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ABSTRACT 

Multimodal information processing has received considerable 

attention in recent years. The focus of existing research in this area 

has been predominantly on the use of fusion technology. In this 

paper, we suggest that cross-modal association can provide a new 

set of powerful solutions in this area. We investigate different cross-

modal association methods using the linear correlation model. We 

also introduce a novel method for cross-modal association called 

Cross-modal Factor Analysis (CFA). Our earlier work on Latent 

Semantic Indexing (LSI) is extended for applications that use off-

line supervised training. As a promising research direction and 

practical application of cross-modal association, cross-modal 

information retrieval where queries from one modality are used to 

search for content in another modality using low-level features is 

then discussed in detail. Different association methods are tested 

and compared using the proposed cross-modal retrieval system. All 

these methods achieve significant dimensionality reduction. Among 

them CFA gives the best retrieval performance. Finally, this paper 

addresses the use of cross-modal association to detect talking 

heads. The CFA method achieves 91.1% detection accuracy, while 

LSI and Canonical Correlation Analysis (CCA) achieve 66.1% and 

73.9% accuracy, respectively. As shown by experiments, cross-

modal association provides many useful benefits, such as robust 

noise resistance and effective feature selection. Compared to CCA 

and LSI, the proposed CFA shows several advantages in analysis 

performance and feature usage. Its capability in feature selection 

and noise resistance also makes CFA a promising tool for many 

multimedia analysis applications. 

Categories and Subject Descriptors 

H.3.1 [Information Storage and Retrieval]: Content Analysis 

and Indexing – Algorithms, Indexing methods, Video analysis 

General Terms  

Algorithms, Measurement, Theory. 

Keywords 

Cross-modal association, cross-modal information retrieval, talking 

head analysis, cross-modal factor analysis (CFA) 

1. INTRODUCTION 
Video content usually contains events with synchronized audio and 

visual elements. Both aspects carry their contribution to the high 

level semantics, and the presence of one has usually a “priming” 

effect on the other: when hearing a dog barking we expect the 

image of a dog, seeing a talking face we expect the presence of her 

voice, image of a waterfall usually bring the sound of running water 

etc. A series of psychological experiments on cross-modality 

influence [1] have proved the importance of synergistic integration 

of multiple modalities in the human perception system. A typical 

example of this kind is the well-known McGurk effect [2]. Yet, in 

video content analysis and retrieval, video compression, visual 

speech recognition, even talking head animation, the analysis is 

usually performed separately on the different modalities: first on the 

visual signal, then the audio signal and the results are brought 

together using fusion methods. However, in this process of 

separation of modalities, we lose valuable information about the 

whole event and/or object we are trying to analyze and detect. 

There is an inherent association between the two modalities and the 

analysis can take advantage of the synchronized appearance of the 

relationship between audio and visual signal. 

This paper will show the potential of cross-modality information 

analysis methods, which extract multimedia content by identifying 

and measuring intrinsic associations between different modalities. 

We refer to such approaches of extracting multimedia content as 

‘analysis by semantic association’ or ‘cross-modal association’. This 

paper will present several cross-modal association approaches 

under the linear correlation model: the latent semantic indexing 

(LSI), canonical correlation analysis (CCA) and Cross-modal Factor 

Analysis (CFA). LSI and CCA have been explored on the topic of 

talking head detection. In this paper, we will generalize the 

applications of these methods to capture associations across 

modalities in synchronized audiovisual signal. We will propose the 

Cross-modal Factor Analysis as a solution. These proposed methods 

are compared for cross-modal information retrieval and talking head 

analysis. 

Depending on the nature of applications, different kinds of methods 

could be used to identify and measure semantic associations 

between different modalities. In general, two types of approaches 

are expected: (i) model-based approaches, which employ certain 
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association models like Gaussian distribution or linear correlation 

models, and (ii) model-free approaches like neural networks based 

approaches. Model-free approaches require little prior knowledge 

and are pertinent to more general applications. However, if 

appropriate models are applied, model-based approaches require 

less training examples and can generate better results. For many 

audiovisual data analysis applications, if the analysis time window 

can be relatively short, linear relationship could be an appropriate 

model between synchronized audio and visual features [3, 4, 5]. This 

paper will mainly focus on cross-modal association approaches 

under the linear correlation model. 

