
--

Multimedia Information Management
in an Object-Oriented Database System

Darrell Woe/k
Won Kim

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin. Texas 78759

Abstract
This paper describes the implementation of the Multimedia
Information Manager (MIM) in the ORION object-oriented da-
tabase system which is operational at MCC. We describe
design objectives and implementation techniques that have
satisfied the design objectives. Our design objectives in-
clude extensibility, flexibility and efficiency in supporting the
capture, storage, and presentation of many types of multi-
media information.

We have achieved extensibility by providing an object-ori-
ented framework for multimedia information management.
The framework consists of definitions of class hierarchies
and a message passing protocol for not only the multimedia
capture, storage, and presentation devices, but also the
captured and stored multimedia objects. Both the class hier-
archies and the protocol may be easily extended and/or
modified by system developers and end users as they see
fit. We have satisfied flexibility by supporting a variety of
ways in which the end users may control the capture and
presentation of multimedia information. Our implementation
has achieved storage efficiency by using a technique for
sharing storage blocks among multiple versions of a multi-
media object, while achieving data transfer performance by
directly interfacing the MIM to certain low level components
of the ORION storage subsystem.

1. Introduction
The management of multimedia information such as im-

ages and audio is becoming an important feature of com-
puter systems. Multimedia information can broaden the
bandwidth of communication between the user and the com-
puter system. Although the cost of the hardware required for
the capture, storage, and presentation of multimedia data is
decreasing every year, the software for effectively managing
such information is lacking. Future database systems must
provide this capability if we are to be able to share large
amounts of multimedia information among many users.

Permission to copy without fee all or part ‘of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise. or to republish, requires a fee and/or spe

cid permission from the Endowment.

In our earlier work (WOELBB] , we identified two types of
requirements which multimedia applications impose on a da-
tabase system. One is the requirement for a data model
that allows a very natural and flexible definition and evolution
of the schema that can represent the composition of and the
complex relationships among parts of a multimedia docu-
ment. Another is the requirement for the sharing and ma-
nipulation (storage, retrieval, and transmission) of multime-
dia information. In [WOELBB] we concluded that an object-
oriented approach would be an elegant basis for addressing
all data modelling requirements (the first type) of the multl-
media applications.

Subsequently, we developed an object-oriented data
model by extracting a number of common concepts from
existing object-oriented programming languages and sys-
tems, and then enhancing them with a number of additional
concepts, including versions and predicate-based access to
sets of objects. The data model, described in detail in
[BANE87], has been implemented In a prototype object-ori-
ented database system, which we have named ORION.
ORION Is implemented in Common Lisp [STEE84], and runs
on a Symbolics 3800 Lisp MachinejSYMB851. ORION adds
persistence and sharability to the objects created and ma-
nipulated by object-oriented applications from such domains
as artificial intelligence, computer-aided design, and office
information systems. Important features of ORION include
transaction management, versions [BANE871 , composite
objects [BANE87], and multimedia information manage-
ment. The Proteus expert system [PETRBB] developed by
the MCC Artificial Intelligence Proaram has recently been
modified to interface with ORION. The MUSE multimedia sys-
tem ILUTH871 develooed bv the MCC Human Interface Pro-
gram-will be integrated with ORION in the near future.

The focus of this paper is multimedia information man-
agement in ORION. In particular, we will describe the design
objectives for the Multimedia Information Manager (MIM)
component of ORION, and the implementation approach we
have taken to satisfy the design objectives. We have three
major design objectives for supporting the capture, storage,
and presentation of many types of multimedia information:
extensibility, flexibility and efficiency. The most important re-
quirement for extensibility (generallrability and modifiability)
is the ability for the system developers and end users to ex-
tend the system, by adding new types of devices and proto-
cols for the capture, storage, and presentation of multimedia
information. To satisfy this requirement, we have lmple-
mented the MIM as an extensible framework explicitly using
the object-oriented concepts. The framework consists of
definitions of class hierarchies and a message passing proto-
col for not only the multimedia capture, storage, and presen-
tation devices, but also the captured and stored multimedia
objects. Both the class hierarohies and the protocol may be

Proceedings of the 13th VLDB Conference, Brighton 1987 319

easily extended and/or modified by system developers and
end users as they see fit.

Our implementation provides efficiency both in storage
utilization and data transfer performance. We achieve stor-
age efficiency by using a technique for sharing storage
blocks among multiple versions of a multimedia object, and
data transfer performance by directly interfacing the MINI to
certain low level components of the ORION storage subsys-
tem. We have not completed exhaustive testing of the per-
formance of the system, bdt initial tests have supported our
expectations of good data transfer performance in the sys-
tem.

This paper makes two significant contributions. One is
the description of our implementation that satisfies the flexi-
bility and efficiency requirements of multimedia information
management. Another is the illustration it provides of an
object-oriented implementation of a framework for multime-
dia information management. The framework may be
viewed as one further proof of the power of the object-ori-
ented paradigm. Further, to the extent that an object-ori-
ented implementation of the framework was motivated by
the requirement to make a major component of a database
svstem highly extensible, our approach may also provide an
bbditional%sight to the current research in extensible data-
base svstems fCARE881. One additional contribution of this
paper, although perhaps not as significant as the other two,
is the identification of design requirements for a multimedia
information manager.

In Section 2, we will review the object-oriented con-
cepts which are the basis for the ORION data model. Section
3 will discuss our design objectives for the Multimedia Infor-
mation Manager. Section 4 will sketch the ORION database
system architecture, to provide a concrete context for dis-
cussions of the MIM implementation. In Section 5 we will
describe the implementation of the MIM. The description will
include the multimedia class definitions, the multimedia mes-
sage passing protocol, and the aspects of the implementa-
tion which provide flexibility, efficient data storage, and effi-
cient data transfer. Section 8 will summarize and conclude
the paper.

2. Review of Object-Oriented Concepts

Existing object-oriented systems exhibit significant dif-
ferences in their support of the object-oriented paradigm:
(STEF881 provides an excellent account of different vari-
ations of the object concepts. In this section, to establish
our terminology, we review the basic object concepts which
we have selected for our data model from existing object-
oriented programming languages and systems [GOLD81,
BOBR83. BOBR85, LMl85, MAIE86J. This section has been
extracted from our paper on the ORION data model in
[BANE87].

