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According to the basic principle of piecewise linear classifier and its application in the field of infrared chemical remote sensingmonitoring,
the characteristics of unilateral piecewise linear classifier applied to the infrared spectrum identification of chemical agents are studied.With
the characteristic of separate transmission, the characteristic recovery with the total observed deviation is used for themodel.&e relaxation
factors are used to replace the constrained conditions that cannot be optimized into constrained separate line segment calculation
conditions. Experiments show that the result of signal recovery is better than traditional Wiener filtering and Richardson–Lucy methods.

1. Introduction

Sensors mainly show signals that are fused together with
different factors (noise and ineffective signals), and the
transmission path is more complicated. Even if a sensor with
a higher function is used, the signal results that can be
obtained are not ideal. So, it is not easy to obtain the initial
signal of a physical characteristic. But deconvolution is a way
to feed back the original signal based on the fused signal.
&is method is widely used in different fields such as
communication, radar, voice, and medicine [1–4].

At present, the more advanced technology is the vari-
ation recovery method of Chan et al. &e partial differential
gradient projection method is used to carry out the La-
grangian multiplier items to minimize the difference in the
calculation. &e advantages are fast convergence, stability,
etc., especially suitable for signals with steep edges. For the
regular dynamic adaptive calculation method, the calcula-
tion of difference value is also carried out. We published a
variation model of deformation and constraint [5]. Under
this premise, in this article, the restoration of infrared
chemical remote sensing multimedia digital signals is

proposed based on the boundary variation model, and at the
same time, this model is equivalently segmented for cal-
culation and judgment, and the original signal is appro-
priately restored [6].

2. Piecewise Linear Discriminant Algorithm

A multimedia digital signal processing method for infrared
chemical remote sensing is put forward based on piecewise
linear discriminant algorithm. &e principle is shown in
Figure 1, which is divided into two steps:

Step 1: the received signal sequence is segmented by
length N, and the energy of each segmented signal
sequence yj � ∑N1

i�1 |xjN1
+ i|2, N � N1N2, is calcu-

lated, which will then be used to obtain the likelihood
ratio of the sequential test.

Step 2: calculate the test statistic ΛK � ∑Kj�1 λj, yj
1≤K≤N2, and compare it with the thresholds A and B
and make a judgment. If B<ΛK <A is always true and
the decision cannot be made, to ensure that the test
results are obtained within the limited sampling signal
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points, piecewise linear discriminant algorithm is used
to compare the statistics with the truncation threshold
C and make a judgment, namely:

ΛN2
�∑N2

j�1

λj
≥C, H1,

<C, H0.
{ (1)

2.1. Likelihood Ratio Calculation. According to the central
limit theorem, when the segment length N1 is large enough,
the segment energy of the received signal yj approaches the
normal distribution process (note: “sufficiently large” usu-
ally means that N1 must be greater than 0, and the larger N1
is, the closer yj is to the normal distribution process),
namely:

H0: yj ∼ Normal N1σ
2
w, N1σ

4
w( ),

H1: yj ∼ Normal N1 +
ρ

2
( ) σ2w + P( ), N1 + ρ( ) σ2w + P( )2( ).

(2)

Among them, Normal(μ, σ2) indicates that it obeys the
normal distribution, and then the likelihood ratio expression
can be obtained:

λj � ln
f yi|Hi( )
f yj|H0( ) � ln

1

1 + ρ

������
N1

N1 + ρ

√  + yj −N1σ
2
w( )2

2N1σ
4
w

−
yj − N1 + ρ/2( ) σ2w + P( )( )2

2 N1 + ρ( ) σ2w + P( )2 .

(3)

&en, the test statistics can be obtained:

ΛK �∑K
j�1

λj � K ln
1

1 + ρ

������
N1

N1 + ρ

√  +∑K
j�1

yj −N1σ
2
w( )2

2N1σ
4
w

−
yj − N1 + ρ/2( ) σ2w + P( )( )2

2 N1 + ρ( ) σ2w + P( )2 . (4)

&e obtained ΛK is compared with the thresholds A, B,
and C, and a judgment is made; then, the test result can be
obtained. According to the central limit theorem, the seg-
mented energy is approximated in the normal distribution
process. A very wide probability density distribution
function is used for the normal distribution, which not only
greatly reduces the computational complexity of the pro-
posed algorithm but also is useful for deriving and analyzing
the next spectral perception performance [7].