In [6] Hershey and Movellan proposed the use of mutual 

information evaluation to measure the synchrony between audio and 

visual signal. Their mutual information estimation is calculated under 

the assumption of Gaussian distribution of audio and visual features. 

Slaney and Covell [5] presented FaceSync as an optimal linear 

detector, which combines the information from all the pixels to 

measure audio-visual synchronization. Their approach is based on 

two surprisingly simple algorithms in computer-vision and audio-

visual speech synthesis: EigenPoints [3] and multilinear facial 

synthesizer [7]. EigenPoints [3] is an algorithm that finds a linear 

mapping between the brightness of a video signal and the location of 

fiduciary points on the face. The EigenPoints can find a linear 

approximation that describes the brightness–fiduciary space, and 

this linear approximation is valid over a useful range of brightness 

and control-point changes. Yehia et al. [7] have presented a method 

to connect a specific model of speech, the line-spectral pairs or 

LSP, with the position of fiduciary points on the face. Their 

multilinear approximation yielded an average correlation of 0.91 

between the true facial locations and those estimated from the audio 

data. In [9], Fisher et al. presented a non-parametric approach to 

learn the joint distribution of audio and visual features. They first 

project the data into a maximally informative, low-dimensional 

subspace, and then model the stochastic relationships using a 

nonparametric density estimator. Iyenger et al. investigated 

monologue detection using mutual information model [10]. They 

introduced two techniques as VQ-based MI and Gaussian-based MI 

respectively. With either scheme, the face amongst a set of 

possibilities that is deemed to have produced a given audio sequence 

provides the highest mutual information score. We introduced LSI 

method for face-speech matching [4] and compared it to the 

correlation method. We discovered that when the two methods are 

contrasted, the LSI method has overall better performance, as well 

as graceful degradation in presence of noise. 

Information retrieval via cross-modal querying has many 

applications. Popular web search engines including Google and 

Yahoo have already started to provide cross-modal retrieval 

functionality by retrieving images based on textual information in 

image titles or their associated documents. Several research groups 

have also addressed the use of language-related information (such 

as keywords, syllables, etc.) to link different modalities [12, 13]. 

While simple and straightforward, these initial efforts have some 

major limitations: (a) They depend essentially on the robust 

generation of high-level descriptions from multimedia data. 

However, lots of these tasks, such as speech-to-text recognition, 

object recognition, and video summary, are generally recognized as 

very challenging research topics and have so far achieved only 

limited success in controlled conditions. Even with good algorithms, 

it may still be very difficult to obtain robust results in adverse 

environments for many sophisticated recognition tasks. (b) There 

are plenty of cross-modal retrieval applications involving multimedia 

content/features that cannot be represented by high-level 

descriptions. Like traditional content-based retrieval problems, low-

level features in many applications can be very important. However, 

existing systems based on high-level descriptions cannot deal with 

most of such features. A complete cross-modal retrieval system 

should be able to handle features at different levels. The retrieval 

procedure could involve various features in different modalities. For 

example, a video clip may match with certain background music due 

to both high-level content such as events and low-level features 

such as tempo and dominant color. In this paper, we will discuss the 

use of cross-modal association for information retrieval, which 

provides new solutions to address the above essential issues. Cross-

modal association offers effective ways to associate features at 

various levels across modalities. We hope that efforts in this area 

will lead to the development of better and more comprehensive 

multimodal information retrieval systems. 

The organization of this paper is as follows: In Section 2 we present 

latent semantic indexing approach, in Section 3 we describe cross-

modal factor analysis, and in Section 4 we present canonical 

correlation analysis. In Section 5 we discuss two applications: cross-

model information retrieval and talking head detection. In Section 6, 

we compare the propose methods based on some experimental 

results. Conclusions and further work suggestions are given in 

Section 7. 

2. LATENT SEMANTIC INDEXING 
LSI is used as a powerful tool in text information retrieval to 

discover underlying semantic relationship between different textual 

units (e.g. keywords and paragraphs). In [4] we propose a method 

to detect the semantic correlation between visual faces and its 

associated speech based on LSI. This method consists of four steps: 

the construction of a joint multimodal feature space, normalization, 

singular value decomposition (SVD), and semantic association 

measurement. 

