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ABSTRACT

Health care has a long history of adopting technology to save lives
and improve the quality of living. Visual information is frequently
applied for disease detection and assessment, and the established
fields of computer vision and medical imaging provide essential
tools. It is, however, a misconception that disease detection and
assessment are provided exclusively by these fields and that they
provide the solution for all challenges. Integration and analysis of
data from several sources, real-time processing, and the assessment
of usefulness for end-users are core competences of the multime-
dia community and are required for the successful improvement
of health care systems. For the benefit of society, the multimedia
community should recognize the challenges of the medical world
that they are uniquely qualified to address. We have conducted
initial investigations into two use cases surrounding diseases of
the gastrointestinal (GI) tract, where the detection of abnormali-
ties provides the largest chance of successful treatment if the initial
observation of disease indicators occurs before the patient notices
any symptoms. Although such detection is typically provided vi-
sually by applying an endoscope, we are facing a multitude of new
multimedia challenges that differ between use cases. In real-time
assistance for colonoscopy, we combine sensor information about
camera position and direction to aid in detecting, investigate means
for providing support to doctors in unobtrusive ways, and assist in
reporting. In the area of large-scale capsular endoscopy, we inves-
tigate questions of scalability, performance and energy efficiency
for the recording phase, and combine video summarization and re-
trieval questions for analysis.
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1. INTRODUCTION

Figure 1: GI tract

(shutterstock.com)

It is a typical assumption that visual
analysis as it is already provided by
the computer vision and medical image
processing communities today is suffi-
cient to solve health care multimedia
challenges. Although we concede that
computer vision and medical imaging
methods are indeed essential contribu-
tors to promising approaches, we have
come to the understanding that analyz-
ing images and videos alone do not
solve the challenges in medical fields such as endoscopy or ultra-
sound. Existing computer vision approaches do not make serious
use of the multitude of additional information sources including
sensors, temporal and users information.

Multimedia approaches are able to go beyond visual signals and
also make use of heterogeneous sources including, e.g., the posi-
tion sensors or fiber length measurement. Instead of considering
the potential weakness of such signals as a nuisance, multimedia
researchers are able to find ways to exploit them in combination
to achieve the best possible results given the information available.
Last but not least, multimedia cares first and foremost about the hu-
man user and assesses the feasibility of the resulting system. Cor-
rect and accurate diagnosis, efficient examinations and scalability
are all critical for a health care system.

On the basis of these considerations, it is clear that we need to
work on the challenge of realizing medical multimedia systems,
which we define as follows: a medical multimedia system is an

interactive system, which provides support for diagnostics, exam-

ination, surgery, reporting and teaching in a medical setting by

combining all available information sources and putting them in

the hands of medical professionals or patients. We note that some
medical information systems may be fully automatic, but we still
consider them to be at some level interactive, since a medical pro-
fessional and/or a patient must be in the loop to interpret and act on
the results.

In some areas of the human body, such as the gastrointestinal
(GI) tract – our focus in this paper – the detection of abnormalities
and diseases directly improves the chance of successful treatment,
if the initial observation of disease indicators can be made visually,
and also before the patient notices any symptoms. The GI tract is
important since it is the site of many common diseases with high
mortality rates. For example, three of the six most common cancer
types are located in the GI tract (Figure 1), with a large number of
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cancers detected yearly and with a high mortality rate [41]. Sec-
tion 2 provides more details about diseases of the GI tract and their
relevance, but clearly, early detection is important for patient sur-
vival. Currently, the recommended procedure for disease detection
is gastrointestinal flexible endoscopy, i.e., the use of a flexible tube
containing a lens system (cf. Figure 2(a).) Early detection and re-
moval of cancer precursors to reduce cancer incidence makes regu-
lar screening of defined cohorts of the population necessary. Its im-
plementation is obstructed by low willingness to undertake the un-
pleasant procedure, but also by inhibitive resource consumptions,
and particular in terms of time required from the limited number of
qualified medical staff. Alleviating these two limitations is essen-
tial and demands research into less intrusive detection procedures
and an increased automatization of both detection and analysis of
abnormalities.

There is a multitude of different use cases for automated di-
agnosis support, even within the limited field of GI tract inspec-
tion, which provide different opportunities beyond image analy-
sis, and which require different kinds of assistance for medical ex-
perts. In our case, the use cases range from training support through
archival, retrieval, and summarization for offline analysis to real-
time annotation during endoscopy. The following quote from one
of our discussions with medical specialists in endoscopy is bound
to trigger the imagination of multimedia researchers with its hints
for potential use cases:

"I am performing thousands of endoscopies, but I still miss ab-

normalities and have difficulties to analyze what I see. I would

have liked more assisted examinations, and there is no possibili-

ties to share these data with my colleagues or retrieve them when

needed. It is just stored on a computer somewhere. I don’t know

where, and I don’t think the IT support knows either... Sadly, we

are collecting a lot of data, but we do not benefit from it at all. Do

you have any idea what we can do with such data? I would be for

example really nice if I could search for similar cases in our image

database or use it to create automatic report. Reporting steals a lot

of our time every day." – A Norwegian doctor, September 2015.

This quote directly reveals the need for real-time video analy-
sis, storage, indexing, sharing and retrieval, audio transcripts, auto-
matic annotation, action recognition, and probably more. After lis-
tening to this and many similar statements about insufficient time
for manual analysis and unused multimedia data, we teamed up
with specialists in the area of GI diseases to investigate how multi-
media research can improve medical systems and patient treatment.

To aid and expand GI tract examinations, we have started the
development of a multimedia system, which is called EIR after the
Norse goddess of medical skills. It supports endoscopists in the
detection and interpretation of diseases in the entire GI tract. Our
aim is to develop both, (i) a live system assisting the detection and
analysis of irregularities during colonoscopies and (ii) a future fully
automated screening for the GI tract using a wireless video capsule
endoscope (VCE).

In the first use case, we consider the provision of live assistance
during classical colonoscopy. To support live colonoscopy while
the procedure is running, the live-assisted system must process the
input video stream from the endoscope (shown in Figure 2(a)) in
real-time, and indicate automatically detected polyp candidates on
a live video feed from the endoscope.