2.2. Analysis of Average Sample Size. We derive and analyze
the average sample size of the proposed algorithm in a
complex electromagnetic environment. In this paper, the
average sample size of the proposed algorithm in complex
electromagnetic environment is deduced and analyze (ρ≪ 1)
and the likelihood ratio of N1 > 10 is used to calculate the
mathematical expectation:

E λj|H0[ ] ≈ −0.5N1ρ
2
− ρ,

E λj|H1[ ] ≈ 0.5N1ρ
2
+ 0.5ρ.

 (5)

By substituting formula (5) into formula (6), the average
capacity samples under the dual hypothesis test conditions
can be obtained as follows:

ASNH0
� N1E N2|H0( ) � −αA +(1 − α)B

0.5ρ2 + ρ/N1

,

ASNH1
� N1E N2|H1( ) � (1 − β)A + βB

0.5ρ2 + 0.5ρ/N1

.


(6)

According to the above analysis, the average capacity
sample ASN, segment length N1, and received signal-to-
noise ratio of the presented successive inspection algo-
rithm are obtained (ρ). &erefore, in order to obtain the
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Figure 1: Block diagram of piecewise linear discriminant algorithm processing.
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best detection performance, the functional relationship of
the algorithm is discussed in a complex environment, and
the detection performance of the proposed algorithm is
deduced [8].

Inference 1. In a complex electromagnetic environment
(ρ≪ 1), in the following cognitive wireless network, the
average capacity sample ASN of the piecewise linear de-
termination algorithm based on piecewise energy processing
depends on the false alarm probability α and probability of
missed detection of the system implemented as needed. In
addition, the received signal-to-noise ratio is shown in
proportion to the segment length Ni. Ρ is inversely
proportional.

&erefore, in order to reduce the average sample size of
the proposed algorithm, the segment length N1 must be
selected as small as possible, butN1 needs to meet the central
limit theorem condition.

2.3. Discussion on the Best Truncation !reshold. In the
successive inspection algorithm, the inequality B<ΛK <A
related to the inspection statistics is always established
within a certain inspection time, and there is possibility for
no judgment. In order to obtain the inspection result within
the limited inspection time, finally the inspection statistics
are compared with the reduced threshold C to obtain the
final judgment result. &e threshold C is analyzed for dis-
cussion [9].

According to the probability density function of the test
statistics shown in Figure 2, the following inequalities de-
scribing the false alarm probability and the probability of
missed detection of the piecewise linear discriminant al-
gorithm are true:

α N2( )≤ α + exp B − 1

exp B − exp A
∫A
C
f ΛN2

|H0( )dΛN2
,

β N2( )≤ β + exp B(1 − exp A)

exp B − exp A
∫C
B
f ΛN2

|H1( )dΛN2
.


(7)

In order to obtain the best detection performance,
α(N2) + β(N2) must be forced to take the minimum value,
so C is chosen to minimize the sum of the terms on the right
side of the equation, namely:

minG(C) �
exp B − 1

exp B − exp A
S0 +

exp B(1 − exp A)

exp B − exp A
S1,

(8)

where S0 and S1, respectively, represent the definite integral
term in formula (4). Taking the derivative of formula (8)
(G′(C)� 0) to solve the equation
f(C|H0)/f(C|H1) � exp B(1 − exp A)/exp B − 1, the op-
timal truncation threshold under low signal-to-noise ratio
(ρ≪ 1) can be approximated for:

C � −0.25N2ρ +(AB + B)
0.25 − ρN1 + ρ

2 N1 +N
2
1( )

N2 N1ρ
2
+ 1.5ρ( ) .