Given n visual features and m audio features at each of the t video 

frames, the joint feature space can be expressed as: 

 ],...,,,,...,,[ 22 11 mn AAAVVVX =       (1) 

where  

 T
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Various visual and audio features can have quite different 

variations. Normalization of each feature in the joint space 

according to its maximum elements (or certain other statistical 

measurements) is thus needed and can be expressed as: 
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After normalization all elements in normalized matrix X̂  have 

values between –1 and 1. SVD can then be performed as follows: 

 T
DVSX ⋅⋅=ˆ         (5) 



where S and D are matrices composing of left and right singular 

vectors and V is the diagonal matrix of singular values in descending 

order. 

Keeping only the first and most important k  singular vectors in S 

and D, we can derive an optimal approximation of X̂  with reduced 

feature dimensions, where semantic (correlation) information 

between visual and audio features is mostly preserved and irrelevant 

noise is greatly reduced. Traditional Pearson correlation or mutual 

information calculation [4, 6, 9] can then be used to effectively 

identify and measure semantic associations between different 

modalities. Experiments in [4] have shown the effectiveness of LSI 

and its advantages over the direct use of traditional correlation 

calculation. 

The above optimization of X̂  in the least square sense can be 

expressed as: 

 T
DVSXX
~~~~~ˆ ⋅⋅==        (6) 

where S
~

, V
~

, and D
~

 consist of the first k  vectors in S, V, and D, 

respectively. The selection of an appropriate value for k  is still an 

open issue in the literature. In general, k  has to be large enough to 

keep most of the semantic structures and small enough to remove 

some irrelevant noise. 

Equation (6) is not applicable for applications using off-line training 

since the optimization has to be performed on the fly directly based 

on the input data. However, due to the orthogonal property of 

singular vectors, we can rewrite (6) in a new form as follows: 

 T
DDXXX
~~~~ˆ ⋅⋅==       (7) 

Now we only need the D
~

 matrix in the calculation, which can be 

trained in advance using groundtruth data. This derived new form is 

important for those applications that need off-line trained SVD 

results. One of such examples is cross-modal information retrieval 

presented in Section 5.1. We will later use and test this new form in 

Section 6 of this paper. 

3. CROSS-MODAL FACTOR ANALYSIS 

(CFA) 
LSI does not distinguish features from different modalities in the 

joint space. However the optimal solution based on overall 

distribution may not best represent semantic relationships between 

features of different modalities, since distribution patterns among 

features from the same modality will also greatly impact LSI’s 

results. This can be shown in Figure 1, where there is a big 

difference between the principal distribution direction indicated by 

the first vector of D matrix in LSI and the actual correlated 

direction between visual features {v1, v2} and audio feature a1. 

A solution to the above problem is to treat features from different 

modalities as two subsets and focus only on semantic patterns 

between these two subsets. Distribution patterns and noise within 

each subset should not be a distraction factor (as did for LSI results 

shown in Figure 1). Under the linear correlation model, the problem 

now is to find the optimal transformations that can best represent 

(or identify) the coupled patterns between features of two different 

subsets. We adopt the following optimization criterion in the rest of 

this section:  
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Figure 1. Illustration of principal coupled direction between 

visual features {v1, v2} and audio feature a1 

Given two mean centered matrices X and Y, which compose of 

row-by-row coupled samples from two subsets of features, we 

want orthogonal transformation matrices A and B that can minimize 

the expression: 

  
2

F
YBXA −       (8) 

where IAA
T =  and IBB

T = . 
F

M  denotes the Frobenius 

norm of the matrix M and can be expressed as: 
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In other words, A and B define two orthogonal transformation 

spaces where coupled data in X and Y can be projected as close to 

each other as possible.  

