which we will review in section 4.

k1 = k k2 = k

k4 = −k k3 = −k

Figure 6: The Chern-Simons quiver gauge theory dual to AdS4 × Q2,2,2/Zk as proposed
in [33,34].

Let us also note that this volume is the same as that of a Zk orbifold of the Sasaki-

Einstein space Q2,2,2, which in turn is a Z2 orbifold of the coset space SU(2) × SU(2) ×
SU(2)/ (U(1) × U(1)). If we denote the generators of the three SU(2) factors by ~JA, ~JB,

and ~JC , then the two U(1) groups we are modding out by are generated by JA3 + JB3 and

JA3 +JC3. Q2,2,2 admits a toric Sasaki-Einstein metric, and a proposal for the Chern-Simons

quiver gauge theory dual to AdS4 × Q2,2,2/Zk was made in [33, 34]. This proposal is quite

similar to the (k, k,−k,−k) non-chiral quiver in figure 4, except it is chiral—see figure 6.

Due to the chiral nature of the quiver, the corresponding matrix model that follows from [7]

is somewhat different. Its analysis is beyond the scope of this paper.

3.4 Extremization of the Free Energy Functional and Symmetries

Since the free energy functional (39) depends only on differences between consecutive ya, we

find it convenient to introduce the notation δya = ya−1 − ya and to write ka = qa+1 − qa as

in eq. (32). Equation (39) becomes

F [ρ, δya] =
N3/2

2π

∫

dx xρ(x)

p
∑

a=1

qaδya(x) +
N3/2

2

∫

dx ρ(x)2

p
∑

a=1

f(δya(x)) + o(N3/2) . (53)
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This expression should be extremized over the set

C =

{

(ρ, δya) :

∫

dx ρ(x) = 1; ρ(x) ≥ 0 and

p
∑

a=1

δya(x) = 0 pointwise

}

. (54)

Since
∑p

a=1 δya = 0, one could either use this constraint to solve for one of the δya and

extremize (53) only with respect to the remaining ones, or, as we will do, one could introduce

a Lagrange multiplier ν(x) that enforces the constraint and treat all δya on equal footing.

Because of the normalization constraint (38) we also need a Lagrange multiplier µ. We

therefore will extremize

F̃ [ρ, δya] = F [ρ, δya] −
N3/2

2π
µ

(∫

dx ρ(x) − 1

)

− N3/2

2π

∫

dx ρ(x)ν(x)

p
∑

a=1

δya(x) (55)

instead of (53). Suppose a saddle point exists. As long as ρ(x) > 0, the saddle point

eigenvalue distribution should satisfy the equations

p
∑

a=1

[2πf(δya(x))ρ(x) + (qax − ν(x)) δya(x)] = µ , (56a)

πf ′(δya(x))ρ(x) + qax = ν(x) . (56b)

The extremization problem has the following discrete symmetries:

• The free energy functional (53) has a Z2 symmetry under which qa and δya all change

sign, so in the large N limit the partition function and the free energy are also invariant

under sending qa → −qa for all a. This symmetry acts as ka → −ka and is therefore a

parity transformation.

• Equation (53) is invariant under an overall shift of all the qa. This symmetry was to

be expected given that, after all, the original integral (33) depends only on ka, which

are differences of consecutive qa.

• Interestingly, the free energy functional we are extremizing is invariant under per-

mutations of the qa and δya, so the partition function and the free energy will also be

invariant under permutations of the qa. Up to order one shifts in the ranks of the gauge

groups, which should be dropped in the large N limit we are taking, such permutations

correspond to Seiberg dualities in the N = 2 Chern-Simons gauge theories [21–23].

Some of the symmetries discussed above correspond to the action of the dihedral group
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Dp on the CS levels ka. Our formalism shows that to leading order in N the free energy is

in fact invariant under a larger symmetry group that acts on the qa and that includes the

dihedral group.