(9)

&erefore, the sequential inspection algorithm based on
the proposed infrared chemical remote sensing multimedia
digital signal processing is executed by performing the
segmented energy summation processing on the received
signal. Sequentially check that the measured likelihood ratio
follows the normal distribution process, which greatly
simplifies the subsequent calculation and theoretical deri-
vation process. In addition, by introducing the restriction of
reduction, it is possible to ensure that the best inspection
results can be obtained within a limited inspection time
[10–12].

3. Feature Extraction of Frequency-
Domain Signals

Fourier transform and expansion are regarded as weighting
functions that can be applied to interference graphs used for
the Fourier transformation, and the Fourier transformation
procedure is usually used to reduce the size of the side lobes.
&e signal feature extraction technology based on back-
ground subtraction technology is only used in fixed-state
applications. &erefore, in order to install the sensor to the
mobility tool, a new signal feature extraction technology is
required, and a time-domain filtering technology is required.

Figure 3 shows the basic principle of time-domain fil-
tering. &eoretically, the time-domain filter can be obtained
through the fast Fourier transform of the frequency-domain
filter, but in fact, the filtering performance obtained in this
way is difficult to meet the requirements. In order to obtain
practical time-domain filtering, the spectral data must be
filtered in the frequency-domain first, the filtered time-
domain data are obtained through fast Fourier transform,
and then the time-domain data before and after filtering are
used for optimization. &e most common finite impulse
response (FIR) filter can be expressed as follows:

C

AB

S0 S1

0 2-2-4-6 4 6

Figure 2: Schematic diagram of the probability density distribution
function of the test statistic.
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Y∗i � f1Yi−N + f2Yi−N+1 + · · · + fNYi−1 + fN+1Yi, (10)

where Y∗i represents filtered data points generated by ap-
plying filter; Yi represents corresponding original data
points; and f represents the weighting factor that determines
the attribution of the filtering frequency. Each project has
different weights of various factors (fi⟶ fN+1).

According to an example method, the well-known
variable averaging filter is in the form described above, and
each factor is 1/(N+ 1). &e linear combination of the
corresponding original data points and the previous set of
original data points can effectively form filtered data points.
Usually, the f term can be solved by multilinear regression
analysis. &e basic limitation of this filter depends on the
filter that handles a relatively wide range of interference
graphs. When a filter for each point of the divided inter-
ference graph is obtained, the overall accuracy of the filtering
process can be improved. Of course, in order to achieve this
export process, a large set of interference patterns needs to
be used. By performing discrete multiple regressions and
checking the filter of each interferogram point separately,
one filter coefficient obtained is (N+ 1)× (N+ 1) matrix.&is
filter is called a finite impulse response matrix (FIRM) filter.
Compared with FIR filters, the advantages of FIRM filters are
that they can further improve the discrimination rate and the
price paid is a smaller application range.

Figure 4 shows the sum of squares of the point intensities
of the SF6 interference figure dataset after FIRM filtering. It
can be seen from the figure that compared with the baseline
fluctuation, the SF6 signal is effectively amplified.

4. Simulation Experiment

In order to verify the effectiveness of the algorithm, the most
common step signal is taken in signal transmission as an
example, the observation signal is generated from equation
(2), and a function suitable for Gaussian distribution is used
as the kernel function h(n). For noise with different signal-
to-noise ratios (SNRs) added, the Wiener filtering algorithm
and the Richardson–Lucy method are used to restore the
aforementioned mixed signal with the algorithm proposed
in this paper, and the comparison result is shown in Figure 5.

Figures 5(a)–5(c) show the comparison of different al-
gorithms for the recovery effect of multimedia digital signal
of infrared chemical remote sensing. In the figure, under the
same conditions, the algorithm in this paper is equivalent to
the two before the smoothness of the signal is guaranteed to
the greatest extent in the smooth section of the signal. More

than that, even under the condition of low signal-to-noise
ratio, the step position of the restored signal can be clearly
seen with the steep edge. &is point is important for the
sensor signal transmission process, and the jump point
usually reflects the potential information of the signal.
Under the condition of high signal-to-noise ratio, the ob-
served signal can almost be restored to the original signal
[13].