Objects, Attributes (Instance Variables), Meth-
ods, and Messages

In object-oriented systems, all conceptual entities are
modeled as objects. An ordinary integer or string is as much
an object as is a complex assembly of parts, such as an
aircraft or a submarine. An object consists of some private
memory that holds its state. The private memory is made up
of the values for a collection of attributes. The value of an
attribute is itself an object, and therefore has its own private
memory for its state (i.e., its attributes). A primitive object,
such as an integer or a string, has no attributes. It only has a
value, which is the object itself. More complex objects con-
tain attributes, through which they reference other objects,
which in turn contain attributes.

The behavior of an object is encapsulated in methOdS.

Methods consist of code that manipulate or return the state

320

of an object. Methods are a part of the definition of the ob-
ject. However, methods, as well as attributes, are not visible
from outside of the object. Objects can communicate with
one another through messages. Messages constitute the
public interface of an object. For each message understood
by an object, there is a corresponding method that executes
the message. An object reacts to a message by executing
the corresponding method, and returning an object.

Classes

If every object is to carry its own attribute names and its
own methods, the amount of information to be specified and
stored can become unmanageably large. For this reason,
as well as for conceptual simplicity, ‘similar’ objects are
grouped together into a c/ass. All objects belonging to the
same class are described by the same attributes and the
same methods. They all respond to the same messages.
Objects that belong to a class are called instances of that
class. A class describes the form (attributes) of its in-
stances, and the operations (methods) applicable to its in-
stances. Thus, when a message is sent to an instance, the
method which implements that message is found in the defi-
nition of the class.

Class Hierarchy and Inheritance

Grouping objects into classes helps avoid the specifica-
tion and storage of much redundant information. The con-
cept of a class hierarchy further reduces information redun-
dancy. A class hierarchy is a hierarchy of classes in which
an edge between a pair of nodes represents the IS-A rela-
tionship; that is, the lower level node is a specialization of the
higher level node (and conversely, the higher level node is a
generalization of the lower level node). For a pair of classes
on a class hierarchy, the higher level class is called a super-
class, and the lower level class a subclass. The attributes
and methods (collectively called properties) specified for a
class are inherited (shared) by all its subclasses. Additional
properties may be specified for each of the subclasses. A
class inherits properties only from its immediate superclass.
Since the latter inherits properties from its own superclass, it
follows by induction that a class inherits properties from
every class in its superclass chain.

Domains of Attributes

In object-oriented systems, the domain (which corre-
sponds to data type in conventional programming lan-
guages) of an attribute is a class. The domain of an attribute
of a class C may be explicitly bound to a specific class D.
Then instances of the class C may take on as values for the
attribute instances of the class D as well as instances of sub-
classes of D.

Class Lattice, Multiple Inheritance, and Name-
Conflict Resolution

In many object-oriented systems (including ORION), a
class can have more than one superclass, generalizing the
class hierarchy to a lattice (directed acyclic graph). In a
class lattice, a class inherits properties from each of its su-
perclasses. This feature is often referred to as multiple in-
heritance (LMl85, STEF86].

The class lattice simplifies data modeling and often re-
quires fewer classes to be specified than with a class hierar-
chy. However, it gives rise to conflicts in the names of at-
tributes and methods. One type of conflict is between a
class and its superclass (this type of problem also arises in a
class hierarchy). Another is among the superclasses of a
class; this is purely a consequence of multiple inheritance.

Name conflicts between a class and its superclasses
are resolved in all systems we are aware of, and in ORION,

Proceedings of the 13th VLDB Conference, Brighton 1987

by giving precedence to the definition within the class over
that in its superclasses. The approach used in many sys-
tems, and in ORION. to resolve name conflicts among super-
classes of a given class is the superclass ordering. If an at-
tribute or a method with the same name appears in more
than one superclass of a class C, the one chosen by default
is that of the first superclass in the list of (immediate) super-
classes of C, which the application will have specified.

3. Design Objectives

Multimedia applications place a set of strong require-
ments on a database system. In [WOEL86] we described the
data modeling and functional requirements. In this section
we will discuss additional requirements concerned with ex-
tensibility, flexibility, and efficiency. Our implementation of
the MIM within ORION has satisfied these requirements. Our
implementation of the ORION object-oriented data model has
satisfied the data modeling and functional requirements enu-
merated in [WOEL66].

3.1 Extensibility

Extensibility is required to support new multimedia de-
vices and new functions on multimedia information. For ex-
ample, a color display device may be added to a system with
relative ease, if at a high level of abstraction the color dis-
play can be viewed as a more specialized presentation de-
vice for spatial multimedia objects than a more general dis-
play device which is already supported in the system. The
color display device may be further specialized by adding
windowing software, and the windows can in turn be special-
ized to create new display and input functionality. Future da-
tabase system should support the presentation of multimedia
information on these presentation devices as described in
[CHRl86a]. Further, database systems must also support the
capture of multimedia information using such capture de-
vices as cameras and audio digitizers.

It is also important to be able to add new multimedia
storage devices, or to change the operating characteristics
of storage devices. For example, read-only CD ROM
[CDROSS] disks and write-once digital optical disks
[CHRl86b] are both storage devices having desirable charac-
teristics for the storage of certain types of multimedia infor-
mation. The integration of these hardware devices into a sys-
tem is becoming easier due to standard disk interfaces such
as SCSI [KILL86]. A natural framework for logically accessing
these devices must be provided by the database system.

Even multimedia information stored on magnetic disk
may require special formatting for efficiency in storage and
access. For example, an image may be stored using ap-
proximate geometry as described in [OREN86]. This storage
format allows the expression of powerful spatial queries. The
new storage format and the new query functionality can be
defined as specializations of the more general capability for
storing and presenting images.

3.2 Flexibility

The MIM must provide for the storage of both spatial
and linear mulfimedia objects, both the persistent and non-
persisfenf presentation of multimedia objects, and control of
both the capture and presentation of multimedia objects.
These three aspects of flexibility in multimedia information
management will be discussed below. Section 5.3 describes
how our implementation of the MIM provides flexibility.