This approach is not meant to reduce the attention that medi-
cal doctors (endoscopists) performing a colonoscopy have to pay
to the endoscopic video. It is rather meant to reduce the number
of overlooked abnormalities and assist in the assessment of ab-
normalities, for example by providing size estimates and surface
structure analysis to ease the distinction of polyps and regions that

(a) Colonoscopy equipment (b) VCE capsule (camera pill)

Figure 2: Endoscopy vs. wireless capsule endoscopy (VCE).

should raise concern from those that are better ignored. Obviously,
live assistance has in the past been inhibited by excessive hardware
costs, which prevented the creation and deployment of system that
could perform in real-time. Our experimental prototype described
in Section 4 makes use of modern parallel hardware, and shows
very promising results, although we have only scratched the sur-
face of the problem.

Our second use case is relevant in scaling GI tract examination
to population-wide screening. This use case imposes strict require-
ments on the accuracy of the detection to avoid false negative find-
ings (overlooking a disease). It is also challenging in terms of re-
source consumption, but the most precious resource in this case is
the time required of endoscopists.

We believe that screening can become feasible through the use
of VCEs (shown in Figure 2(b)), which can reduce several of the
inconveniences and burdens of flexible endoscopy, although its cur-
rent technical restrictions limit its usefulness. Nevertheless, while
VCEs that could provide sufficient information were out of reach
just a few years ago, it is now up to us to investigate the appropri-
ate trade-off decisions on the recording side, which must consider
frame rate, frame rate variability, scene lighting, storage space,
resolution, quantization, energy consumption, detection rate and
more. When we solve this challenge, VCEs become useful for the
physician if the six to eight hours long video of the VCE’s travel
through the human GI tract can be summarized automatically in
less than an hour. Such summarization is dominated by the chal-
lenges of unsupervised recording and the subsequent need to avoid
false negatives.

We hope that our paper encourages the multimedia community to
help improving the health care system by applying their knowledge
and methods to reach the next level of computer and multimedia
assisted diagnosis, detection and interpretation of abnormalities. In
this area, computer vision and medical imaging have created visual
representations of the interior of a body. To automatically detect
and locate abnormalities, visual representations are not sufficient.
There is a need for image and video processing, analysis, infor-
mation search and retrieval, combination with other sensor data,
assistance by medical experts, etc. – clearly multimedia – and it all
needs integration and efficient processing. Therefore, in this paper,
we look beyond computer vision and medical imaging and show the
potential of multimedia research and that it goes far beyond well-
known scenarios like analysis of content on YouTube and Flickr.

The paper is structured as follows. First we give an overview
of health care multimedia challenges focusing on the field of GI
endoscopy as an example of a medical field. That is followed by
an overview of related work and current technologies. After that
we present a showcase for a multimedia system for GI endoscopies
to discuss the complexity and possibilities of medicine teamed up
with multimedia. This part is underlined by a preliminary results
section that should give an idea how such a multimedia application
can be evaluated and what is important. Finally and most important
we give an outlook and a summary including detailed description
of how multimedia can be applied and what is needed.
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(a) Colon polyp (b) Colorectal cancer (c) Crohn’s disease (d) Diverticulosis (e) Bleeding (f) Anastomosis

Figure 3: A non-exhaustive set of examples of abnormalities that can be diagnosed using colonoscopy.

2. HEALTH MULTIMEDIA CHALLENGES
There are large societal challenges in the health care systems

worldwide. If we look at our GI tract case study, about 2.8 millions
of new luminal GI cancers (esophagus, stomach, colorectal) are de-
tected yearly in the world, and the mortality is about 65% [41]. In
addition to these cancers, numerous other chronic diseases (see Fig-
ure 3) affect the human GI tract. The most common ones include
gastroesophageal reflux disease, peptic ulcer disease, inflammatory
bowel disease, celiac disease and chronic infections. All have a
significant impact on the patients’ health-related quality of life [7]
and gastroenterology is one of the largest medical branches.

Nevertheless, there are unmet needs and potentials for improve-
ments, which can be remedied by introducing better and more effi-
cient digital medical systems. For colorectal cancer (CRC), which
has one of the highest incidences and mortality of the diseases in
the GI tract, early detection is essential for a good prognosis and
treatment. Minimally invasive endoscopic and surgical treatment
is most often curative in early stages (I-II) with a 5-year survival
probability of more than 90%, but in advanced stages (III-IV), ra-
diation and/or chemotherapy is often required, and it has a 5-year
survival of only 10-30% [6].

The current European Union guidelines therefore recommend
screening for CRC [36]. Several screening methods exist, e.g., fe-
cal immunochemical tests (FITs), sigmoidoscopy screening, com-
puted tomography (CT) scans and colonoscopy. However, in ran-
domized trials, only endoscopic methods have shown a reduced
CRC incidence. However, it is not the ideal screening test, for a
number of reasons. Each examination demands a significant amount
of time from a medical professional and the procedure is unpleas-
ant and can cause great discomfort for the patient [35] (Figure 2(a)).
Moreover, on average, 20% of polyps, precursors of CRC, are missed
or incompletely removed, i.e., the risk of getting CRC depends
largely on the endoscopist’s ability to detect polyps [15].

Furthermore, there are high costs related to these procedures. In
the US, colonoscopy is the most expensive cancer screening pro-
cess with an annual cost of $10 billion dollars, i.e., an average of
$1,100 per examination (up to $6,000 in New York) [32, 33]. In the
United Kingdom, the costs are around $2,700 per examination [29].
To meet the need for cost-effectiveness, improved diagnostics and
enhanced efficiency in health care systems, the proposed techni-
cal solution targets ground-breaking research and innovation for
global major health issues like colorectal, gastric and stomach can-
cer worldwide. By developing and studying an automatic system
for a VCE (Figure 2(b)), the aim is to make these examinations
more easily accessible for patients and participants in screening
programs, i.e., making the public health care system more scalable
and cost-effective. It is also important that multimedia researchers
address some of the challenges identified in the EU health policy,
implemented through the Health Strategy, specially in the topics
of prevention, health care access equalization, maintaining health
into old age, and dynamic health systems incorporating new tech-
nologies. The optimal goal is to contribute in the area of medical
multimedia for analysis as well as storage and processing of this
type of data. Such next-generation big data applications, especially

in the area of medicine, are frontiers for innovation, competition
and productivity [20], where there are large initiatives both in the
EU [1] and the US [21, 2].