3.5 Three-Node Quivers

Let us now compute the free energy for arbitrary 3-node quivers with CS levels (k1, k2, k3)

satisfying k1 + k2 + k3 = 0. Since the ka sum to zero, two of them must have the same sign

and be smaller in absolute value than the third. Let us begin by studying the particular case

where k2 ≥ k1 ≥ 0 and k3 < 0. For simplicity, we choose
∑3

a=1 qa = 0, which implies

q1 = −2k1 + k2

3
, q2 =

k1 − k2

3
, q3 =

k1 + 2k2

3
, (57)

and we have q3 > 0 > q2 ≥ q1 and |q3| > |q1| ≥ |q2|. The solution to eqs. (56) breaks into

three regions:

0 ≤ x ≤ µ

3πq3

: (58a)

δya =
3π2xqa

µ
, ρ =

µ

6π3
,

µ

3πq3

≤ x ≤ − µ

3πq1

: (58b)

δy1 =
(q1 − q2)x

4πρ
− π

2
, δy2 =

(q2 − q1)x

4πρ
− π

2
, δy3 = π ,

ρ =
2µ − 3πq3x

6π3
,

− µ

3πq1

≤ x ≤ µ

π(q3 − q1)
: (58c)

δy1 = −π , δy2 = 0 , δy3 = π ,

ρ =
µ + (q1 − q3)πx

2π3
.

The first region ends when one of the three differences δya reaches ±π. The relations

between the qa imply that at the end of the first region δy3 = π, while |δy1| = π |q1| / |q3| < π

and |δy2| = π |q2| / |q3| < π. Throughout the second region δy3 = π. The second region ends

when δy1 or δy2 reaches ±π. When q1 = q2, the third region is absent. When q1 < q2 < 0,

in this region δy2 is monotonically increasing and δy1 is monotonically decreasing, and since
∑

δya = 0 it must be that δy1 reaches −π next. In the third region the δya are all constant

and the density ρ decreases linearly to zero. See figure 7 for a particular example.
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Figure 7: Comparison between numerics and analytical results for a three node quiver. The
dotted black lines represent the analytical large N approximation, while the orange dots
represent numerical results.

The normalization condition on ρ yields

µ = π2

√

18q1(q1 + q2)(2q1 + q2)

q2
2 − 5q2

1 − 5q1q2

= π2

√

2(k1 + k2)(k2 − k3)(k1 − k3)

(k1k2 − k1k3 − k2k3)
. (59)

Performing the integral (39), one obtains

F =
N3/2µ

3π
=

N3/2π
√

2

3

√

(k1 + k2)(k2 − k3)(k1 − k3)

k1k2 − k1k3 − k2k3

. (60)

Given the free energy in the case k3 < 0 < k1 ≤ k2, it is actually possible to compute

the free energy for any 3-node quivers. Indeed, since in the case where there are only three

nodes a permutation of the ka can be thought of as a relabeling of the nodes, the free

energy must be invariant under all such permutations. In addition, the free energy must be

invariant under sending ka → −ka according to the second discrete symmetry discussed at

the end of section 3.4. Combining these two properties, one can find the free energy of an

arbitrary quiver with CS levels ka by constructing the new CS levels k̃1 = min(|k1| , |k2| , |k3|),
k̃3 = −max(|k1| , |k2| , |k3|), and k̃2 = −k̃1 − k̃3 that satisfy k̃3 < 0 < k̃1 ≤ k̃2 and for which

eq. (60) holds. The unique extension of (60) that gives the correct answer for arbitrary CS

levels is

F =
N3/2π

√
2

3

√

(|k1| + |k2|)(|k2| + |k3|)(|k1| + |k3|)
|k1| |k2| + |k1| |k3| + |k2| |k3|

. (61)
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Quite remarkably, this formula, whose derivation is based solely on gauge theory argu-

ments, agrees with the supergravity prediction: using (40), one can reproduce the volume

of a Zgcd{k1,k2,k3} orbifold of a compact Eschenburg space. The Eschenburg space is specified

by three relatively prime integers ta, and its volume is [19]

Vol(S(t1, t2, t3))

Vol(S7)
=

t1t2 + t1t3 + t2t3
(t1 + t2)(t2 + t3)(t1 + t3)

. (62)

In terms of the ka, the positive integers ta are ta = |ka| / gcd{k1, k2, k3} [13], so

Vol(Y )

Vol(S7)
=

1

gcd{k1, k2, k3}
Vol(S(t1, t2, t3))

Vol(S7)
=

|k1| |k2| + |k1| |k3| + |k2| |k3|
(|k1| + |k2|)(|k2| + |k3|)(|k1| + |k3|)

, (63)

in agreement with (40) and (61).