First, for the purposes of capture, storage and presen-
tation, the MIM must support both linear multimedia objects
and spatial multimedia objects [WOEL871. Spafial mulfime-
dia objects are multimedia objects with a logical internal for-
mat which is spatially oriented, for example, a bit-mapped

image. The application may identify a specific rectangular
portion of an image for presentation by specifying the upper-
left corner, height, and width of a rectangle. The MIM trans-
lates these values into physical offsets in the disk storage.
Linear multimedia objects are multimedia objects which have
a logical internal format which is sequential, such as text or
audio. A specific audio passage can be presented by speci-
fying an offset and a length in logical units, such as seconds.
Some multimedia objects, such as an animated bit-mapped
image, can be categorized as both spatial and linear.

Second, the MIM must support two types of transfer of
multimedia objects from the database: persistent and non-
persistent, depending on whether or not the multimedia ob-
ject remains in the system memory for manipulation by an
application after its transfer. An example of non-persistent
presentation is the playing of audio data; the audio data is
transferred from the database directly to the audio hard-
ware. The process is initiated by the application, but the MIM
handles the buffering and movement of data. An example of
persistent presenfafion is the display of a bit-mapped image
in a window on the screen of the workstation. When the ap-
plication requests that a selected image be displayed in a
specific window, the image is transferred from the database
to a specific area in the memory space of the application.
When this area of memory is mapped to the workstation
screen, the image will be displayed. Following any modifica-
tions made to this area of memory during a transaction, the
application can transfer the object back to the database.

Third, once the transfer of data has begun, the applica-
tion should be able to control the presentation or capture of
multimedia data. For example, during the playback of audio,
the application should be able to cause the playback to
pause, continue, fast-forward, fast-backward, play faster,
play slower, rewind, and stop.

3.3 Data Storage Efficiency

Multimedia information is in general very large, and
keeping multiple copies of large objects such as images and
audio can lead to a serious waste of secondary storage me-
dia. In ORION, a multimedia object is stored in a number of
physical storage blocks, such that versions of the multimedia
object will share those storage blocks that contain common
information, and new storage blocks are allocated only for
those portions of the multimedia object that hold different
information. As versions of the multimedia object are up-
dated or deleted, storage blocks that are no longer needed
are automatically returned to free space for re-allocation to
other multimedia objects. Section 5.4 describes this imple-
mentation in detail.

3.4 Data Transfer Efficiency

Multimedia applications require the transfer of large
amounts of data between capture devices, storage devices,
and presentation devices. In some cases, this information
will be transferred from a storage device to a presentation
device without ever being written to the system memory. In
many cases, however, the digitized multimedia object will be
buffered in the system memory. The MIM must optimize the
performance of transfer of multimedia objects by eliminating
unnecessary copying and buffering of data within the sys-
tem. Section 5.5 discusses how we achieve this objective.

4. Overview of the ORION Architecture

Figure 1 shows a high level block diagram of the ORION
architecture. The message handler receives all messages
sent to the ORION system. The messages include user-de-
fined messages, access messages, and system-defined
functions. A user-defined message is a message to a
method that the user defines and stores in ORION. An ac-

Proceedings of the 13th VLDB Conference, Brighton 1987 321

Figure 1. ORION Architecture

cess messege is one that retrieves or updates the value of an
attribute of a class. System-defined functions include all
ORION functions for schema definition, creation and deletion
of instances, transaction management, and so on.

The object subsystem of ORION handles all access to
dbjects in the system. Functions provided by the object sub-
system include identifier-based and predicate-based query
processing, version management, and multimedia informa-
tion management.

The storage subsystem provides access to objects on
the disk. Objects are moved from the disk to page buffers.
Two of the sub-modules within the storage subsystem are
also shown in Figure 1. The disk segment manager manages
the allocation and deallocation of segments of pages on the
disk. The page buffer manager moves pages of data to and
from the disk. lt maintains a page table which keeps track of
the disk pages present in memory. As we will discuss later,
the MIM is directly interfaced with the disk segment manager
and the page buffer manager to allocate and deallocate stor-
age blocks, and to transfer data to and from the database.

The transaction subsystem provides a concurrency con-
trol mechanism to protect database integrity while allowing
the interleaved execution of multiple concurrent transac-
tions. It also accumulates a log of changes to objects within
a transaction. The log is used to backout a transaction, or to
recover from system crashes in the middle of a transaction.

5. Implementation of the Multimedia Information
Manager

We have analyzed scenarios for the capture, storage,
and presentation of many types of multimedia information
and have generalized these into a framework of classes and
a message protocol for interaction among instances of these
classes. This framework is highly extensible, since it is based
on the class lattice and message passing concepts of the
object-oriented paradigm. In Section 5.1 we will describe
the multimedia classes which are defined for ORION. Sec-
tion 5.2 will present the messaQe passing protocol among
instances of these classes, in terms of the capture, storage,
and presentation of a bit-mapped image. Then in Sections
5.3, 5.4, and 5.5, we will discuss how our implementation
meets the objectives for flexibility, efficient data storage, and
efficient data transfer, respectively.

5.1 Multimedia Class Definitions

Multimedia information is captured, stored, and pre-
sented in ORION using lattices of classes which represent
capture devices, storage devices, captured objects, and
presentation devices. However, each instance of one of the
device classes represents more than just the identity of a
physical device as we will describe in the following sections.

5.1 .l Presentation-Device Classes

The MIM uses ORION classes to represent presentation
devices available on the system. An instance of the presen-
tation-device, however, represents more than just a rpe-
cific physical presentation device. Each instance also has
attributes which further specify, for example, where on the
device a multimedia object is to be presented and what por-
tion of a multimedia object is to be presented. These pre-
defined presentation-device instances can be stored in the
database and used for presenting the same multimedia ob-
ject using different presentation formats. Methods associ-
ated with a class are used to initialize parameters of a pres-
entation device and initiate the presentation process. The
class lattice for the presentation devices is shown in Figure
2. The shaded classes are provided with ORION. Other
classes in the lattice are shown to indicate potential speciali-
zations for other media types by specific installations.