Since we have: 

( ) ( )( )T

F
YBXAYBXAtraceYBXA −⋅−=− 2

    (10) 

 )( TTTTTTTT XYBAYXABYYBBXXAAtrace −−+=  

  )(2)()( TTTT YXABtraceYYtraceXXtrace ⋅−+=  

where trace of a matrix is defined to be the sum of the diagonal 

elements. We can easily see from above that matrices A and B 

which maximize trace(XAB
T
Y

T) will minimize (8). It can be shown 

[15] that such matrices are given by: 

 xyxyxy
T
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       where    (11) 

With the optimal transformation matrices A and B, we can calculate 

the transformed version of X and Y as follows: 
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Corresponding vectors in X
~

 and Y
~

are thus optimized to represent 

the coupled relationships between the two feature subsets without 

being affected by distribution patterns within each subset. 

Traditional Pearson correlation or mutual information calculation [4, 



6, 9] can then be performed on the first and most important k  

corresponding vectors in X
~

 and Y
~

, which similarly to those in LSI 

preserve the principal coupled patterns in much lower dimensions 

and at the same time remove irrelevant noise.  

In addition to feature dimension reduction and noise removal, 

feature selection capability is another feature of CFA. The weights 

(or loadings) in A and B automatically reflect the significance of 

individual features. We show in Figure 2 the absolute values of the 

first seven vectors of matrix A obtained from the training of 300 

frames of visual faces and their associated speech features. For 

better visualization each vector has been reshaped according to the 

corresponding visual location.  It is obvious that matrix A is able to 

highlight those facial areas corresponding most to the speech. This 

clearly demonstrates the great feature selection capability of CFA, 

which makes it a promising tool for many multimedia analysis 

applications, including multimodal face localization, audiovisual 

speech recognition, multimodal noise cancellation, etc. 

 

Figure 2. Absolute values of the first seven vectors of matrix 

A reshaped according to the corresponding visual location. 

4. CANONICAL CORRELATION 

ANALYSIS (CCA) 
Following the development of the previous section, we can adopt a 

different optimization criterion: Instead of minimizing the projected 

distance, we attempt to find transformation matrices A and B that 

maximize the correlation between XA and YB. This can be 

described more specifically using the following mathematical 

formulations: 

Given two mean centered matrices X and Y as defined in the 

previous section, we seek matrices A and B such that 

},,,{)
~

,
~

(),( 21 ldiagYXncorrelatioYBXAncorrelatio σσσ L==  

        (13) 

where AXX ⋅=
~

, BYY ⋅=
~

, and 01 21 ≥≥≥≥≥ lσσσ L . iσ  

represents the largest possible correlation between the ith translated 

features in X
~

 and Y
~

. Note that A and B are only determined up to 

a constant factor by (13). A statistical method called canonical 

correlation analysis [16, 17] can solve the above problem with 

additional norm and orthogonal constraints on translated features: 

IYYEIXXE TT =⋅=⋅ }
~~

{}
~~

{  and      (14) 

 In CCA, A and B are calculated as follows: 

 Kxx SA ⋅∑= − 2/1  and Kyy DB ⋅∑= − 2/1     (15) 

where  

}{ XXE
T
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}{ YXE T
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and  T
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The calculation of inverse matrix requires that no linear correlation 

exists between any two vectors within X or Y. Large calculation 

errors could result even when two vectors are just close to linear. 

This imposes some restrictions on the set of features that can be 

processed by CCA, especially when the analysis window has to be 

relatively short to fit the linear model across modalities. As we will 

see later in our experiments, such restriction of CCA may 

sometimes affect its performance and limit its applications. CFA 

proposed in the last section, however, does not have such 

restrictions. It can directly process whatever best feature sets 

available. 

Other major differences between CCA and CFA include: 

(a) The transformations provided by CFA are orthogonal, while this 

is not necessary true for CCA. It can be seen from Equation (11) 

that A and B given by CFA satisfy AT
A=I and BT

B=I, where I is the 

identity matrix. CCA, however, does not provide such orthogonal 

transformations in most cases. 

(b) CFA is in favor of coupled patterns with high variations (i.e. 

large amplitude changes), while CCA is more sensitive to highly 

coupled, but low variation patterns. This is mainly due to the 

whitening of X and Y in CCA by calculating 2/1−∑ xx and 2/1−∑ yy . 

5. APPLICATIONS 
Discovering the inherent associations between audio and visual 

aspects of the video signal has many potential applications. These 

applications include content-based retrieval of multimedia data, 

audiovisual content analysis, audiovisual compression, facial 

animation, audiovisual speech recognition, videoconferencing, video 

editing (e.g. synchrony of audio and video content), etc. In this 

paper we will focus our discussion on the content-based retrieval 

and audiovisual content analysis applications. 