3.6 General Four-Node Quivers

We can also compute the leading large N contribution to the free energy for arbitrary 4-node

quivers. Let us first examine the case where q4 ≥ q2 ≥ q1 ≥ q3 and |q4| is the largest among

the qa. It is convenient to require
∑4

a=1 qa = 0 since many of the intermediate formulae

simplify under this assumption. Then we have q4 > 0 ≥ q1 ≥ q3 and |q4| ≥ |q3| ≥ |q1| ≥ |q2|.
As in the three-node case, the solution to eqs. (56) breaks into three regions:

0 ≤ x ≤ µ

4πq4

: (64a)

δya =
4π2xqa

µ
, ρ =

µ

8π3
,

µ

4πq4

≤ x ≤ − µ

4πq3

: (64b)

δy1 =
(3q1 + q4)x

6πρ
− π

3
, δy2 =

(3q2 + q4)x

6πρ
− π

3
,

δy3 =
(3q3 + q4)x

6πρ
− π

3
, δy4 = π , ρ =

3µ − 4πq4x

16π3
,

− µ

4πq3

≤ x ≤ µ

2π(q2 + q4)
: (64c)

δy1 =
(q1 − q2)x

4πρ
, δy2 =

(q2 − q1)x

4πρ
,

δy3 = −π , δy4 = π , ρ =
µ + (q3 − q4)πx

4π3
.

The first region ends where δy4 reaches π. At this endpoint |δya| = π |qa| / |q4| ≤ π for
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Figure 8: Comparison between numerics and analytical results for a four node quiver. The
dotted black lines represent the analytical large N approximation, while the orange dots
represent numerical results.

a = 1, 2, 3. The second region ends where δy3 = −π. At this endpoint δy1 = π(q1 −
q2)/(q1 + q2 − 2q3), and since q1 ≥ q3 and q2 ≥ q3, by the triangle inequality it follows that

|q1 − q2| ≤ q1 + q2 − 2q3, so |δy1| ≤ π. Similarly, |δy2| ≤ π also. Lastly, if q2 = q1 the third

region does not exist. When q2 > q1 and q1 < 0, δy1 is monotonically decreasing and δy2

is monotonically increasing in the third region, and this region ends where δy1 = −π and

δy2 = π. See figure 8 for an example.

From
∫

dx ρ(x) = 1, one can find that µ is given by

8π2

µ
=

√

1

q3

− 1

q4

+
4(q2 + q3)

(q2 + q4)2
+

12

q2 + q4

. (65)

The free energy is

F =
N3/2µ

3π
=

8πN3/2

3

(

1

q3

− 1

q4

+
4(q2 + q3)

(q2 + q4)2
+

12

q2 + q4

)−1/2

. (66)

Given eq. (66), one can use the symmetries we discussed at the end of section 3.4 to

compute the free energy of a quiver gauge theory with arbitrary qa. Indeed, one can define

q̃a to be a permutation of the four numbers qa − 1
4

∑4
b=1 qb that gives |q̃4| ≥ |q̃3| ≥ |q̃1| ≥ |q̃2|.

If q̃4 is negative, one should flip the sign of all q̃a, so we can assume q̃4 > 0. By construction,

the q̃a sum to zero, so the second and third largest in absolute value, namely q̃3 and q̃1, are

negative. Therefore, the q̃a satisfy all the assumptions under which eq. (66) was derived,

and since the free energy does not change in going from qa to q̃a, one can plug the q̃a into

eq. (66) to find the free energy of an arbitrary 4-node quiver theory. The unique extension
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of (66) to arbitrary qa can also be written as

F =
N3/2π

√
2

3

√

∏4
a=1

(
∑4

b=1 |qab|
)

∑

(a,b) 6=(c,d) 6=(e,f) |qab| |qcd| |qef | −
∑

(a,b,c) |qab| |qbc| |qca|
, (67)

where qab denotes qa − qb, and in the denominator the first sum is over distinct unordered

pairs of numbers from 1 to 4 while the second sum is over unordered triplets. Using eq. (40),

we obtain a prediction for the volume of the compact space Y :

Vol(Y )

Vol(S7)
=

∑

(a,b) 6=(c,d) 6=(e,f) |qab| |qcd| |qef | −
∑

(a,b,c) |qab| |qbc| |qca|
∏4

a=1

(
∑4

b=1 |qab|
) . (68)

4 A General Formula and its Tests

Equations (67) and (68) suggest a generalization to arbitrary p-node quivers. Note first that

the numerator of eq. (68) is a sum over all possible graphs with 4 nodes and 3 edges from

which we subtract the sum over all cyclic graphs with 4 nodes and 3 edges, yielding a sum

over all possible trees.