Figure 3 shows details of a portion of the class lattice for
the presentation-device class. The screen-window subclass
represents a window on a workstation screen that is to be
used to display an imaqe. An instance of the screen-window
class has the attributes win-upper-left-x, win-upper-left-y,
win-width, and win-height that represent where the window
is positioned on the workstation screen. It inherits from the
spatial-pres-device class the attributes upper-left-x, upper-
left-y, width, and height that specify the rectangular area of
an image that is to be displayed. This screen-window in-
stance can be stored in the database and used whenever a
specific rectangular area of an image is to be displayed in a
specific position on the workstation screen.

5.1.2 Capture-Device Classes

ORION objects provide an abstraction for interfacing with
different types of capture devices: however, as with the
presentation devices, ORION methods do not take the place
of low-level real-time device drivers. FiQure 4 shows the
class lattice for capture devices. The shaded classes are
ones provided with ORION. Other classes are potential spe-
cializations for other media types. An instance of the cap-
ture-device class represents man than just a specific
physical capture device, as described below.

Figure 5 shows details of a portion of the class lattice for
the capture-device class. The spatial-capture-device class
includes attributes which describe the shape and size of the
rectangular area of a multimedia object to be captured. This
area is described by the attributes upper-left-x, upper-
left-y, width, and height. For example, if an instance has
the values 0, 0, 300, 300, for these attributes, respectively,
only the pixels in a 300 x 300 rectangle in the upper left-hand
corner of the image will be captured and stored in the speci-
fied captured-object. The image-capture-device class has
attributes, cam-width and cam-height, which describe the
shape and size of the image provided by the actual camera
device. As with presentation devices, pre-defined instances
of the capture-device class can be stored in the database
and used for the capture of a multimedia object using differ-
ent capture, formats.

5.1.3 Captured-Object, Storage-Device, and Disk
Stream Classes

322 proceedings of the 13th VLDB Conference, Brighton 1987

Figure 2. Presentation Device Class Lattice

presentation-device

spatial-pres-device

image-pres-device

\
screen-window

Attributes:
win-upper-left-x
win-upper-left-y
win-width
win-height

r

Methods:
present
capture
persistent-pres

Figure 3. D;e;Fe of Presentation Device Class

We have adapted the storage and access techniques
for multimedia objects in ORION from previous research into
the manipulation of long data objects [HASK82]. Every mul-
timedia object stored in ORION is represented by an instance
of the class captured-object or one of its subclasses. Figure
8 illustrates the class lattice for captured objects. The cap-
tured-object class defines an attribute named storage-ob-
ject which has as its domain the class storage-device. The
class lattice for storage devices and for disk streams are
also shown in Figure 6. Transfer of data to and from storage-
device instances is controlled through disk-stream in-
stances. The shaded classes in Figure 6 are provided with
ORION. Other classes in the lattice indicate potential spe-
cializations.

Figure 7 shows details of a portion of the class lattice for
the captured-object class, the storage-device class, and
the disk-stream class. Each instance of the captured-ob-

Proceedings of the 13th VLDB Conference, Brighton 1987

image- 0
capture-device 1

,
keyboard

Figure 4. Capture Devioe Cl8ss Lattlco

capture-device

spatial-capture-device

Attributes:
upper-le t-x

It upper-le y
width
height

image-capture-device

Figure 5. D<e;$eof Capture-Device Class

ject class has a reference to a storage-device instance
stored in its storage-object attribute. The spatial-captured-
object class has attributes which further describe spatial ob-
jects. The attributes width and height describe the size and
shape of the spatial object. The attribute row-major indicates
the order in which the transformation from linear to spatial
coordinates should take place. The attribute bits-per-pixel
specifies the number of bits stored for each pixel in the spa-
tial object.

As with presentation-device and capture-device in-
stances, each mag-disk-storage-device instance repre-
sents more than just the identity of a specific physical
magnetic storage device. Each instance further describes
the portion of the device which is occupied by a particular
multimedia object. The mag-disk-storage-device class has
the block-list attribute which contains the block numbers of
the physical disk blocks that make up a multimedia object.
The allocated-block-list attribute specifies the blocks in the
block-list which were actually allocated by this mag-disk-
storage-device instance. The min-object-size-in-disk-
pages attribute specifies the number of disk pages that
should be allocated each time data is added to a multimedia
object. The seg-id attribute specifies the segment on disk

323

optical-disk video-disk-
storage-device storage-device

~“““:...‘.~.:.:.~:.:.:.:~~:.:~~;~’,.*,:.~$$;g$,~~~~~~~~:~~:~~:~:~~~~~
~*~<~~x., ,. &@##I$$$;;