5.1 Cross-Modal Information Retrieval 
With cross-modal association, heterogeneous features extracted 

from different media sources (e.g. audio and images) can be 

matched against each other based on the synchronized correlation 

patterns. This enables a new practical application – cross-modal 

retrieval, where query from one type of media sources (e.g. audio) 

can be used to search for content on a different type of media 

sources (e.g. image sequences). The search can be based directly 

on low-level features, which is similar to traditional content-based 

multimedia retrieval. 

One application for cross-modal retrieval is to compensate 

corrupted (or absent) media sources. For example, if a sound is 

corrupted by background noise (or absent), an associated visual 

feature can be used, instead, as the basis for search. It is possible to 

further integrate cross-modal methods with existing single-modal 

retrieval methods to provide robustness and capabilities not 

possessed when using either of the media types alone. 

The methods also offer the user greater choice in browsing a 

multimedia database because the user can select the modality she or 

he prefers and with which the user is most familiar. This approach 

also has the advantage of enabling the user to browse and search 

multimedia content of different modalities in a manner that 



minimizes bandwidth. For example, instead of passing a query in the 

form of an image over a network, for example the Internet, only a 

voice query needs to be transmitted to retrieve an image. This 

approach offers multiple choices for input modalities: we can choose 

a microphone as an input device instead of a graphic input device.  

Figure 3 shows the modular structure of an audio-visual retrieval 

system, where queries of speech are used to search for image 

sequences with similar motions for the speech. Note that the search 

is performed without the presence of sound tracks associated with 

image sequences. 

In Figure 3, the visual features used for cross-modal retrieval are 

simply aligned pixel intensities or eigenface values from candidate 

face areas. An omni-face detection system capable of locating 

frontal- and side-view faces is used to generate candidate face 

areas [14]. All the candidate face areas are then scaled to areas of 

40x32 pixels, based on which low-level visual features are 

generated. The audio features are 12 Mel-Frequency Cepstral 

Coefficients (MFCCs), which have been widely used in speech 

recognition and speaker identification applications. In our 

implementation the MFCCs are extracted using the DCT of filter-

banked FFT spectra. 
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Figure 3. Cross-Modal Retrieval System Modules. 

Depending on the association approach chosen, an off-line 

supervised training process can be performed based on Equation 

(5), (11), or (15) to calculate optimized transformation matrices for 

the low-level audio and visual features. Video clips with talking 

faces and a synchronized speech are used as groundtruth data for 

the training. Once the process completed, the training results can 

then be used for the retrieval process. 

According to cross-modal association methods discussed in previous 

sections, the transformation matrices are used to transform the low-

level features into a reduced feature space, where the matching 

between query and search candidates on different types of media 

sources can be evaluated. For CFA and CCA the transformation is 

based on Equation (12). For LSI the derived new transformation 

form Equation (7) is needed. The evaluation of matching can then 

be performed based on Person correlation or mutual information in 

the transformed space. In our implementation Pearson correlation is 

chosen for its simplicity. Candidates with highest Pearson 

correlations are considered as the best matches.  

Figure 4 shows an example of results generated by our cross-modal 

retrieval system. The query is a 0.3 second audio clip containing the 

speech syllable /ke/. The search is performed on a total of over 300 

candidate short sequences corresponding to different speech 

syllables. We show in Figure 4 the top six retrieval results, 

according to the descending order of CFA correlation values. To 

better compare the retrieved face statuses, the results contain only 

the face areas in the images with their corresponding syllables. The 

actual faces are much smaller in the original image sequences as 

shown in the lower-left corner of the figure. While many different 

face statuses are included in the test, as can be seen from the 

retrieval results all the faces retrieved are in very similar status. In 

particular, the second and sixth results correspond to exact the same 

syllable as the audio query. 
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Figure 4. An example of cross-modal retrieval results. 