In order to further illustrate the recovery effect of signal,
the above results are quantitatively evaluated using the mean
square error (MSE) formula in the evaluation standard
model of signal restoration quality.

MSE �

�����������
∑N
i�1

fi + f̂i( )2
N

√√
. (11)

&eMSE of the original signal and the recovered signal is
calculated, and the results are shown in Table 1 and Figure 6.

&e MSE data in Table 1 also show that the restoration
effect of the algorithm in this paper is better than the
previous two. In the meantime, as the signal-to-noise ratio
increases, the MSE before and after restoration will become
smaller and smaller.

hε and μ in the TBV model are important values that
depend on the result. &e meaning of formula (2) is a result
of combining the random deviation of the restored signal
with the observed signal. &e result value is obtained. ε
reaches the numerical requirement. μ (μ> 0) in max|ηi|≤ ε
can have a compromise effect on the fully bounded vari-
ation value and the observed error term. If the value of μ is
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Figure 3: Basic principle of time-domain filter.
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Figure 4: &e modulation intensity of the SF6 interference figure
dataset in the interval between 175 and 250 after FIRM filtering (the
peak value is the SF6 signal, and the baseline is the background
signal).
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Figure 5: Signal restoration comparison chart: SNR� 30 dB and TBV parameter μ� 1.

Table 1: MSE of the restored signal and the original signal (different algorithms).

Algorithm(μ�1) SNR� 1 dB SNR� 5 dB SNR� 10 dB SNR� 30 dB SNR�∞
Wiener filtering 0.284087 0.171576 0.124115 0.0558268 0.0289276
Richardson–Lucy 0.659045 0.399964 0.269647 0.0592334 0.0526244
TBV 0.104444 0.0846292 0.0592354 0.00422456 1.48778e− 014
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large, it will bring a great noise effect; if the value is too
small, it will not be able to completely eliminate the blur.
Figure 3 shows a variety of signal-to-noise ratios and
multiple values. &e experimental result achieved by μ is
μ-MSE, and most of the values are in a downward convex
form, which is to produce the best numerical map under
the condition of signal-to-noise ratio. μ represents the
minimum value of the original signal and the restored
signal. If the value of the signal-to-noise ratio is smaller, if
μ ∈ (0, μ∗), the value of μ is larger, and the total observation
error will show a decreasing trend. &e purpose is to
minimize the value of equation (9); simultaneously, if total
bounded variation value becomes larger, μ � μ∗, the MSE
obtained is the smallest, which is the most ideal result of
restoring the signal; when μ ∈ (μ∗,∞) increases, the total
observation error item is reduced because there must be a
stable result state; if the global variation term keeps getting
bigger, the MSE will get bigger and bigger, and the signal
restoration result will show a downward trend. When the
signal noise is larger, the noise in the observation signal
becomes smaller. MSE will remain the same [14, 15].

5. Conclusions

Aiming at the smoothness and jump characteristics of in-
frared chemical remote sensing multimedia digital signal,
with regard to the smooth and jumping feature contained by
the infrared chemical remote sensing multimedia digital
signal. &is method can quickly minimize the bounded
variation and total observation error and reduce the com-
plexity of the variation parameters. Experiments show that
this method is useful and effective, and even in the back-
ground of low signal noise, the original signal information
can also be restored.

Data Availability

&e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

&e author declares that there are no conflicts of interest.

References

[1] P. C. Guillevic and A. Olioso, S. J. Hook, J. B. Fisher,
J.-P. Lagouarde, and E. F. Vermote, “Impact of the revisit of
thermal infrared remote sensing observations on evapo-
transpiration uncertainty—a sensitivity study using ameriflux
data,” Remote Sensing, vol. 13, no. 5, pp. 498–507, 2019.