.“,.‘..+.,~~l py.
“‘&>+., ,.._ /A+. .,

C, ,? v,p, . . . yT ,..,..., .> ,...” ,...A..
w5+,+&, . . cfi>:~...+, /,,..>‘.... ,+ .<..,&,/ ,” , ,,, .~~~~~~~ ‘q$$d& $,,,&;. y;$+ : .:,:, I*,,, $ ‘(; “), q,, ‘, I I
~~~~~~~~~~~~~~~~~~~~~.~~~~~~~~~ 

/++A ,,. /,:,A.,, 5s ,... ,,,, ,,,,y>,y’; >, :-y,* ,.. ,, ._ _. I,. ,.. /,,, ,, :.<. * .A.& . . . . . . . . . . . . . . +,.,:..... . . . . . . . . . . . . . . . . . . . . . . . <r ii... 

Figure 6. Captured-Object, Storage-Device, and 
Disk Stream Class Lattices 

captured-object storage-device 

read-disk-stream write-disk-stream 

Figure 7. Details of Captured-Object, Storage Device, 
and Disk Stream Class Lattices 

from which disk pages are to be allocated. The use of these 
attributes will be described in more detail in Section 5.4. 

An instance of the read-disk-stream Class is created 
whenever a multimedia object is read from disk. The read- 
disk-stream instance has a storage-object attribute which 
references the mag-disk-storage-device instance for the 
multimedia object. It also has a read-block-list attribute 
which maintains a cursor indicating the next block of the mul- 
timedia object to be read from disk. An instance of the 

write-disk-stream class is created whenever data is written 
to a multimedia object. In addition to the storage-object at- 
tribute, the write-disk-stream instance has a write-block-list 
attribute that is updated as disk blocks are written with data. 

5.2 Multimedia Message Passing Protocol 

This section will describe the message protocol for the 
presentation and capture of multimedia information using the 
ORION classes described in the previous section. The proto- 
col will be discussed by using the example of a bit-mapped 
image; however, the protocol is similar for many types of 
multimedia information. 

5.2.1 Presentation 

Figure 8 shows an instance of a class called vehicle 
which has been defined by an application program. It also 
shows instances of the image-pres-device, captured-im- 
age, read-disk-stream, and mag-disk-storage-device 
classes described earlier. The arrows represent messages 
sent from one instance to another instance. The vehicle in- 
stance has an image attribute that specifies the identity of a 
captured-image instance that represents a picture of the ve- 
hicle. It also has a display-dev attribute that specifies the 
identity of an image-pres-device instance. This image- 
pres-device instance has attributes (described in Section 
51.1) pre-defined by the user that specify where the image 
is to be displayed on the screen and what part of the image 
should be displayed. When the vehicle instance receives the 
picture message, the picture method defined for the class 

vehicle 

J-+F] , APPLICATION 

c 
c 
c 

imaoe-ores-device 

get-next-block 
free-block I 

rn,LI IUULOJ. 
upper-left 
1 

‘get- iece 
wal -for-full-buffer f 
backward 
forward 
close-read 

read 

read-disk-stream r captured-image 

I J I I 

\ 

mag-disk-storage-device 

ORION 12 

G 
D 

page buffer manager 

Figure 8. Message Passing Protocol for 
Presentation of Multimedia information 

324 Proceedings of the 13th VLDB Conference, Brighton 1987 



vehicle will send a present message shown below to the 
specified image-pres-device instance. 

(present presentation-device captured-object 
[physical-resource]) 

The physical-resource parameter above specifies a physical 
resource, such as the address of the video frame buffer for 
image presentation.. (Throughout this paper, we will use ital- 
ics to denote the message name, bold-face for the object 
receiving the message, non-bold face for the parameters of 
a message, and square brackets for optional parameters. 
Further, because of space limitations, we will explain the 
meaning of the message parameters only enough for the 
reader to follow the message protocol. Classes specified in 
these messages will always be the most general class ac- 
ceptable. In the example above, the captured-object pa- 
rameter will have a value which is an instance of the cap- 
tured-image class, a subclass of the captured-object 
class.) 

vehicle 

d=L *~~L’cAT’oN 

image-cap&e-device 

j Attributes: I 

The present method of the image-pres-device class 
transfers image data from the captured-image instance and 
displays the image on a display device. The image-pres- 
device instance has attributes (described in Section 5.1 .l) 
which specify the rectangular portion of the image to be dis- 
played. It translates these rectangular coordinates into lin- 
ear coordinates to be used for reading the image data from 
disk. It then initiates the reading of data by sending the fol- 
lowing message to the captured-image instance: 

I I I I 
\ 

mag-disk-storage-device 

(open-for-read captured-object [start-offset]) 
ORION 

The start-offset is an offset in bytes from the start of the 
multimedia object. 

The captured-image instance then creates a read-disk- 
stream instance and returns its identity to the image-pres- 
device instance. The image-pres-device will then send a 
get-next-block message to the read-disk-stream: 

disk segment mgr page buffer mgr 

(get-next-block read-disk-stream) 

Figure 9. Message Passing Protocol for 
Capture of Multimedia Information 

The read-disk-stream instance calls the ORION page 
buffer manager to retrieve a block of data from disk. The 
address of the ORION page buffer containing the block is re- 
turned. The image-pres-device instance will transfer the 
data from the page buffer to a physical presentation device, 
and then send a free-block message to the read-disk- 
stream, to free the page buffer. 

(free-block read-disk-stream) 

A cursor will also be automatically incremented so that the 
next get-next-block message will read the next block of the 
multimedia object. When the data transfer is complete, the 
image-pres-device sends a close-read message to the 
read-disk-stream instance. 

presentation message protocol. Once again, we will discuss 
an example using a bit-mapped image but the protocol is 
similar for other types of multimedia information. Classes 
specified for the parameters in the messages defined in this 
section will always be the most general class acceptable. In 
our example, the captured-object parameter in these mes- 
sages will have a value which is an instance of the captured- 
image class, a subclass of the captured-object class. 

If the new-picture message is sent to the vehicle in- 
stance, the new-picture method will send a capture mes- 
sage to the image-capture-device instance specified in its 
camera-dev attribute. 

An alternate protocol using get-piece and wait-for-full- 
buffer messages is also provided by the read-disk-stream. 
These messages allow the sender to allocate its own buffer 
and have the read-disk-stream instance copy data from the 
disk block into that buffer. This protocol causes an extra 
copy operation but is valuable where the application wishes 
to maintain its own copy of the data. 