All three cross-modal association methods proposed earlier have 

been tested and compared for cross-modal retrieval. According to 

our experimental results, fewer than ten most important vectors 

within the transformation matrices are normally needed to achieve 

the good performance, which is a significant reduction of feature 

dimension after the optimized transformation. Before the 

transformation we have 12 audio features and 1280 visual features 

when pixel intensities are used. A good feature dimension reduction 

will greatly save storage and improve searching speed. We will 

further discuss our experimental results in Section 6. 

5.2 Talking Head Analysis 
Audio-visual content analysis is another important application area 

for cross-modal association methods. This section will in particular 

focus on talking head analysis, an emerging research topic in audio-

visual analysis. 

Talking head analysis is the process to automatically detect the 

face(s) on the screen, if any, that has corresponding speech in the 

synchronized soundtrack. Talking head analysis is important for 

video indexing, videoconferencing, and person identification. Using 

talking head analysis we can classify shots into different categories 

according to cast presence and roles in narrative content. Existing 

audio-visual person identification systems [8] require that the 



speaking face is the only face appears on the screen. Such a 

requirement, which greatly limits their usage in general applications, 

can be removed with the talking head analysis capability. 

Figure 5 shows the block diagram of our talking head analysis 

system. The core part of this system is the audiovisual cross-modal 

association module, where coupled patterns between low-level 

visual features and audio features are trained and evaluated using 

methods discussed earlier. The visual features and audio features 

are the same as those used in cross-modal retrieval. Again the 

omni-face detection system is used to locate frontal- and side-view 

face areas [14]. 

A notable feature of our system is the use of audio classification to 

trigger cross-modal association. Since faces can be in any status 

when not speaking or during the pause of a speech, it will be better 

to exclude audio and visual features within those periods from 

training or evaluation. We developed an audio classification system 

that can robustly segment and classify general audio data into seven 

categories including music, noise, silence, speech, speech+music, 

speech+noise and speech+music. Cross-modal assoication will only 

be perfromed during audio segments of the latter four categories, 

which have speech components. A detailed discussion of our audio 

classification algorithm can be found in [18].  

Video

Feature
Extraction

Omni-Face
 Detection Audiovisual

Cross-modal

Association

Audio
Classification

MFCC

Audio

Figure 5. Talking head analysis system structure. 

Based on these low-level audio and visual features, we can 

calculate optimized transformation matrices using cross-modal 

association methods discussed in previous sections. The calculation 

can be performed either offline using some ‘groundtruth’ training 

data or on-the-fly using the input data directly. We refer to the first 

case as off-line supervised training and the second case as on-line 

dynamic calculation of transformation matrices. In the latter case, 

the features from candidates are not necessary to be the right 

corresponding ones. Only the correct corresponding features with 

certain correlation patterns will provide good match in the later 

evaluation step. 

With the matrices generated, the audio and visual features can be 

transformed into the new feature space. Pearson correlation or 

mutual information is then calculated in the transformed feature 

space for each face areas. Whenever multiple candidates exist, the 

real talking head is detected as the one with highest Pearson 

correlation or mutual information in the transformed feature space. 

We will compare different cross-modal association methods for the 

talking head analysis system in the next section. 

6. EXPERIMENTAL RESULTS 
A series of experiments have been conducted to test and compare 

the proposed association methods for cross-modal information 

retrieval and talking head analysis problems. We used different 

types of video material, including nine home video clips, six movie 

clips, and three video conferencing clips, all of which are dialog clips 

with multiple people speaking. The total duration of video in the 

experimental data set is about 30 minutes. While some video clips 

are in good quality with close-up faces and low audio noise, others 

have small faces and/or high noise level. Faces in many video clips 

are in very natural positions and not necessary facing the camera. 

In cross-modal retrieval experiments, we use four-second speech 

clips as queries to search for image sequences corresponding to the 

speech. The performance is evaluated by the rank of the correct 

‘hit’ in the retrieval list. Table 1 gives the percentage of correct hits 

appears in the top n of the retrieval lists. Among the three methods, 

CFA and CCA are much better than LSI in all cases. This 

demonstrates the effectiveness of optimization provided by CFA 

and CCA.  CFA also slightly outperforms CCA in most cases. 

More than half of the correct hits using CFA are within the top 10 

retrieval results. 