3. RELATED WORK AND NEW TRENDS
To the best of our knowledge, currently, no start-to-end interac-

tive medical multimedia system for annotating and analyzing data
and computer aided diagnosis for the medical field exists. If one
takes a closer look into the work of computer vision or medical
image processing, it becomes clear that the complete loop is not
their main research interest. A complete medical multimedia sys-
tem including different multimedia applications that can fulfill the
visions and objectives of the medical field must (i) have high detec-
tion accuracy (sensitivity, recall, precision), (ii) have an extensible
and adaptable processing pipeline, (iv) support real-time process-
ing to provide live feedback during for example endoscopy exam-
inations, (v) support large-scale batch processing of, for example,
VCE videos, (vi) be privacy-preserving, and (vii) visualize detec-
tion feedback to medical personnel. Several generally relevant sys-
tems fulfilling parts of the requirement list exist, but very few target
medical scenarios, and no existing multimedia system matches all
these requirements.

3.1 GI Tract Endoscopy Technology
There are several providers of endoscopy systems and VCE de-

vices. Last generation equipment for manual procedures like colono-
scopy and gastroscopy provides video with high resolution and
high frame rates. There is, however, no computer-aided diagnos-
tic feedback. In this respect, Polyp-Alert [40] is the most promis-
ing with polyp detection capabilities, but with the main purpose
of evaluating how well the procedures are performed. For live
analysis of endoscopy videos, our target system aims to go far be-
yond the currently existing systems. The other approach to record
videos of the GI tract is VCEs using a small capsule type device
(a 11mm×25mm pill), which has at least one image sensor, an-
tenna, battery, light source and wireless transceiver. The capsule
is swallowed to record the GI tract. There are several vendors
providing such capsules, like IntroMedic, CapsoVision, Medtronic
(Given) and Olympus. The current VCEs often have a variable
framerate (increasing the framerate to about 30-35 FPS when en-
tering the small intestine), but a rather low resolution ranging from
256 × 256 to 400 × 600. One of the main challenges for use of
VCEs is man-hours of medical staff required for analysis. There
are about 216,000 images per examination, and a very experienced
endoscopist needs at least 30 to 60 minutes to process the video
and possible sensor data. Therefore, it is important to develop au-
tomatic methods that can reduce the burden on medical staff and
speed up the analysis of the videos. Currently, the software can
segment the videos and can allow endoscopists to fast forward and
look at multiple videos at the same time (probably affecting the
detection accuracy). Moreover, some software includes small de-
tection components that provides only vague “hints", for example
about the detection of the color red, which may indicate bleeding.
Other main limitations with VCEs are that the lack of means for
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cleaning particles (food/stool) in the bowels, and their uncontrolled
forward movement through the bowel that cannot be guided to take
a close-up picture or a tissue sample from detected lesions.

Compared to traditional endoscopy examinations, with VCE, pa-
tient discomfort is decreased, and the size of the examined co-
hort may be increased. However, the analysis still requires a huge
amount of manual labor and the image quality is substantially lower.
Our research targets a system providing a far more advanced computer-
assisted disease detection in general, detecting endoscopic findings
with high accuracy, with reduced compute-resource consumption,
to increase the number of screened people without spending huge
amounts of time on manual analysis.

Current systems use mainly video and images for analysis. How-
ever, there is a large potential for adding more information. For
example, knowing the position of the camera (either VCE or endo-
scope may narrow down the search for endoscopic findings). Fur-
thermore, the VCEs and endoscopes will in the future be equipped
with new sensors for biomarkers (bacteria, DNA, RNA. . . ) and pH-
meters (acid) [12], and research introduces the idea of VCEs with
“legs” for controlled movement and “arms” for taking samples and
injecting medication locally [34].

3.2 Abnormality Detection
As described above, we target detection of abnormalities in the

entire GI tract. Currently, most existing systems mainly aim for de-
tection of polyps in the colon. The main reason is the high clinical
relevance and prevalence of CRC. Several studies have been pub-
lished, e.g., [10, 11, 14, 19, 22, 23, 24, 25, 37, 38]. These related
papers address polyp detection in several different ways. For exam-
ple by using neural networks or handcrafted features like detection
of round or ellipse shapes [14, 19], and by detecting the circular
content areas [22, 23]. In Table 1, we compare the most promising
and relevant systems according to reported performance (though
not tested on the same dataset, and not all report the same met-
rics). The most recent and complete system for polyp detection is
Polyp-Alert [40], which is able to give near real-time feedback dur-
ing colonoscopies (10 FPS) with a very high accuracy. However,
not many complete multimedia systems exist, and none of them is
able to do real-time detection for use as a live support system dur-
ing procedures. This means that endoscopists have to re-visit the
videos after procedures, adding to the typically already crowded
schedule of medical experts. Furthermore, all of them are limited
to a very specific use case, and they all fail in one or more of the
requirements of a future automatic system. Thus, there are a lot
of open challenges that can be addressed by the multimedia com-
munity. With EIR, as a first step, we already perform at the level
of state-of-the-art systems (last row of Table 1). Our ambitions are
(i) to extend and improve our prototype far beyond both the cur-
rent version of EIR and state-of-the-art, but more importantly, (ii)
to inspire other multimedia researchers to explore the medical field.

4. SHOWCASE FOR HOW-TO

MULTIMEDIA IN MEDICINE
To show how complex the medical field is and why multimedia

research is needed, we developed the EIR multimedia system for
automatic disease detection in the GI tract. We target the entire
GI tract because not just the colon (the focus of most of the com-
puter vision and medical image processing community) can contain
diseases that should be detected. Figure 4 gives an overview of this
system. The main requirements of such a system are (i) ease of use,
(ii) ease of extending to different diseases, (iii) efficient real-time
handling of multimedia content for both scale (VCEs) and support

Publication/ What/ Recall/ Dataset

System Detection Types Sensitivity Precision Specificity Accuracy FPS Size

Wang et al. [40] polyp/edge, texture 97.7%∗ – 95.7% – 10 1.8m frames

Wang et al. [39] polyp/shape,color,texture 81.4% – – – 0.14 1, 513 images

Mamonov et al. [19] polyp/shape 47% – 90% – – 18, 738 frames

Hwang et al. [14] polyp/shape 96% 83% – – 15 8, 621 frames

Li and Meng [17] tumor/textural pattern 88.6% – 96.3% 92.4% – –

Zhou et al. [42] polyp/intensity 75% – 95.92% 90.8% – –

Alexandre et al. [4] polyp/color pattern 93.7% – 76.9% – – 35 images

Kang et al. [16] polyp/shape,color – – – – 1 –

Cheng et al. [9] polyp/texture,color 86.2% – – – 0.08 74 images

Ameling et al. [5] polyp/texture AUC=95% – – – – 1, 736 images

EIR extendible/multiple 98.5% 93.88% 72.5% 87.7% ∼300 18, 781 frames

∗ The sensitivity is based on the number of detected polyps, other papers use per frame detection.