[2] C. Wu, L. Zhang, and L. Zhang, “A scene change detection
framework for multi-temporal very high resolution remote
sensing images,” Signal Processing, vol. 124, pp. 184–197, 2016.

[3] G. Notesco, Y. Ogen, and E. Ben-Dor, “Mineral classification
of makhtesh ramon in Israel using hyperspectral longwave
infrared (lwir) remote-sensing data,” Remote Sensing, vol. 7,
no. 9, pp. 12282–12296, 2015.

[4] A. Ansari, H. Danyali, and M. S. Helfroush, “Hs remote
sensing image restoration using fusion with ms images by em
algorithm,” IET Signal Processing, vol. 11, no. 1, pp. 95–103,
2017.

[5] X. Zhang, “Research on remote sensing image de---aze based
on gan,” Journal of Signal Processing Systems, vol. 73,
pp. 620–627, 2021.

[6] F. Bode, W. Nowak, andM. Loschko, “Optimization for early-
warning monitoring networks in well catchments should be
multi-objective, risk-prioritized and robust against uncer-
tainty,” Transport in PorousMedia, vol. 114, no. 2, pp. 261–281,
2016.

[7] P. Liu, “Development and application of fire safety monitoring
and early warning system for small and medium sized hospital
enterprises,” Basic and Clinical Pharmacology and Toxicology,
vol. 119, no. Suppl.4, p. 57, 2016.

[8] C. Hua, Y. Tang, M. Ren, and W. Lin, “Single near-infrared
fluorescent probe with high- and low-sensitivity sites for
sensing different concentration ranges of biological thiols with
distinct modes of fluorescence signals,” Chemical Science,
vol. 74, no. 1, pp. 914–923, 2016.

[9] Y.-Z. Liu, Y.-S. Zou, Y.-L. Jiang, H. Yu, and G.-F. Ding, “A
novel method for diagnosis of bearing fault using hierarchical
multitasks convolutional neural networks,” Shock and Vi-
bration, vol. 2020, no. 13, 14 pages, Article ID 8846822, 2020.

[10] C. T. Chiang and K. Y. Liu, “A cmos wearable infrared light
intensity digital converter for monitoring unplanned self-
extubation of patients,” IEEE Sensors Journal, vol. 14, no. 16,
pp. 136–154, 2019.

[11] T. T. de Almeida, J. A. M. Nacif, F. P. Bhering, and
J. G. R. Junior, “Doctrams: a decentralized and offline com-
munity-based traffic monitoring system,” IEEE Transactions
on Intelligent Transportation Systems, vol. 20, no. 3,
pp. 1160–1169, 2019.

[12] B. Cian, M. Suzanne, K. Heard, Q. Peter, S. G. Yeates, and
V. Aravind, “Nanoscale infrared identification and mapping
of chemical functional groups on graphene,” Carbon, vol. 139,
pp. 317–324, 2018.

[13] V. Singh and M. K. Goyal, “An improved coupled framework
for glacier classification: an integration of optical and thermal
infrared remote-sensing bands,” International Journal of
Remote Sensing, vol. 101, no. 3, pp. 152–160, 2018.

[14] A. J. Barclay, A. R. W. Mckellar, and N. Moazzen-Ahmadi,
“Infrared observation of a new mixed trimer, CO – (CO2)2,”
Chemical Physics Letters, vol. 677, pp. 127–130, 2017.

[15] L. Hua and G. Shao, “&e progress of operational forest fire
monitoring with infrared remote sensing,” Journal of Forestry
Research, vol. 228, pp. 71–81, 2017.

0.35

0.3

0.25

0.2

0.15

0.05

0
0 0.5 1.51

μ
2 2.5

0.1

30dB

10dB

5dB

1dB

M
S
E

Figure 6: Parameters μ restoration effect under the influence of the
signal-to-noise ratio.

6 Advances in Multimedia