  CFA CCA LSI 

Top 1 20% 15% 0% 

Top 5 30% 25% 5% 

Top 10 55% 50% 10% 

Top 20 80% 80% 30% 

Table 1. Comparison of different cross-modal association 

methods in cross-modal retrieval. 

In Figure 6 we show the CFA correlation values between the audio 

query and different locations on an image sequence. The circled dot 

indicates the actual image frame location corresponding to the audio 

query. It is obvious that the corresponding images are correctly 

identified in the retrieval results with apparently the highest CFA 

correlation values. In addition, we can see from the graph that the 

next two best retrieval results have also very similar visual 

appearance. Those images with low CFA correlation values are in 

quite different status. This, in addition to the results shown in Figure 

4 of Section 5.1, illustrates the effectiveness of CFA method for 

cross-modal retrieval. 

 
 
 
 

Figure 6. CFA correlation values at different locations on an 

image sequence. 

 



With another set of experiments, we further tested our methods for 

the retrieval of explosion image sequences using audio queries. The 

experiments are conducted using a separate data collection, which 

includes 452 explosion clips and 3870 non-explosion clips collected 

from the movie Matrix, 9/11 live broadcasts, and the Internet. Many 

of the 9/11 clips are recorded in poor quality with no soundtrack. 

Again, 12 MFCCs are used as audio features. The visual features 

are obtained through three processing steps. We first partition each 

image into 5x10 overlapped blocks.  For each image block three 

local histograms can then be calculated in the HSI color space. 

Finally, an area-peak  value is extracted from each local histogram 

through an operation very similar to low-pass filtering. We thus have 

a total of 150 area-peak  values representing each image. Details 

on the calculation of area-peak  values can be found in [11]. Figure 

7 shows an example  image and its representation using 150 area-

peak  values. 

   

Figure 7. An example image and its representation using 150 

area-peak values. 

Using 70 explosion video clips and their associated audio, we trained 

all three cross-modal association methods. The tests are then 

performed on the rest of data using 3-second audio queries to 

search for explosion image sequences, many of which have no 

soundtrack. The performance is evaluated according to the 

percentage of correct hits in the ranked retrieval list. Table 2 

illustrates the performance of different association methods. The 

results are consistent with our previous tests. CFA and CCA again 

greatly outperform LSI in all cases. The difference between CFA 

and CCA is marginal. In Figure 8, we give a typical example of 

retrieval results using CFA method. 

One limitation of our current system is the lack of tolerance of time 

variation in the matching process. A short visual event will be 

missed if a similar event given by the audio query is much longer. 

This can severely degrade the performance especially as the ranked 

retrieval list goes longer. However, the problem can be fixed by 

using dynamic matching algorithms such as dynamic  time wrapping 

(DTW). A good matching method will thus further improve the 

retrieval performance. 

  CFA CCA LSI 

Top 5 62% 61% 21% 

Top 10 41% 42% 21% 

Top 20 37% 32% 20% 

Table 2. Comparison of different cross-modal association 

methods for the retrieval of explosion images. 

In the above experiments on cross-modal retrieval, only 8 most 

important feature dimensions in the transformed feature space are 

used. In other words, we only need 16 features per image, 8 of 

which are visual features and the rest are corresponding audio 

features. Comparing to the original data volume and feature 

dimension size, there is a significant save in space for the database. 

This further shows the effectiveness of the given methods in 

discovering and representing cross-modal information. In addition, 

the highly compact representation can greatly speed-up the 

search/retrieval process and facilitate many data management 

tasks. 
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Figure 8. Cross-modal retrieval of explosion image 

sequences using FCA. 

In our talking head analysis experiments, the real talking head 

competes either with other faces in the video or talking faces 

chosen from other image sequences in the corpus. Two different 

types of processing are used for each of the methods discussed 

earlier: off-line supervised training where the transformation 

matrices are generated before hand using groundtruth data, and on-

line dynamic processing where the transformation matrices are 

generated on the fly using the input testing video directly. 

Table 3 provides the performance comparison of different methods. 