Table 1: Performance comparison of polyp detection ap-

proaches of state-of-the-art systems. Not all performance mea-

surements are available ("–").

Figure 4: EIR system: annotation and knowledge transfer, de-

tection and automatic analysis and computer aided diagnosis.

for live examinations, and (iv) high classification performance with
minimal false negative classification results. To satisfy these re-
quirements, the system has three main parts: The annotation and
knowledge transfer sub-system, the detection and automatic analy-
sis sub-system, and the visualization and computer aided diagnosis
sub-system.

4.1 Annotation and Knowledge Transfer
The purpose of the annotation and knowledge transfer sub-system

is to efficiently collect training data for the detection and automatic
analysis sub-system. It is well known that training data is very im-
portant to make a good classification system. Additionally, in the
medical field, the time of experts and annotated data are two very
scarce resources. This is primarily because of high every-day work-
load for physicians, but also due to medical-legal issues. In terms
of colonoscopy videos, the objective would be training a classifier
for automatically detecting CRC, or its precursor lesions, colorectal
polyps in multimedia data such as videos, sensor data and images.
In our example system, we therefore developed an efficient semi-
automatic annotation and knowledge transfer sub-system [3]. With
a focus on ease of use and the minimal time requirements for anno-
tation, our prototype was designed with a minimal level of required
interaction.

The specialist’s knowledge is only needed for the first identifica-
tion of abnormalities and to tag them accordingly. This step is done
manually by selecting any regions of interest in a video or image
sequence and by annotation, i.e., providing information about im-
portance and indicators for sensor data and patient records. After
the manual annotation our prototype application uses object track-
ing to suggest annotations in further video frames by adjusting po-
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sition and size of regions of interest as well as by automatically
extending the annotation throughout a videos timeline. This data
is then used in the analysis and detection sub-system. What we
also have to learn from the medical doctors is how to interpret the
various different data input sources, e.g., how to interpret the sen-
sor data in the future, the significance of different pH (acidity) or
biomarkers. It is important that multimedia researchers work hand
in hand with the medical experts to gain this knowledge. With-
out efficient data collection tools, this will be an impossible task
because of the time restrictions of medical personnel.

4.2 Detection and Automatic Analysis
The sub-system for detection and automatic analysis is designed

in a modular way, making it possible to easily extend it to sup-
port different disease detectors, as well as other tasks like size de-
termination and recognition of anatomical landmarks. Currently,
it consists of two parts: (i) the detection sub-system that detects
irregularities in video frames and images, and (ii) the localization
sub-system that localizes the exact position of an abnormality in the
frame. This part of the system is designed to detect whether there
is something abnormal in a frame of the video (or image) or not.
All the data that we process can be separated into two disjoint sets.
These two sets contain example images, sensor data (temperature,
blood, etc.) and other information that is useful for endoscopic
findings, and images without any abnormality. It is important to
point out, that the content based information images must be ex-
tended with other data like sensor output or information extracted
from patient records to reach optimal results which makes it not a
pure computer vision task. Each of these sets can be seen as the
model for a specific disease. The modularity makes it possible to
create a pipeline to for example first detect a polyp and then distin-
guish between a polyp with low or high risk of becoming a CRC
by using for example the NICE classification1. To compare and de-
termine the endoscopic findings in a given video frame, we use as
a first approach global image features, i.e., because they are easy
and fast to calculate, and at this stage, we do not need the exact
position.

The basic idea is based on an improved version of a search-based
method for image classification [27]. We chose this method be-
cause it is easy to implement and understand, and it gives us a
first insight of the problem. Our experiments show that the detec-
tion needs good training data. However, the number of examples
needed is rather low compared to other methods like deep learning.
This is an important advantage at this point since there is not much
data available. The classifier2 tries to identify the frames that most
probably contain a certain abnormality. Based on the classification
of the results, the detection sub-system decides which endoscopic
finding the input frame belongs to. This is done using late fusion of
different classifiers. At the moment, we have one classifier for each
global image feature. It is important to point out that the system
will be expanded with other classifiers for sensor and audio data.

In contrast to other classifiers that are commonly used, this clas-
sifier is not trained in a separate learning step. Instead, the classifier
searches previously generated Lucene indexes, which can be seen
as the model, for similar visual features. The output is weighted
based on the ranked list of the search results. Lucene indexes can
contain all the information for one data point in one record (global
features, sensor data, patient data, etc.). The system also includes
a benchmarking function that will output evaluation information,
and an HTML page with a visual representation of the results. For

1
http://www.wipo.int/classifications/nice/en/

2
To invite others to the area, we have released the basic algorithm as open source:

OpenSea: https://bitbucket.org/mpg_projects/opensea.

all video frames, we also can perform a localization. This is a pure
computer vision problem and therefore we will not go in detail. It
uses the information from the detection sub-system as a starting
point, which means that it only processes frames that are already
classified to contain an endoscopic finding. The processing of the
images is implemented as a sequence of intra-frame pre- and main-
filters. The output of this system can then further be used in for
example a computer aided diagnosis program to help the doctor
determining the size of a polyp or for reporting purposes.

4.3 Visualization and Diagnosis
One of the critical parts of each examination is the process of

analyzing, reporting, facilitating and using multimedia to prepare
the final result, i.e., the diagnosis and the report on the procedure.
Medical doctors invest a significant part of their time on this task,
and they are therefore in need of multimedia systems that help min-
imizing errors and increase the efficiency in this process.

For our experiments, we developed a web based visualization
and annotation application to support medical experts with the goal
of creating software that is easy to use and where it is easy to share
data amongst participating medical experts. Our prototype facili-
tates the output of systems detection and localization part and cre-
ates a web based visualization which will be combined with a video
sharing platform [13] where doctors are able to watch, archive, an-
notate and share information. We chose to use a centralized system
based on web technologies to (i) minimize the necessary installs on
client computers (with the current approach, a modern web browser
is the only requirement), (ii) to allow for comfortable sharing of re-
sults and content with other experts, and (iii) to not duplicate data
but use a centralized storage for multimedia data and annotations.
This of course opens up questions about serving sensitive patient
data over IP networks and leads to interesting research and orga-
nizational questions how to solve the data security problem, which
is also an emerging field for the multimedia community, but data
security is for now beyond the scope of the first EIR prototype.