We conjecture that for a p-node quiver, the volume of the tri-Sasaki Einstein space Y

(normalized so that Rmn = 6gmn) is given by

Vol(Y )

Vol(S7)
=

∑

(V,E)∈T

∏

(a,b)∈E |qa − qb|
∏p

a=1

[

∑p
b=1 |qa − qb|

] , (69)

where T is the set of all trees (acyclic connected graphs) with nodes V = {1, 2, . . . , p} and

edges

E = {(a1, b1), (a2, b2), . . . , (ap−1, bp−1)} . (70)

A standard result in graph theory states that trees with p nodes have p − 1 edges.

The conjecture in eq. (69) is consistent with the results from 2, 3, and 4-node quivers,

and we also checked it for 5 and 6-node quivers. This formula is invariant under all the

symmetries discussed at the end of section 3.4. In particular, a quite non-trivial check of our

approach is that this formula is invariant under the Seiberg dualities described in [21–23].

The connection we observe between large N matrix integrals and sums over the tree graphs

is reminiscent of the connection between matrix models for 2-d quantum gravity and the

Kontsevich matrix model which generates ribbon graphs [35].
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An integral representation of volumes of tri-Sasaki Einstein spaces was given by Yee [20].

In general, our spaces Y are Zk orbifolds of those considered in [20], where k = gcd{ka}. To

simplify the following discussion, let us focus on the k = 1 case. In this case [20],

Vol(Y ) =
2p−2π4

3 Vol (U(1)p−2)

∫ p−2
∏

j=1

dφj

p
∏

a=1

1

1 +
(

∑p−2
j=1 Qj

aφj
)2 . (71)

Here, Vol (U(1)p−2) is the volume of a unit cell in the (p − 2)-dimensional lattice defined by

the identifications ξj ∼ ξj + ηj, where ηj satisfy
∑p−2

j=1 Qj
aηj ∈ 2πZ for all a = 1, . . . , p. The

Qj
a span the kernel of

(

1 1 1 · · · 1

q1 q2 q3 · · · qp

)

. (72)

(The Qj
a are taken to be relatively prime here.) In the U(1)p Chern-Simons gauge theory, the

Qj
a are the charges of the bifundamental fields under the unbroken U(1)p−2 symmetry [13].

We can take a spanning set of ~Qj to be, for a fixed j, Qj
1 = q2 − qj, Qj

2 = qj − q1, and

Qj
j = q1 − q2 with all other Qj

a = 0. For this choice of Qj
a, the volume of U(1)p−2 is

Vol
(

U(1)p−2
)

=
(2π)p−2

|q1 − q2|p−3 . (73)

Note that Vol(Y ) is invariant under permutation of the qa and also under the shift qa → qa+Λ.

Although we have not carried out the integral in general, we can investigate specific cases

with ease. For example, for the choice ~q = (3, 2, 1, 2), corresponding to the ~k = (1, 1,−1,−1)

quiver, both our formula (69) and (71) give Vol(Y ) = π4/16. A more nontrivial choice is

~q = (3, 2, 1, 5) for which both formulae yield 139π4/4725. By evaluating (71) numerically, we

were able to check agreement with (69) in a number of randomly selected cases for p = 4, 5,

and 6.

5 Discussion

In this paper we have studied p-matrix models describing certain U(N)p Chern-Simons quiver

gauge theories with N = 3 supersymmetry. In the large N limit these theories are dual

to eleven-dimensional supergravity on AdS4 × Y , where Y is a tri-Sasaki Einstein space.

By finding an analytical large N limit of the matrix integrals, we were able to check the

supergravity prediction that the logarithm of the partition function of the gauge theories
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on S3 should grow as N3/2. In AdS4 × Y the coefficient of proportionality depends on the

volume of the compact spaces Y , so we could compare our gauge theory results with the

volumes computed earlier using geometric techniques [19,20]. These successful comparisons

constitute new detailed tests of the AdS4/CFT3 dualities. In eq. (69) we conjectured an

explicit combinatorial volume formula for arbitrary p. It should be possible to derive this

formula in an independent way using algebraic geometry techniques similar to those in [36].

Quite generally, the main difficulty in solving matrix models is that the interactions

between the eigenvalues are long-ranged, and the saddle point approximation yields integral

equations in the continuum limit. Remarkably, in solving the models described in this paper,

one can set up an approximation scheme where the eigenvalue distributions can be found

by solving algebraic equations. The limit in which the saddle point equations simplify is

the limit of “large cuts” where the eigenvalues grow as an appropriate positive power of

N . Perhaps the key insight in solving these matrix models was that the long-range forces

between the eigenvalues can be made to vanish by choosing the distribution of the real parts

of the eigenvalues to be the same for each set of eigenvalues. The remaining interaction forces

between the eigenvalues are short-ranged, and that is the reason why in the right variables

the saddle point equations were local and algebraic in the large N limit.