Overall, CFA achieves 91.1% accuracy using supervised training 

and 80.4% accuracy using dynamic processing. CCA and LSI 

provide less than 75% accuracy in all tests. There is a significant 

improvement using CFA in both dynamic processing and supervised 

training cases. The success of CFA proves the effectiveness of its 

semantic association capability. However, CCA that follows a 

similar idea achieves much lower accuracy. An examination of the 

weights in transformation matrices (A and B) explains the 

difference: while CFA is able to generates meaningful patterns in A 

and B as shown in Figure 2, CCA provides more ‘noisy’ patterns in 

A and B that are strongly influenced by low-variation patterns. This 

makes CCA less tolerance to noise than CFA. As mentioned at the 

end of Section 4, CFA, unlike CCA, is in favor of coupled patterns 

with high variations. CFA thus provides better noise tolerance in 

talking head analysis by favoring coupled patterns with high 

variations. 

 LSI CFA CCA 

Dynamic processing 66.1% 80.4% 73.9% 

Supervised training 53.6 91.1% 70.8% 

Table 3. Accuracy of different talking head analysis methods. 

For both cross-modal retrieval and talking head analysis, the feature 

used for CFA can be either aligned pixel intensities or eigenface 

values. CCA can only use eigenface values as input due to its 

limitation mentioned in Section 4. Our experiments on CFA method 

show that the use of eigenfaces slightly degrades the performance 



by 3-5% in accuracy. Our guess for the reason is: the use of 

eigenface transformation, compared to original pixel intensities, will 

slightly lose some useful information needed for cross-modal 

association. The limitation of CCA may thus affect its performance 

in some applications.    

7. CONCLUSIONS 
Existing research in multimodal information processing has been 

predominantly focusing on the use of fusion technology. In this 

paper, however, we demonstrated that cross-modal association 

could also provide a set of powerful solutions in this area. New 

practical applications (e.g. cross-modal retrieval) and better 

approaches can be offered by analyzing the inherent associations 

between different modalities. 

We systemically investigated different cross-modal association 

methods under the linear correlation model. Our earlier work on LSI 

is extended for applications that need off-line supervised training. 

We also proposed a novel method for cross-modal association called 

Cross-modal Factor Analysis. As have shown by our experiments in 

different applications, CFA provides a powerful tool for many 

potential applications of cross-modal association.  

This paper also proposed cross-modal retrieval as a promising 

research area and practical application of cross-modal association. 

Cross-modal retrieval has the advantage of compensating for 

corrupted (or absent) media sources. It also offers the user greater 

choice in browsing a multimedia database. A cross-modal retrieval 

system is implemented in this work. We tested and compared 

different association methods for the retrieval of speaking faces and 

explosion scenes via cross-modal querying. All three methods 

achieved significant dimensionality reduction. Among them CFA 

gives the best retrieval performance. Our results demonstrated the 

effectiveness of cross-modal association in ‘connecting’ 

heterogeneous features across modalities. We hope that continuing 

efforts in this area will bring about valuable advancements in 

multimodal information retrieval technology. 

Finally, we discussed another application for cross-modal 

association: talking head analysis, an emerging research topic in 

audio-visual analysis. We presented a talking head analysis system 

and compared different cross-modal association methods. CFA 

method achieves 91.1% detection accuracy, while LSI and 

Canonical Correlation Analysis (CCA) achieve 66.1% and 73.9% 

accuracy, respectively. 

As shown by experiments in cross-modal retrieval and talking head 

analysis, CFA provides a powerful tool to analyze semantic 

associations between different modalities. Compared to CCA, CFA 

provides better noise tolerance capabilities and has no constraints on 

the features to be processed. Its capability in feature selection and 

noise resistance also makes CFA a promising tool for many 

multimedia analysis applications.  

Future research in this area can be developed in many different 

directions. We are currently investigating the use of cross-modal 

association methods for several other applications. These include 

audiovisual speech recognition, cross-modal compression, and audio-

visual animation. Taking audiovisual speech recognition as an 

example, the recognition performance can be improved by taking 

advantage of CFA’s feature selection to pick frequency channels 

that corresponding best to speaking faces and discard noisy 

channels. Also, there is a lot of research work to be done in cross-

modal retrieval. More sophisticated cross-modal association 

methods may be proposed for future systems. Existing dynamic 

matching algorithms such as DTW can be integrated with our 

methods to better handle variations in time and further improve 

retrieval performance.  
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