(capture capture-device captured-object 
[physical-resource]) 

New methods may be written to extend the system so 
that the media type of the presentation-device and the cap- 
tured-object may be different. For example, an audio-pres- 
device instance presenting a captured-text instance could 
result in text-to-speech translation. 

5.2.2 Capture 

The captured-object parameter is an instance of the cap- 
tured-object class or one of its subclasses. The physical-re- 
source parameter specifies a physical resource, such as the 
address of the video frame grabber for image capture. 

Information concerning the camera settings and image 
processing necessary prior to storing the image is stored in 
attributes of the image-capture-device instance. The im- 
age-capture-device initiates the writing of data by sending 
the following message to a captured-image instance: 

(open-for-write captured-object [start-offset] 
[delete-count]) 

Figure 9 describes the message protocol for Capturing 

multimedia information, which closely corresponds to the 

The start-offset is an offset in bytes from the start of the 
multimedia object. The delete-count indicates the number 
of bytes to delete beginning at the start-offset. 

Proceedings of the 13th VLDB Conference, Brighton 1987 325 



When a captured-image instance receives the open- 
for-write message, it creates an instance of the write-disk- 
stream class, and returns the identity of the instance to the 
capture-device instance. The capture-device instance will 
then send the following message to the write-disk-stream: 

(make-block write-disk-stream) 

The make-block method allocates a block of pages on disk, 
if necessary, by calling the disk segment manager. A page 
buffer in memory is also allocated for the block and the ad- 
dress of this page buffer is returned. The image-capture- 
device will then transfer data from a physical capture device 
to the specified page buffer. 

Next, the image-capture-device will send, as many 
times as necessary, a put-next-block message to cause the 
contents of the page buffer to be written to disk. The mes- 
sage specifies, in the length parameter, the number of bytes 
which have actually been written to the block. 

(put-nenMlock write-disk-stream length) 

Once data transfer has been completed, a close-write 
message is sent. The message causes the write-disk- 
stream instance to update the mag-disk-storage-device in- 
stance to indicate the new disk pages which have been 
added to the multimedia object. Further, it deallocates any 
disk pages which were freed by the delete-count parameter 
in the open-for-write messages by calling the disk segment 
manager. 

An alternative protocol using put-piece and wait-for- 
empty-buffer is also provided by the write-disk-stream. 
These messages allow the sender to allocate its own buffer 
and have the write-disk-stream instance copy data from that 
buffer into the disk block. This protocol causes an extra copy 
operation but, as in the read operation, it is valuable where 
the application wishes to maintain its own copy of the data. 

As in the case of presentation, new methods may be 
written to extend the system so that the media type of the 
capture-device and the captured-object may be different. 
For example, an audio-capture-device instance and a cap- 
tured-text instance may be used to implement speech rec- 
ognition. 

5.2.3 Manipulating Captured-Objects 

We have implemented a number of other messages for 
captured-object instances. Because of space limitations, 
we will discuss only a few of them here. To create a new 
version of a captured-object, the following message can be 
sent: 

(make-captured-object-version captured-object) 

The method executed uses the make-version message pro- 
vided bv the ORION obiect subsvstem ICHOUBGI to make a 
new version of the caitured-object. it then makes a new 
version of the mag-disk-storage-device instance the old 
version references, and modifies the new version of the cap- 
tured-object instance to reference the new version of the 
mag-disk-storage-device instance. The two versions of the 
captured object share common disk blocks, as described in 
Section 5.4. 

A copy of a captured-object instance can be created 
without creating a new version, by sending the following 
message: 

(copy-captured-object captured-object) 

The method executed creates a copy, of the captured- 
object instead of a new version. As in the make-captured- 
object-version message, however, a new version of the ref- 
erenced mag-disk-storage-device instance is created so 

that the two captured-object copies may share common 
physical disk blocks. 

A captured-object instance can be deleted using the 
following message: 

(delete-captured-object captured-object) 

To delete some range of bytes in a multimedia object, 
the following message is sent to a captured-object instance: 

(delete-part-of-captured-object captured-object 
start-offset [delete-count]) 

The start-offset is an offset in bytes from the start of the 
multimedia object. The delete-count indicates the number 
of bytes to delete beginning at the start-offset. 

5.3 Flexibility of Multimedia Data Presentation / 
Capture 

To allow the application to identify a portion of a multi- 
media object in logical units (such as seconds), we have 
defined the captured-object class with attributes which de- 
scribe the general translation from the storage representa- 
tion to the presentation representation. As shown in Figure 
7, they include logical-measure and physical-to-logical-ra- 
tio. The logical-measure attribute contains the definition of 
the logical unit of measurement (such as seconds, frames, 
etc.). The physical-to-logical-ratio attribute indicates the ra- 
tio of the physical length to the logical length (such as bytes 
of digitized audio per second). 

Some types of presentation devices, such as the im- 
age-pres-device class, are capable of persistent presenta- 
tion of captured-objects. The persistent presentation option 
on a presentation device is set by the following message: 

(persistent-pres presentation-device WI 1 

If the set parameter is T, the persistent presentation option is 
invoked. The option does not actually take effect until the 
next present message is received. 

After an image has been displayed and modifications 
made to the image, the image-pres-device instance can be 
sent a capture message to write the copy of the image to a 
captured-image instance: 

(capture presentation-device captured-object 
physical-resource) 

The physical resource parameter is mandatory in this case 
and must be the identity of a physical resource returned by a 
prior present message. 

To provide explicit control over the direction of presen- 
tation of multimedia information, our implementation has the 
presentation-device instance explicitly control the cursor 
that is maintained by the read-disk-stream. For example, in 
response to a user request to move ahead 10 seconds in an 