While we worked in the limit where N is sent to infinity and the Chern-Simons levels

ka are kept fixed, it is of obvious further interest to relax these assumptions and study 1/N

corrections. In doing so, a subtle issue that needs a better understanding is the imaginary

part of the free energy. At first sight, the imaginary part in the ABJM model is of order

N . On the other hand, one could argue that this imaginary part is only defined modulo 2π

because a shift of the free energy by an integer multiple of 2πi leaves the partition function

unchanged.

Another interesting generalization of our results is to solve the matrix model in the scaling

limit where the Chern-Simons levels are sent to infinity, with N/ka kept finite. One could

calculate the free energy as a function of the ‘t Hooft-like couplings N/ka and check that,

as predicted by supergravity, it should interpolate between an N2 behavior at small N/ka

dictated by perturbation theory and the k1/2N3/2 behavior at large N/ka that we found. For

p = 2 this check was performed in [5] by computing the resolvent of the matrix model using

the techniques developed in [10]. We believe a similar check should also be possible for the

N = 3 theories studied in this paper, using perhaps similar techniques. Such an approach

should also provide access to the ABJ-like cases where the ranks of the p gauge groups are

not equal.
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Finally, it would be interesting to investigate whether the large N matrix integrals we

have calculated play a role in 4-dimensional gauge theories, for example in the 4-d “parent

theories” [29,30] of the 3-d Chern-Simons models we have studied.
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A Taking the Continuum Limit of the Free Energy

We start with the matrix integral eq. (33) and write it as

Z =

∫

e−F (λa,i)
∏

a,i

dλa,i , (74)

where we divide the free energy into the following three pieces F = Fext + Fint + Fconst.
2 We

have defined Fext to be the contribution to the free energy from the external potential

Fext ≡ − i

4π

∑

a,i

kaλ
2
a,i . (75)

The contribution to F from the eigenvalue interactions is

Fint ≡ − log

p
∏

a=1

∏

i>j 4 sinh2
(

λa,i−λa,j

2

)2

∏

i,j 2 cosh
(

λa,i−λa+1,j

2

) . (76)

2In the following, we will use the product formula log(xy) = log x + log y, although this is strictly
speaking only correct up to integer multiples of 2πi. The extra contributions would not affect the saddle-
point equations.
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Finally, there is an overall normalization Fconst chosen to be consistent with [5]:

Fconst ≡ p (log N ! + N log 2π) . (77)

It will turn out that Fconst does not contribute at leading order in our large N expansion.

To take the continuum limit, we begin with the assumptions justified in the text of the

paper that the eigenvalue distributions lie along curves symmetric about the origin in the

complex λ plane, that we can order the eigenvalues such that Reλa,j = Re λb,j for any a and

b, and that |Re λa,j| ≫ |Im λa,j|. More specifically we assume the following variant of (35):

λa,j = Nαxj + iya,j , (78)

where α > 0.

Taking the continuum limit of Fext is straightforward. The leading term in N cancels

because
∑

a ka = 0 and we are left with

Fext =
Nα

2π

∑

a,j

kaxa,jya,j + O(N) . (79)

Letting the real parts of the eigenvalue distributions extend from −x∗ to x∗, we can introduce

an eigenvalue density ρ(x) and approximate the sum over j as an integral over x:

Fext =
N1+α

2π

∑

a

ka

∫ x∗

−x∗

xy(x)ρ(x) dx + O(N) . (80)

Taking the continuum limit of Fint is more involved. We begin by reorganizing the

products

Fint = − log

p
∏

a=1





∏

i>j





4 sinh2
(

λa,i−λa,j

2

)

2 cosh
(

λa,i−λa+1,j

2

)

2 cosh
(

λa,i−λa−1,j

2

)





1
∏

i 2 cosh
(

λa,i−λa+1,i

2

)





= − log

p
∏

a=1





∏

i>j

(

(1 − e−λa,i+λa,j)2

(1 + e−λa,i+λa+1,j)(1 + e−λa,i+λa−1,j)

)

1
∏

i 2 cosh
(

λa,i−λa+1,i

2

)



 .

(81)
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We then convert the logarithm of the product into a sum over logarithms:

Fint =

p
∑

a=1

[

∑

i>j

∞
∑

n=1

1

n

[

2e(−λa,i+λa,j)n − (−1)n
(

e(−λa,i+λa+1,j)n + e(−λa,i+λa−1,j)n
)

]

+

+
∑

i

log

(

2 cosh
λa,i − λa+1,i

2

)

]

.