While our first prototype is working as intended, the interplay
between manually created content and automatically created con-
tent can still be improved. For example, applying object tracking
algorithms is very difficult and often requires manual corrections.
Most of the work in this step is done by the software end-users
still need to navigate to the previously marked irregularities and
playback the video from that point for the software to track the
marked region on subsequent frames. Depending on the quality
of the video and the speed of camera movement, user interven-
tion is needed to assure a high quality of tracking. One can see,
that there is still a fair amount of manual work involved, which
makes it not really useful for medical experts. However, using a
specialized – yet to be improved – tracking algorithm substantially
reduces the time needed to, for example, create training videos or
even datasets. Moreover, medical expert skills are maybe no longer
necessarily required as the task of annotation correction is about
tracking regions and adjusting rectangular dimensions rather than
actually detecting or recognizing irregularities. This task could for
example be outsourced using crowdsourcing. Our prototype visu-
alization and annotation tool might be considered very basic, and
there are tools resulting from multimedia research in existence that
can be utilized for being a computer aided diagnosis system, but our
approach already led to a benefit for the medical experts, allowing
them to annotate and share data with other experts. Another area
of multimedia, namely text-to-speech and text processing, could
lead to great improvements in the reporting. When the endoscopic
examination is completed the doctors have to transcribe what they
visually observed into a written report following a standard proto-
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col and using an internationally defined minimal standard termi-
nology. This is a time consuming task and important information
is sometimes forgotten or omitted. Consequently, computer based
automatic transcription of audio information and combination of it
with visual information in to a written patient record will probably
increase the quality of the report and would substantially reduce
the doctors workload. This will also make it possible to translate
difficult medical terms into a report for the patient. Finally, not just
the applications are important but also an understanding of how hu-
mans perceive multimedia content and how different aspects of the
content influence them differently.

5. PRELIMINARY RESULTS
If multimedia researchers decide to work in the field of medicine

we also have to make sure that our systems and applications are
useful and accurate enough and achieve the required performance.
Therefore, we tested our preliminary prototype in terms of accu-
racy and system performance. We used a computer with a dual
2.40GHz Intel Xeon CPUs (E5-2630), 16 physical CPU cores (32

with hyper-threading), 32GB of RAM, dual NVIDIA Corporation
GM200 GeForce GTX TITAN X GPUs, a 256GB SSD and Ubuntu
Linux. Moreover, we used the ASU-Mayo Clinic polyp database3

which currently is the largest publicly available dataset consisting
of 20 videos with a total of 18, 781 frames and different resolutions
up to full HD [31]. In these experiments, we implemented the sys-
tem in Java, C++ and CUDA (for GPUs). We did not include any
other data apart from the visual information, such as sensor data,
etc., but this will be an important step for the future. For example,
using results from a fecal blood test or temperature data will most
probably increase the classification performance.
1) Detection Accuracy. To evaluate detection accuracy, we used
the common standard metrics precision, recall and F1 score. We
conducted a leave-one-out cross-validation to evaluate the system
which is a method that assesses the generalization of a predictive
model.

The system that we have developed allows us to use several dif-
ferent global image features for the classification. The more image
features we use, the more computationally expensive the classifi-
cation becomes. Also, not all image features are equally impor-
tant or provide equally good results for our purpose. As a first
step, we therefore need to find out which image features we want
to use for classification. In order to understand which image fea-
tures provide the best results, we generated indexes containing all
possible features provided by LIRE [18]. These indexes were used
for several different measurements and also for the leave-one-out
cross-validation. Using our detection system, the built-in metrics
functionality can provide information on the performance of differ-
ent image features for benchmarking. Further, it provides us with
separate information for every single image feature, as well as the
late fusion of all the selected image features.

For our first test, we ran the detection with all possible image
features selected. We then combined the reported values for true-
positives, true-negatives, false-positives and false-negatives for all
the runs, and calculated the metrics for the combined values. The
single image feature that generally achieves the best score is CEDD,
which is discussed in detail in [8]. Further, also the image features
JCD, Edge Histogram, Rotation Invariant Local Binary Patterns,
Tamura and Joint Histogram achieve very good values. The late fu-
sion of all the image features even achieves slightly better results.
However, it is impractical to do a late fusion of all these image
features as the calculation, indexing and searching of all image fea-

3
http://polyp.grand-challenge.org/site/Polyp/AsuMayo/

tures is computationally expensive. Therefore, we want to find a
small subset of two image features, which provides optimal results
despite minimizing the computational effort.

Based on the evaluation of different combinations of image fea-
tures the image features JCD and Tamura seemed to be the best
ones for our performance measurements. To assess the actual per-
formance of the classifier combining these two image features, we
ran the leave-one-out cross-validation over all available video se-
quences. With these settings, we achieve an average precision of
0.889, an average recall of 0.964 and an average F1 score value of
0.916. The problem with this average calculation is that different
video sequences contribute values based on different numbers of
video frames. If we weight the values contributed by every sin-
gle video sequence with the number of frames in the sequence,
we achieved an average precision of 0.9388, an average recall of
0.9850, and an average F1 score value of 0.9613. In other words,
these results mean that we can detect polyps with a precision of
almost 94%, and we detect almost 99% of all frames containing
polyps. The detailed results compared to state-of-the-art systems
are presented in Table 1. Furthermore, for the localization of the
polyps in the frames, we reached an average precision of 0.3207, a
recall of 0.3183 and a F1 score of 0.3195. These values are low in
absolute terms and show how complex and difficult it is to make a
multimedia system that is really useful for the medical doctors.