audio message, the presentation-device instance will tranS- 
late 10 seconds into a byte count, and send the fOlIOWing 
message: 

(forward read-disk-stream count) 

The cursor can be decreased by sending the following mes- 
sage: 

(backward read-disk-stream [count]) 

The count parameter specifies the number of bytes to sub- 
tract from the cursor. 

5.4 Multimedia Data Storage Efficiency 

We achieve efficient storage of multimedia data by hav- 
ing multiple versions of a multimedia object share common 

326 
Proceedings of the 13th VLDB Conference, Brighton 1987 



storage blocks. Our current implementation is limited to 
magnetic disk storage, and as such, the algorithm we de- 
scribe here is in terms of a mag-disk-storage-device. 

When a multimedia object is created or updated, space 
is allocated for the new data in blocks of N disk pages. Exist- 
ing pages of data on disk are never overwritten. As Figure 7 
illustrates, each mag-disk-storage-device instance main- 
tains a list of block-entries, block-list. Each block-entry is 
of the form (block-id start-offset length), which represents 
the identity of the disk block, the start-offset within the 
block, and the length of the data in the block, respectively. 

Figure 10 illustrates 3 captured-object instances and 
the mag-disk-storage-device instances they reference. The 
solid arrows represent references from captured-object in- 
stances to mag-disk-storage-device instances. The 
dashed arrows represent version relationships between ob- 
jects. Originally, captured-object instance #l was created 
with a reference to mag-disk-storage-device instance #l . A 
total of 3000 bytes of multimedia data were then written to 
disk blocks 1, 2, and 3. At some later time, captured-object 
instance #2 was created as a new version of captured-object 
instance #l . It was then modified by deleting 1200 bytes of 
data, beginning at a start-offset of 900 bytes, and inserting 
1000 bytes, beginning at a start-offset of 900 bytes. The 
1000 new bytes were all written to the newly allocated block 
4. Then, at some later time, captured-object instance #3 
was created as a copy of #l (but not as a new version of 
#l) . It was then modified by inserting 800 bytes at a start- 
offset of 400. These 800 bytes are written into the newly allo- 
cated block 5. Now, both mag-disk-storage-device instance 
#2 and mag-disk-storage-device instance #3 have mag- 
disk-storage-device instance #l as a parent-version. 

parent- 
version 

J 

#- 
-\ 

captured-object 
in& :o I1 - 

attribute 
value 

/ 
/’ 

/ parent. 

J 

versior 

mag-diak- 
storage-device 
instance Xl 

(( 1 0 1000 ) ( 2 0 ( 3 0 1000 )) 1000) \ 

\ 
mag-dlsk- 
atorace-device 

in& 

1 

I 

tured-object captured-object 
ante X2 instance t3 

attribute 
value 

attribute 

/ 

value 

. 
- - mag-diak- 

storage-device 
instance t3 

(( 1 0 400 ) ( 5 0 800 ) 
(1400600)(201000) 
( 3 0 1000 )) 

\ z- /-- inataibe #2 

parent- (( 1 0 900 ) ( 4 0 1000 ) 
version ( 3 100 900 )) 

Figure 10. Use of Orion Version Management for 
Reducing Copies of Multimedia Data 

The ORION object subsystem constructs a version hier- 
archy as new versions of a captured-object are created. The 
object subsystem also enforces the constraint that an object 
cannot be modified once a new version has been derived 
from it. Whenever disk blocks are removed from the block- 
list of a mag-disk-storage-device instance during an update 
or a delete operation, the MM uses the version hierarchy to 
find disk blocks which are no longer referenced from any 
mag-disk-storage-device instances and which therefore can 
be returned to free space. The following algorithm which we 
have implemented is a simplified version of the algorithm 
proposed in [CARE88]. 

1. Deallocating a Disk Block X during an Update of Ver- 
sion A 

a. If X was allocated by A, free X and exit. 

b. If X was allocated by an ancestor version of A, and if 
the parent version of A has not been deleted, exit 
without freeing X. 

c. If X was allocated by an ancestor version of A, and if 
the parent version of A has been deleted, first 
search the sibling versions of A for references to X. 
If no references are found, search the descendant 
versions of each deleted ancestor version for X, until 
a non-deleted ancestor version is found. Then 
search the non-deleted ancestor version for X. If X 
is found during any of these searches, exit without 
freeing X. If X is not found, free X and exit. 

2. Deallocating a Disk Block X during the Deletion of Ver- 
sion A 

a. Same as lb. 

b. Search for X in the first non-deleted descendant ver- 
sion on every path rooted at A. If X is found, exit 
without freeing X. 

C. same as lc. 

Figure 11 illustrates two examples of version hierarchies 
where versions of a mag-disk-storage-device instance have 
been previously deleted. Versions which have already been 
deleted are shown in boxes. Assume that in Figure 1 la, we 
are about to delete version V3 and that V3 references only 
Block X, where Block X was not allocated by V3. Rule 2a 
states that since Vl is the parent version of V3 and Vl has 
not been deleted, we know that Block X will still be used by 
V3. We do not need to search any further. 

2”\ 
Vl 

/\ 

v2 

% 

V3 VQ v!j V6 

/\ 

vo 

\ 

/65? 

Vl v2 

A v9 i” v6 
V4 V8 V7 

I 

V4 V8 V7 

I 
VlO 

(a) 

VlO 

W 

Figure 11. Deletion of Versions 

Proceedings of the 13th VLDB Conference, Brighton 1987 327 



In Figure 11 b, again we are about to delete version V3 
and we assume that V3 references only Block X, where 
Block X was not allocated by V3. Since Vl has been deleted, 
Rule 2a does not apply. Rule 2b states that we must search 
V4 and V8 (but not VlO) for Block X. If we assume that there 
is no reference to Block X in V4 or V8, Rule 2c then states 
that we must search VO and V9 for references to Block X. If 
no reference to Block X is found in VO and V9, we can deal- 
locate Block X on disk so that it may be reallocated for use in 
another multimedia object. 

5.5 Multimedia Data Transfer Efficiency 

We have optimized data transfer efficiency in ORION by 
eliminating unnecessary copying of multimedia data as it is 
transferred between magnetic disk storage and presentation 
devices in the system. We accomplish this by giving presen- 
tation-device instances and capture-device instances the 
capability to directly manipulate data in the ORION page buff- 
ers, thus eliminating the need to copy the data from the 
page buffers. Further, as in [HASK82], rather than logging 
the before or after image of a multimedia object (which is 
potentially very large), we log Only the mag-disk-storage- 
device instance which has an attribute describing the disk 
blocks containing the multimedia object. All disk blocks allo- 
cated by a mag-disk-storage-device instance during a 
transaction are automatically deallocated if the transaction 
aborts. All disk blocks deallocated by a mag-disk-storage- 
device instance during a transaction are not actually deallo- 