(82)

Making use of the assumption (78) and taking the continuum limit, the interaction energy

reduces to

Fint =

p
∑

a=1

∫ x∗

−x∗

[

N log

(

2 cos
ya(x) − ya+1(x)

2

)

+

∫ x

−x∗

∞
∑

n=1

N2

n

[

2e(−λa(x)+λa(x′))n+

−(−1)n
(

e(−λa(x)+λa+1(x′))n + e(−λa(x)+λa−1(x′))n
)]

ρ(x′) dx′

]

ρ(x)dx .

(83)

We now estimate the integral over x′ in the above expression for Fint. Consider the

following related integral:

I =

∫ x

−x∗

e(−λb(x)+λa(x′))nρ(x′)dx′

=
1

n
e(−λb(x)+λa(x′))n dx′

dλa

ρ(x′)

∣

∣

∣

∣

x

−x∗

− 1

n

∫ x

−x∗

e(−λb(x)+λa(x′))n d

dx′

(

dx′

dλa

ρ(x′)

)

dx′

=
1

n

dx

dλa

ρ(x)e(−λb(x)+λa(x))n + . . . .

(84)

Given (78), the integral in the second line will be suppressed by a factor of 1/Nα compared

with the boundary term. The boundary contribution from x∗ will be suppressed by an

exponential amount because Re
[

λa(−x∗)
]

< Re
[

λb(x)
]

. The last line of (84) reduces to

I = N−α ρ(x)

n
ein(ya(x)−yb(x)) + O(N−2α) . (85)

Introducing the notation δya = ya−1 − ya, the interaction energy reduces to

Fint = N2−α

p
∑

a=1

x∗
∫

−x∗

∞
∑

n=1

[

2 − (−1)n
(

e−in δya+1(x) + ein δya(x)
)

]ρ(x)2

n2
dx + O(N2−2α, N) . (86)

We are tacitly assuming that α < 1 and so can drop the order N term from the energy.
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Reorganizing the sum over a, we can write this energy as

Fint =
N2−α

2

p
∑

a=1

∫ x∗

−x∗

f(δya)ρ(x)2 dx + O(N2−2α, N) . (87)

where we have defined the function

f(y) ≡
∞
∑

n=1

4

n2

[

1 − (−1)n cos ny
]

. (88)

Clearly f is a periodic function of y with period 2π. Recall the Fourier series expansion for

y2 in the domain −π < y < π:

y2 =
∞
∑

n=1

4 (−1)n

n2
cos ny + 2ζ(2) . (89)

In the fundamental domain −π < y < π, the function f is thus

f(y) = π2 − y2 . (90)

B A More Detailed Check for ABJM Theory

We explore solutions to eqs. (17) where |y| ≥ π/2. Based on the numerical results in

section 2.2, we expect the eigenvalue distributions to be invariant under λi → −λi and

λ̃i → −λ̃i, which implies y(−x) = −y(x) and ρ(−x) = ρ(x). Assuming k > 0, we will focus

only on the x ≥ 0 region. Plugging (12) into (17) one obtains

ρ(x) =
µ

4π3
, y(x) =

π2kx

2µ
, if − π

2
≤ y(x) ≤ π

2
, (91)

and

ρ(x) =
k(µ − 2kxπ)

4π3
, y(x) =

π(2µ − 3kxπ)

2µ − 4kxπ
, if

π

2
≤ y(x) ≤ 3π

2
, (92)

and so on. From eq. (91) we infer that µ > 0 and y(x) ≥ 0 if x ≥ 0. We could have in

principle also allowed y(x) = π/2 over some range of x, but then the first equation in (17)

would imply that x = µ/πk, so y(x) could equal π/2 only on a set of measure zero.

Assuming a connected distribution of eigenvalues of each type where ρ is supported on
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[−x∗, x∗] for some x∗ > 0, there are two possibilities: either y(x∗) > π/2 or y(x∗) ≤ π/2.

Assuming y(x∗) > π/2 we immediately reach a contradiction. Indeed, consider the point

xπ/2 = µ/πk where y(xπ/2) = π/2 and eq. (91) joins onto eq. (92). For x > xπ/2, eq. (92)

implies ρ(x) < 0, which contradicts the assumption that ρ(x) > 0. It must be that ρ(x) = 0

for x > xπ/2 and thus |y(x)| ≤ π/2 for our eigenvalue distribution.
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