Obviously, more research is needed such as neural networks,
more data, different classifiers, include humans in the loop, and
methods have to be developed that can help to measure if perfor-
mance is sufficient compared to the user needs. However, the mul-
timedia community has to be aware that we cannot just apply our
methods that we are used to use in this new field. Stated plainly,
detecting cars or cats is not the same as detecting polyps or bleed-
ings. For example, neural networks are conceptually easy to un-
derstand and lately large amount of academic research has been
done on them. Results recently reported on for example the Ima-
geNet dataset look quite promising [11]. Nevertheless, they have
some negative aspects that make them less useful for the medical
field [10]. First, training is very complicated and takes a long time.
Our system has to be fast and understandable since we deal with
patient data, and the outcome can differentiate between life and
death. Therefore, a black box approach, that has difficulties to ex-
plain certain decision made, seems to be the second best way to
solve a problem that has to be understood very well by all users.
This can lead to serious problems in the medical field since it is
not possible to evaluate them properly, and there will always be a
chance that they completely fail without being aware of it [26]. The
best way is still to understand the problem and then solve it. This of
course comes with a challenge for the multimedia community. We
have to test our current methods and most probably develop new,
handcrafted algorithms and tools from scratch for this new field.
A further problem of neural networks is that they require a lot of
training data. In the medical field, this is a very important issue
since it is hard to get data due to the lack of experts time (doctors
have a very high workload) and legal and ethical issues for being
able to share data among countries or even hospitals in the same
country. Some common conditions, like colon polyps, may reach
the required amount of training data for a neural network while
other endoscopic findings, like for example tattoos from previous
endoscopic procedures (black colored parts of the mucosa), are not
that well documented, but still important to detect [28]. Finally,
neural networks are not easy to design for probabilistic results. In
a multi class decision based system, that is built to support medical
doctors in decision making, the probability is an important informa-
tion. Approaches with a better understanding of the problem will
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give a much more accurate probabilistic score that can be directly
translated to the real world scenario [30].
2) Real-Time System Performance. One further requirement for
the system and the medical field in general is scalability and execu-
tion performance. This requirement comes with some challenges
like for example lack of actual hardware (it is in general hard to
replace hardware or operating systems in hospitals due to security
and system restrictions), not being able to use distributed systems
and lack of funding for new hardware (e.g., Norwegian hospitals
in 2016 still use Windows XP and Internet Explorer 6 even though
funding is good). These restrictions makes it very challenging for
researchers to develop efficient algorithms that are also scale able
on the large amount of data that they will have to process. There-
fore sophisticated methods are needed that run efficient in terms of
speed and hardware need but at the same time achieve good per-
formance. Based on our example system we present a experiment
that shows how this challenges can be solved using multimedia sys-
tems knowledge and methods. For the experiments, we decided to
use the configuration of the system that performed best in the ac-
curacy experiment. In our use case of supporting doctors during
live colonoscopies, it is important to reach real-time performance
in terms of processing a video and several other input signal at the
same time and reach a frame rate of not less than 30 FPS (output
rate of current endoscopes). The performance of the detection is
important, since the system should provide a result as fast as pos-
sible and not slower than 30 FPS making it usable for live appli-
cations. Figure 5(a) shows the detection sub-system performance
in terms of FPS for the highest video resolution of 1920 × 1080.
It depicts performance for all different detection algorithm imple-
mentations (Java, C++ and GPU) and different combinations of uti-
lized hardware resources (from 1 to 32 CPU cores and none, 1 or 2

GPUs). For the full HD videos, the required frame rate of 30 FPS is
reached using 8, 5 and 1 CPU cores in parallel for the Java, the C++
and the GPU implementations, respectively. Increasing the number
of used CPU cores also increases the performance for all imple-
mentations, and the system reaches the maximum performance of
330 FPS with 2 GPUs and 25 CPU cores. A slight decrease of
the performance can be observed for a high number of used CPU
cores. This is caused by an increased overhead for context switch-
ing and competition for resource. Figures 5(b) and 5(c) show the
detection sub-system performance in terms of FPS for the videos
with smaller resolution. The maximum performance of 430 (for
856 × 480 resolution) and 453 (for 712 × 480 resolution) FPS is
reached using 2 GPUs and 18 and 16 CPU cores. For localization
which is more computationally expensive (plots not shown), the
maximum performances observed are 129, 246 and 283 FPS for
1920 × 1080, 856 × 480 and 712 × 480 resolutions, respectively.

The outcome of these experiments clearly shows that our system
can reach real-time requirements for the video processing and still
has processing power left which can be used to process other input
data at the same time, for example, sensor or patient records data,
etc. A number of complex features can be added into the detection
and the localization sub-systems. This will increase the system’s
detection and localization accuracy, and at the same time, keep its
ability to perform in real-time. Moreover, it can also be used to
process several data streams simultaneously in real-time and sig-
nificantly reduce the examination time of the VCE videos for the
medical experts. The time reduction lies around 5-10 times de-
pending on type of input data like for example video resolution,
frame rate and sensors used. Our evaluation also shows, that this is
a very complex topic and requires methods and technologies from
several different multimedia research directions, e.g., signal pro-
cessing, multimedia systems, information retrieval, etc.

6. OUTLOOK AND CHALLENGES
With 2.8 million cancer cases diagnosed in the GI system per

year with a mortality rate of about 65%, we have the best motiva-
tion to perform research in the proposed area. The GI example that
we used in this paper is only the tip of the iceberg of unsolved prob-
lems in the health care sector. By exposing more unexplored mul-
timedia research questions, researchers can reveal a huge potential
to save lives by combining the medical and multimedia research
areas. Our aim is to raise awareness that (i) multimedia research
can do a lot for and learn a lot from the field of minimally invasive
medicine, (ii) interdisciplinary research in this field leads to imme-
diate benefits, and (iii) we have only scratched the surface with our
efforts.

In our experience, medical experts are open to new multimedia
applications in their fields. We experienced that doctors are willing
to spend a lot of time and effort into supporting such research, as
it ultimately has the potential to make their daily routine more effi-
cient, and they will have more time to focus on the patients them-
selves. Especially, since we live in a time where handling multi-
media is part of everyone’s lives, medical experts wonder why the
same functionality that they can use in YouTube, Flickr and Twitter
cannot be applied to their own medical field. The main reasons that
we identified are that first of all the computer vision and medical
imaging community that work mainly on this problems is not in-
terested in the whole multimedia life cycle from start to end, i.e.,
from the content creation, analysis to content usage by the actual
users. Second and most important, it is a problem within our own
community. It is much more convenient to download pictures from
Flickr or videos from YouTube and categorize and use them in re-
search, especially as many can identify themselves as social media
users. However, working with medical data involves organizational
challenges like seeking and maintaining contact with medical ex-

perts, understanding their problems, as well as getting used to often
unpleasant or even content that causes a disgust response until a re-
searcher is habituated in working in the area. Nevertheless, if we
– the multimedia community as a whole – would be more brave to
tackle these problems, we could actually help to save lives, make
patient examinations less uncomfortable and help to save money
and time spent in the health care system for daily routines instead
of research. These are possibilities for societal impact that surely
are appealing for both, researchers as well as global citizens. Last
but not least, being able to look back seeing that our multimedia re-
search helped to save lives is bearing more weight than being able
to say we can classify cats, cars or beautiful holiday pictures.