cated until the transaction commits. 

6. Concluding Remarks 

In this paper, we described our implementation of the 
Multimedia Information Manager (MIM) for the ORION object- 
oriented database system. We first reviewed the basic ob- 
ject concepts which are the basis of the ORION data model. 
We then described our design objectives for the support of 
multimedia databases. These design objectives include ex- 
tensibility, flexibility, and efficiency in supporting many types 
of multimedia information. 

We then described in detail our implementation of the 
MIM and how it met these design objectives. A framework 
representing multimedia capture, storage, and presentation 
devices has been implemented using ORION classes. This 
framework may be specialized by system developers and 
end users to extend the functionality of the MIM. A message 
passing protocol was defined for the interaction among in- 
stances of these classes. This protocol may also be special- 
ized . 

We discussed our implementation of a technique for re- 
ducing unnecessary copies of multimedia data on disk stor- 
age by having multiple versions of a multimedia object share 
common disk blocks. We also presented our implementa- 
tion of a technique for efficiently transferring multimedia data 
in the system by having the the methods associated with the 
multimedia classes directly interface with low level functions 
of the ORION storage subsystem. 

One contribution of this paper is the description of our 
implementation that satisfies the flexibility and efficiency re- 
quirements of multimedia information management. An- 
other contribution is the lucid illustration of an object-ori- 
ented implementation of a framework for multimedia infor- 
mation management. The framework may be viewed as one 
further proof of the power of the object-oriented paradigm. 
Since the framework is what makes the MIM highly extensi- 
ble, our approach may also provide an additional insight to 
the current research in extensible database systems. 

Using the multimedia classes and message passing pro- 
tocol described in this paper, we have implemented capture. 

328 

storage, and presentation of bit-mapped images and audio 
with ORION on the Symbolics LISP Machine. We were able to 
use the Symbolics Flavors window system for displaying im- 
ages but we did not wish to add special-purpose camera or 
audio-recording hardware to the Symbolics for capturing im- 
ages, capturing audio, and presenting audio. We did have 
access over a local area network to other systems which had 
this type of multimedia capability. Therefore, we created 
new classes to represent remote capture and presentation 
devices by further specializations of the capture-device and 
presentation-device classes. The present and capture meth- 
ods for these classes were specialized in some cases to 
move captured data across the local area network and in 
other cases to actually capture multimedia data remotely, 
store it in the remote device, and present it remotely under 
the control of ORION. 

Acknowledgements 

We are grateful to John Cater, Bill Luther, and Jim Avery 
of the MCC Human Interface Program for providing expertise 
in the area of multimedia technology and human/machine 
interaction. We also thank Jay Banerjee and Hong-Tai Chou 
of the ORION project for their help in integrating multimedia 
functionality with ORION. 

References 

[BANE871 

[BOBR83] 

[ BOBR85] 

[CARE881 

[CDR086] 

[CHOU86] 

[CHRl86a] 

[CHRl86b] 

Banerjee, J., H. T. Chou, J. Garza, W. Kim, D. 
Woelk, N. Ballou, and H. J. Kim. “Data Model 
Issues for Object-Oriented Applications, * to 
appear in ACM Trans. on Office Information 
Systems, April 1987. 

Bobrow, D.G.. and M. Stefik. The LOOPS 
Manual, Xerox PARC, Palo Alto, CA., 1983. 

Bobrow, D.G., K. Kahn, G. Kiczales, L. Masin- 
ter, M. Stefik, and F. Zdybel. CommonLoops: 
Merging Common Lisp and Object-Oriented 
Programming, Intelligent Systems Laboratory 
Series ISL-85-8, Xerox PARC, Palo Alto, CA., 
1985. 

M. Carey, D. Dewitt, J.E. Richardson, and 
E.J. Shekita. “Object and File Management in 
the EXODUS Extensible Database Svstem, ” 
Proc. 72th lntl Conf. on Very Large Dare Bases, 
August 1986, pp. 91-100. 

CD ROM, The New Papyrus, edited by S. Lam- 
bert and S. Ropiequet, Microsoft Press, Red- 
mond, WA., 1986. 

Chou, H.T., and W. Kim. “A Unifying Frame- 
work for Versions in a CAD Environment,” in 
Proc. /nt/ Conf. on Very Large Data Bases, 
August 1986, Kyoto, Japan. 

Christodoulakis, S., F. Ho, and M 
Theodoridou. “The Multimedia Object Presen- 
tation Manager of MINOS: A Symmetric Ap- 
proach, ” Proc. ACM SIGMOD lntl Conf. on 
the Management of Data, May 1986, pp. 
295-310. 

Christodoulakis, S., and C. Faloutsos. “Design 
and Performance Considerations for an Optical 
Disk-Bases, Multimedia Object Server, ” IEEE 
Computer, December 1986. pp. 45-56. 

Proceedings of the 13th VLDB Conference, Brighton 1987 



[GOLD81 ] 

[HASK82] 

[KILL861 

[LMl85] 

[LUTH67] 

[MAIE86] 

[PETR86] 

[STEE84] 

[STEF86] 

(SYMB85] 

[WOEL86] 

[WOEL87] 

Goldberg, A. “Introducing the Smalltalk- 
System, ” Byte, vol. 6, no. 6, August 1981, 
pp. 14-26. 

R. Haskin and R. Lorie. “On Extending the 
Functions of a Relational Database System,” 
in Proc. ACM SIGMOD lntl Conf. on Manage- 
ment of Data, June 1982, pp. 207-212. 

Killmon P. “For Computer Systems and Pe- 
ripherals, Smarter is Better,” Computer De- 
sign, January 15. 1986. pp. 57-70. 

ObjectLISP User Manual, LMI, Cambridge, 
MA, 1985. 

Luther W., D. Woelk, and M. Carter. “MUSE: 
Multimedia User Sensory Environment, ” to ap- 
pear in IEEE Knowledge Engineering Newsl.et- 
ter, February 1987. 

Maier, D., Stein, J., Otis, A., and Purdy, A. 
“Development of an Object-Oriented DBMS, ” 
Oreaon Graduate Center: Technical Report 
CS&-86-005, April 1986. 

Orenstein J. “Spatial Query Processing in an 
Object-Oriented System, ” Proc. ACM SIG- 
MOD /nt/ Conf. on the Management of Data, 
May 1986, pp. 326-336. 

Petrie, C., D. Russinoff, and D. Steiner. 
‘Proteus: A Default Reasoning Perspective, ” 
Fifth Generation Systems Conf., National Insti- 
tute for Software, Washington, D.C., October, 
1986. 

Guy L. Steele Jr., Scott E. Fahlman, Richard 
P. Gabriel, David A. Moon, and Daniel L. Wein- 
reb, “Common Lisp,” Digital Press, 1984. 

Stefik. M., and D.G. Bobrow. “Object-Ori- 
ented Programming: Themes and Variations, ” 
The Al Magazine, January 1986, pp. 40-62. 

Symbolics Inc., “User’s Guide to Symbolics 
Computers, ” Symbolics Manual # 996015, 
March 1985. 

D. Woelk, Won Kim, and W. Luther. “An Ob- 
ject-oriented Approach to Multimedia Data- 
bases,” Proc. ACM SIGMOD InN Conf. on the 
Management of Data, May 1986. pp. 
31 l-325. 

D. Woelk, W. Luther, and W. Kim. “Multimedia 
Applications and Database Requirements, ” to 
appear in Proc. IEEE Computer Society Sympo- 
sium on Office Automation. April 1987. 

Proceedings of the 13th VLDB Conference, Brighton 1987 329 