6.1 Open Challenges
Our EIR system has preliminarily shown how multimedia tools

can impact greatly health care systems. Nevertheless, there are still
many open challenges that need to be faced through a multidisci-
plinary approach where multimedia methods will have to play a key
role. Challenges include but are not limited to:
1) Exploiting domain expert knowledge to improve automated

methods performance. Most of the methods (including the ones
described in this paper) devised for supporting medical investiga-
tions in analysing visual data content are still predominantly based
on learning distributions of low-level and middle-level (recently
using deep learning approaches) visual features. While this has
proved to achieve good performance in many computer vision ap-
plications, there are cases, especially in the medical domain, where
relying on visual appearance might fail since processing visual data
content requires specific expertise. This is the case of endoscopy
videos where the reliability of the outcome mainly depends on
the examiner’s expertise. Our hypothesis is that, for a real break-

974



(a) Videos with a resolution of 1920 × 1080. (b) Videos with a resolution of 856 × 480. (c) Videos with a resolution of 712 × 480.

Figure 5: The performance of the detection sub-system in terms of FPS varying the number of CPU cores, the resolution of the

videos and the detection algorithm. The maximum performances observed are 330, 430 and 453 FPS for 1920 × 1080, 856 × 480 and

712 × 480 resolutions.

through in medical image analysis, automated methods need to ex-
ploit jointly perceptive elements (visual features) and semantic fac-
tors (domain knowledge). This explains why in the medical domain
relying only on image processing and computer vision methods will
lead to a dead end. Instead, a multidisciplinary approach operat-
ing on multimodal data is necessary. Nevertheless, exploiting high
level knowledge in computer vision methods poses several chal-
lenges from how to extract and model effectively domain expert
knowledge to how to include such semantics into machine learning
methods.
2) Automated report systems. A significant part of a medical pro-
fessional’s time is spent for preparing reports after procedures and
examinations. Multimedia research can significantly support this
phase by collecting all patient and examination data and by pro-
viding automatically summaries able to convey key information of
the performed procedures including media fragments, e.g., video
frames with detected objects, audio speeches describing colon vi-
sual features, etc. Such distilled media needs also to be interlinked
with detailed information on treatments, medication for a holis-
tic view of patients. These report will also be extremely useful
for training medical experts: through multimedia enriched reports,
medical doctors in training can learn based on real data according
to case-based teaching and problem-based learning strategies. The
multimedia field has tackled over the years, the problem of multi-
media summarization for automated report generation, but such re-
search is still at its infancy since methods developed so far are able
to process only one type of media at a time (hence do not take full
advantages from the richness of multimodal data). However, the
most important limitation of multimedia research in this direction
is the lack of generalization capabilities; in fact, most approaches
cannot be applied to domains different from the ones they were
devised for. To overcome these limitations, one solution we be-
lieve is worthwhile to investigate is to build automated multimedia
summarization methods with a semantic nature exploiting domain
ontologies, which can play an important role in the medical multi-
media analysis where the data complexity and heterogeneity make
the task very challenging.
3) Integration and fusion of unstructured and heterogeneous

data. Beside visual data, other (equally important) information
(e.g., blood pressure, temperature, breathing, oxygen levels) are
recorded during examinations, which, if suitably fused to visual
data content may significantly enhance procedures’ outcome. An
additional, and semantically rich, data source that can be exploited
is recordings of medical experts spoken comments during exami-
nations. Indeed, surgeons often describe verbally the procedure by
giving details on what they see to other doctors and to issue com-
mands and requests to the medical team. Although audio gener-
ated during procedures is a valuable source of information to train
both automated methods and young doctors, it is rather unstruc-

tured and noisy and, as such, it demands for specific text mining
methods approaches to distill the key information and to map it to
a structured data form. Under this scenario, the semantic web may
be a powerful tool for integration of such heterogeneous multime-
dia data. Once, heterogeneous data are all modeled using a shared
formalism, visualization approaches are envisaged to present fused
information in order to support medical staff, by enhancing the ex-
amination experience, for diagnosis.
4) Patient context information. Typically, health issues affect
patients beyond their immediate treatment, and there are very of-
ten preceding correlated events before treatment is necessary or a
health related issue is diagnosed. Therefore, health issues do not
appear suddenly or as isolated events, but come in a rich context,
which is largely exploited by medical doctors for diagnosis and
treatment. Such context includes patients’ mobility, eating habits
and changes, etc. To this end, multimedia research can play an
important part in developing smart wearable body sensors (and al-
gorithms to analyze their data) that can collect routinely all such
information and share with medical staff.
5) Building a knowledge base. A large collection of multime-
dia including videos, audio streams, sensor readings and patient
records will represent a priceless knowledge base for approaches
like case based reasoning and/or large empirical studies on treat-
ments. Nevertheless, sharing such knowledge base opens up issues
in privacy and data security, that, if successfully addressed, will
enable the increase of such knowledge base (since many medical
people will share their data), thus leading to large scale benefits in
health care. To effectively address protection and reliability issues,
multimedia researchers should investigate secure communications
and processing through a deep interaction between signal process-
ing, networking, and cryptography.
6) Interlinking information from different modalities. Besides
endoscopic and minimally invasive surgery, there are other diag-
nosis systems like X-Ray, ultrasonic or MRT data from patients.
Surgeons would greatly benefit from synchronized spatial informa-
tion on multiple modalities to be able to investigate abnormalities
from different angles. Now, all interlinking of diagnostic data from
multiple modalities has to be done manually. This shows that there
exists a huge need for algorithms and applications that can combine
these different types of media automatically and efficient. For ex-
ample, the information collected from a standard colonoscopy with
a video from a capsular colonoscopy and CT colonography (vir-
tual colonoscopy that uses special X-ray equipment) could lead to
a higher detection rates and better patient survival probabilities.
7) Simplifying handling of multimedia. With today’s tools, ev-
eryone is used to access multimedia everywhere and manipulate
and share multimedia data with the tip of a finger. In the medical
domain, software systems have a comparably long life span, and
it has to be thoroughly tested before they can be applied in a hos-
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pital setting. Therefore, we need sustainable interactive tools and
ways of interactivity that do not wear off as fast as they did in the
last decade. Multimedia researchers have the knowledge and are
needed to help creating such systems that fulfill the user needs but
also to develop the algorithms that are the basis of such systems
such as content retrieval, etc. This is especially important since
most of the standard algorithms for object or concept detection will
most probably not work in the medical field, which we experienced
in the begin of our research when we tested a lot of state-of-the-
art methods like for example histogram of oriented gradients or
structured output tracking with kernels, etc. We believe that this
is mainly caused by differences in the multimedia data provided
(videos and images show completely different content, quality of
the data, needs of the users, etc.).
8) Test data sets and challenges. There are already workshops,
challenges and whole conferences dedicated to the topics of med-
ical information and multimedia systems. However, just like in
the multimedia community, we have to move forward to build and
maintain an over-critical mass of test data including ground truth
and annotations, and usage scenarios that are recent enough, i.e.,
recorded with up-to-date sensors and annotated thoroughly based
on current medical standards and state-of-the-art. This is not only
a research, but also a legal and societal, challenge as medical data
is always personal and especially if it includes a patient context
or long term records it is hard to anonymize. This requires not
only sophisticated annotation systems, but also algorithms for un-
supervised and semi-supervised learning. Furthermore, algorithms
that can help to anonymize or watermark content to protect data
are needed. Apart from the algorithms to analyze the data this part
also needs motivated and dedicated people that contact hospital key
personnel and doctors, and play a pioneering role in establishing a
good data basis by collecting, annotate and make data public avail-
able.
9) Acting in concert. The greatest challenge of all, however, is
to act in concert, as an interdisciplinary community. Medical ex-
perts bring in the data as well as the domain knowledge. Legal
experts find ways how to deal with privacy and data security as-
pects from a legal and societal point of view. Companies supplying
medical equipment must open up for collaboration and research be-
yond their own research departments. Last but not least, the multi-
media community must bring in its knowledge as a core discipline,
but also as a research field which historically involved other disci-
plines like computer vision, machine learning, interactive systems,
networking, data warehousing, speech recognition, information re-
trieval, data mining and software engineering. The biggest task that
the multimedia community faces is most probably to break the ice.
Medical experts often do not know what is even possible with the
data they have. Therefore, the responsibility lies in the hands of the
multimedia researchers to build bridges. For example, we went to
hospitals and asked for meetings with doctors to show them what
we can do. Once they saw the possibilities, they were willing and
very motivated to contribute with knowledge, data and new ideas.
To address all these challenges, an interdisciplinary team is neces-
sary as the problems goes far beyond visual analysis, information
retrieval and annotation. It is also a multimedia area where it is
essential to involve researchers from different areas like interactive
system, multimedia systems and speech recognition in a special-
ized domain, ontologies, data mining and machine learning, sensor
fusion, and synchronization of data from different modalities.

6.1.1 Possible Research Projects

We encourage the multimedia community to be open minded and
help to tackle the challenges in this new field. It is important to be

aware that we cannot just keep on annotating social videos, and
then expect that medical technology companies can transfer these
technologies to the medical use case. Therefore we need specific
approaches for the field of medical multimedia.

In the sense of getting more into detail, we want to point out the
more immediate and concrete challenges in this field by proposing
three different research project topics and relevant research ques-
tions making for multiple challenging and interesting PhDs.
1) How can we identify and track abnormalities in a live en-

doscopic video? While our prototype did experiments on doing
exactly that, there are fields beyond polyps as well as an opportu-
nity to reduce manual input. Going beyond polyps would mean to
identify cancerous tissue, inner injuries, bleeding, scars, fractures,
and so on. This goes well with finding the current position and
rotation of the camera within a patients body, i.e., by sensor fu-
sion and asks for new and multimodal tracking algorithms taking
camera movement into account. Medicine needs very high recall,
but false alarms can be very costly not to mention extremely upset-
ting for the patients. Multimedia that detects concepts or events in
YouTube videos is just not held to these kinds of standards.
2) How can we pre-prepare the final report on the surgery? As
reporting takes a lot of a surgeons time, any step in this direction
would be immediately beneficial for medical experts and patients
alike. This actually involves several multimedia disciplines. Many
surgeons direct and inform their team during a surgery by short,
spoken announcements like “Here, we’ve got the first polyp.”, “Elec-

tro scalpel!” or “This one looks particularly odd.”. With speech
recognition and synchronization with a video stream, the video can
be segmented, relevant parts can be found and media for a final re-
port can be suggested in addition with recommending relevant text
passages from earlier reports of similar cases. The systems need to
be able to optimize not for correct predictions, but for what humans
need to know in order to make decisions. One approach is to fuse
many slightly different algorithms so that the typical mistakes of
one algorithm do not accidentally dominate.
3) How can we share, annotate and educate? While of course
many would like to see a YouTube or Flickr like social media net-
work for medical experts, it is simple not possible as the number of
experts is limited and not everyone can be expected to be an active
contributor to such a network. However, especially senior surgeons
are skilled in creating videos, books or training materials and com-
municating them to trainees or colleagues to exchange knowledge.
Still they lack tools for that. Critical for such a venture would be
interdisciplinary work in (i) interactive multimedia like annotation,
share, and interlinking of content, (ii) security and encryption for
making sure the data stays safe, (iii) knowledge based systems as
ontologies and structured knowledge plays a huge part in that, and
(iv) multimedia systems, as all the data has to be handled, trans-
ferred, streamed, encoded etc.

6.1.2 First Steps

While we stressed the fact that working with medical data and
medical experts is crucial for moving forward with research in the
medical domain, we also acknowledge that interdisciplinary work
is hard to start. What we found most important in our project is
to build a working relationship with medical doctors who are per-
sonally interested in making things better. The VIPs for such inter-
disciplinary projects are senior surgeons, who are actively training
new surgeons, as they (i) have experience in sharing knowledge,
(ii) have access to a lot of data, (iii) are extremely good in speci-
fying problems and very competent in working out solutions, and
(iv) have influence in terms of the hospital organization.

In our experience, it takes some time for PhD students to build
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awareness of the field to a level, where we could work efficiently
on the problem. At the begin, we organized that the PhD students
attended live surgeries, watched and discussed surgery videos and
reports with senior surgeons as well as trainees, and participated
in regular meetings for questions and answers that were raised in
this learning period. Within this starting period, in parallel with
building up the knowledge, it is in general a good idea to expand
the data available throughout the research project. Besides building
on public data sets like the ASU-Mayo Clinic polyp database [31],
we suggest to work out a scheme to obtain recent multimedia data
from the before mentioned necessary contacts. This typically in-
volves legal and organizational issues including but not limited to
(i) a mutually agreed upon anonymization routine for the data, (ii)
a non disclosure agreement of the participating organizations and
involved people, as well as (iii) a specialized setup to make sure the
data stays safe and protected during transport and in storage at the
research institution.
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